booklet final NL.qxp
1/19/06
10:30 AM
Page 1
FUSIE,
Algemene infor matie
een ener gieoptie voor de toekomst v an Eur opa
EURATOM
booklet final NL.qxp
1/19/06
10:30 AM
Page 4
Geinteresseerd in Europees onderzoek?
RTD Info is ons driemaandelijks magazine dat u op de hoogte houdt van de voornaamste ontwikkelingen (resultaten, programma s, gebeurtenissen, &).
Het is beschikbaar in het Engels, Frans en Duits. Een gratis voorbeeldexemplaar of een gratis abonnement kunt u aanvragen door contact op te nemen met: Europese Commissie
Directoraat-Generaal voor Onderzoek Afdeling Informatie en Communicatie B-1049 Brussel
Fax (32-2) 29-58220
E-mail:
[email protected]
Internet: http://europa.eu.int/comm/research/rtdinfo/index_en.html
EUROPEAN COMMISSION
Directorate-General for Research Directorate J - Energy Unit J6 Fusion Association Agreements Contact: Hugues Desmedt European Commission Office CDMA 04/74 B-1049 Brussels
Tel. (32-2) 29-98987
Fax (32-2) 29-64252
E-mail:
[email protected]
booklet final NL.qxp
1/19/06
10:30 AM
Page 5
EUROPESE COMMISSIE
FUSIE
een ener gieoptie voor de toekomst v an Eur opa
2005
Directoraat-Generaal Onderzoek Fusie-energie onderzoek
booklet final NL.qxp
1/19/06
10:30 AM
Page 6
Europe Direct helpt u antwoord te vinden op uw vragen over de Europese Unie Een nieuw gratis nummer:
00 800 6 7 8 9 10 11
Noch de Europese Commissie, noch enige persoon die optreedt voor de Commissie is verantwoordelijk voor het gebruik dat gemaakt kan worden van deze informatie. De opinies uitgedrukt in dit artikel zijn uitsluitend voor rekening van de auteur en stemmen niet noodzakelijk overeen met deze van de Europese Commissie Meer gegevens over de Europese Unie vindt u op Internet via de Europaserver (http://europa.eu.int). Bibliografische gegevens bevinden zich aan het einde van deze publicatie. Luxemburg: Bureau voor officiële publicaties der Europese Gemeenschappen, 2005 ISBN 92-894-7717-2 © European Communities, 2005
Reproduction is authorised provided the source is acknowledged. Printed in Belgium
6
PRINTED ON WHITE CHLORINE-FREE PAPER
booklet final NL.qxp
1/19/06
10:30 AM
Page 7
Inhoud INLEIDING De behoefte aan betrouwbare en duurzame energie De energiebron van de sterren Fusie als energiebron Veiligheid Milieu-aspecten De voortgang van het fusie-onderzoek
9 10 11 12 13 14
HET EUROPESE FUSIEPROGRAMMA ITER en de Europese strategie voor fusie Het Europese onderzoeksgebied voor Fusie
16 18
HOE WERKT FUSIE? Fusie met magnetische opsluiting De voornaamste onderdelen van een tokamak Plasmaverhitting Meten en modelleren van plasma-eigenschappen ITER, de weg naar fusie-energie Lange-termijn technologie
20 22 24 25 26 28
Educatieve activiteiten in Europa EIROforum Opleidingen en trainingen in Europa Spin-off van fusie-onderzoek naar andere high-tech gebieden
30 32 33 34
Referenties Over “The Starmakers” DVD
35 38 39
7
booklet final NL.qxp
8
1/19/06
10:30 AM
Page 8
booklet final NL.qxp
1/19/06
10:30 AM
Page 9
De behoefte aan veilige en duurzame energie De economie van de Europese Unie (EU) is afhankelijk van een betrouwbare en voldoende energietoevoer. Momenteel wordt aan die behoefte voornamelijk voldaan door gebruik te maken van fossiele brandstoffen (olie, kolen en aardgas), die meer dan 80% van de energie leveren. Twee-derde van de fossiele brandstoffen die we verbruiken importeren we. Van alle energie die de EU gebruikt wordt ongeveer de helft ingevoerd, en de voorspellingen zijn dat dit rond het jaar 2030 tot 70% gestegen zal zijn. Met name de olievoorraad zal tegen die tijd problematisch worden. Betrouwbare en duurzame energiebronnen zijn nodig om onze levensstandaard te kunnen behouden. Europese onderzoekers ontwikkelen verschillende milieuvriendelijke, veilige en duurzame energiebronnen. Kernfusie, de energiebron van de zon en de sterren, is daar één van. Op de lange termijn zal fusie één van de opties worden voor grootschalige opwekking van veilige en milieuvriendelijke energie, met ruim beschikbare en goed over de aarde verdeelde brandstofvooraden. Fusiecentrales zullen vooral geschikt zijn om de grootschalige energievoorziening te verzorgen die nodig is in dichtbevolkte gebieden en industriezones. Bovendien kunnen fusiecentrales waterstof produceren voor gebruik in een waterstofeconomie. Dit boekje beschrijft het onderzoek dat wordt verricht door Europese onderzoekers, met het doel om fusie-energie te ontwikkelen als energieoptie voor de mensheid.
9
booklet final NL.qxp
1/19/06
10:30 AM
Page 10
The energiebron van de sterren Fusie is het proces dat de zon en de sterren van energie voorziet. Als aan de juiste voorwaarden voldaan is, zoals een extreem hoge temperatuur, kunnen lichte atomen samensmelten tot zwaardere. In het centrum van de zon is de druk zo hoog dat dit proces plaatsvindt bij een temperatuur van ongeveer 10 miljoen graden Celsius. Gas dat verhit wordt tot zulke hoge temperaturen vormt een ‘plasma’: een toestand waarbij de elektronen en atoomkernen helemaal van elkaar gescheiden zijn, en een gas van geladen deeltjes vormen. Een plasma heeft zeer bijzondere eigenschappen, die worden onderzocht in het vakgebied van de plasmafysica. Hoewel plasma’s op aarde redelijk exotisch zijn, is in feite meer dan 99% van alle materie in het heelal in de plasmatoestand. Op aarde kunnen we de hoge druk in het centrum van de zon niet evenaren, de druk in fusie-experimenten op aarde is 10 miljard maal lager. Daarom hebben we een hogere temperatuur van 100 miljoen graden nodig om toch voldoende fusiereacties te krijgen. Om deze hoge temperaturen te bereiken moet het plasma krachtig worden verhit, en bovendien moet het warmteverlies naar de wand worden beperkt door het plasma weg te houden van de rand van het reactorvat. Dat gebeurt door het plasma in een binnenband-vormige vat (ook wel torus geheten) te doen, waarin het plasma op zijn plaats wordt gehouden door sterke magneetvelden. Zo’n machine heet een tokamak. Deze zogeheten magnetische opsluiting is de meest vergevorderde techniek om fusie tot stand te brengen. Het is de basis van het Europese fusie-onderzoeksprogramma.
10
booklet final NL.qxp
1/19/06
10:30 AM
Page 11
Fusie als ener gie br on
De fusiereactie
D+T
4
He+n+17,6 MeV
De eerste generatie fusiecentrales zal gebruik maken van de fusiereactie tussen twee isotopen van waterstof: deuterium en tritium (D en T). Dit is de fusiereactie die het gemakkelijkst verloopt. Deuterium komt voor in (zee)water: elke kubieke meter water bevat 33 gram deuterium. Tritium is radioactief met een halfwaardetijd van 12.3 jaar, en komt dus nauwelijks op aarde voor. Het kan worden gemaakt uit lithium (een licht en overvloedig beschikbaar metaal) in een fusiereactor. De fusiereactie tussen D en T produceert een helium-kern en een los neutron, en veel energie.
D+T
Supergeleidende magneet
Plasma
Deuteriumbrandstof
Mantel (bevat lithium)
Tritium
Afschermin g Warmtewisselaar
T+ He Vacuümvat
Stoomboiler
Tritium en helium
4
Helium
Elektrisch vermogen Turbine en generator
Schema van een toekomstige fusiereactor
Omdat de neutronen niet door het magneetveld worden tegengehouden ontsnappen ze uit het plasma, en worden opgevangen in de mantel om het plasma. In de mantel wordt lithium omgezet in tritium, dat daarna als brandstof gebruikt kan worden. De energie van de neutronen wordt opgevangen en uiteindelijk omgezet in stoom, waarmee elektriciteit kan worden op gewekt met een stoomturbine. Om een stad met een bevolking van ongeveer een miljoen mensen gedurende een jaar van elektriciteit te voorzien heeft een fusiecentrale slechts een klein bestelwagentje (met enkele honderden kilo’s) brandstof nodig.
11
booklet final NL.qxp
1/19/06
10:30 AM
Page 12
Veiligheid Net als een gasbrander, verbrandt de fusiereactor de brandstof die in het reactievat wordt ge njecteerd. Op elk moment is er maar heel weinig brandstof in het vat: slechts een paar gram deuterium-tritium mengsel in een volume van 1000 m3. Als de brandstoftoevoer onderbroken wordt, stopt de fusiereactie al na een paar seconden. Elk mankement aan de machine leidt ertoe dat het plasma afkoelt, en het fusieproces stopt. Een fusiecentrale is dus inherent veilig. De basisbrandstoffen van fusie, deuterium en lithium, en het restproduct helium, zijn allemaal niet-radioactieve stoffen. De in de reactor aangemaakte tussenbrandstof tritium vervalt redelijk snel (het heeft een halfwaardetijd van 12.6 jaar), en het verval produceert een elektron met een zeer lage energie (bytastraling). In lucht verplaats zo n elektron zich slechts enkele millimeters, en het komt zelfs niet door een vel papier heen. Maar als tritium in g r kin we r het lichaam zou komen is het wel een e v ium Trit schadelijke stof, zodat er voldoende veiligheidssystemen voor het omgaan met het tritium in het ontwerp van een fusiecentrale aanwezig moeten zijn. Omdat het tritium dat nodig is voor het fusieproces aangemaakt wordt in de mantel van de reactor, is er geen transport nodig van radioactieve brandstof naar de fusiekrachtcentrale.
12
booklet final NL.qxp
1/19/06
10:30 AM
Page 13
Fusie en het milieu De energie die wordt opgewekt door toekomstige fusiereacties zal op dezelfde manier worden gebruikt als de energie die nu door andere energiebronnen wordt opgewekt: ze zal gebruikt worden om elektriciteit te genereren of als warmte voor industrieel gebruik. Ook is het mogelijk om met een fusiecentrale waterstof te maken. The fuel consumption of a fusion power station will be extremely low. A 1 GW (electric) fusion plant will need about 100 kg deuterium and 3 tons of natural lithium to operate for a whole year, generating about 7 billion kWh. A coal fired power plant – without carbon sequestration - requires about 1.5 million tons of fuel to generate the same energy ! Fusiereactoren produceren geen broeikasgassen of andere vervuilende stoffen die het milieu schaden of klimaatverandering veroorzaken.
De Europese tokamak JET (Culham, UK)
De neutronen die bij de fusiereactie ontstaan maken het materiaal waaruit het plasmavat bestaat radioactief. Als het materiaal van deze componenten zorgvuldig wordt uitgekozen, kan de radioactiviteit al binnen 50-100 jaar tot een laag niveau zakken, waarbij het materiaal eenvoudig kan worden opgeslagen of deels hergebruikt. Een “hands on” niveau kan dan na een paar honderd jaar worden bereikt. Bij de juiste materiaalkeuze maakt fusie dus geen langlevend radioactief afval, en het afval van fusiecentrales vormt dan geen belasting voor toekomstige generaties. 13
booklet final NL.qxp
1/19/06
10:30 AM
Page 14
Het Europese fusie-experiment JET (Joint European Torus), gelegen in Culham in Groot-Brittanni, is het grootste fusie-experiment ter wereld, en de enige die kan werken met de echte fusiebrandstoffen, deuterium en tritium. Inmiddels heeft JET alle oorspronkelijk doelstellingen gehaald, en in 1997 vestigde JET een wereldrecord met de productie van 16 MW fusievermogen gedurende een korte tijd. Inmiddels levert JET extra kennis die gebruikt wordt bij het ontwerpen van de opvolger van JET: ITER.
Fusievermogen (MW)
Vo o r u i t g a n g i n h e t f u s i e onderzoek
Tijd (s)
Fusievermogen prestaties
In Europa zijn er een aantal grote experimentele fusiereactoren die bijdragen aan het verbreden van de kennis die nodig is om uiteindelijk fusiecentrales te kunnen bouwen. Een recent belangrijk resultaat is geboekt op de Tore Supra tokamak in Frankrijk (een tokamak is een machine die met een ringvormig plasmavat werkt). Met deze machine bestudeert men mogelijkheden om fusiereactoren bijna-continu te laten draaien. Waar vroeger plasma’s maar zeer korte tijd in stand konden werden gehouden (fracties van seconden), produceerde Tore Supra in 2003 een plasma van zes-en-een-halve minuut, een wereldrecord. In totaal werd er genoeg energie in de reactor gepompt om 3 ton water mee aan de kook te brengen – meer dan één gigajoule. In China is een ander zeer belangrijk resultaat geboekt: het gebruik van supergeleidende spoelen om de sterke magneetvelden mee te maken. Plasma met recorduur van 6-en-een-halve minuut in Tore Supra (Cadarache, Frankrijk).
14
booklet final NL.qxp
1/19/06
10:30 AM
Page 15
Een eenvoudige maatstaf voor de prestatie van een fusiereactor kan worden gemaakt door het totaal geproduceerde fusievermogen te delen door het externe vermogen dat in het plasma wordt gestopt om de reactie op gang te houden. Dit prestatie-getal wordt Q (van het engelse Quality) genoemd. Als het fusieproces voldoende energie vrijmaakt om de energie die uit het reactorvat lekt te compenseren, is er helemaal geen externe verhitting meer nodig, en is Q oneindig groot. Net als een vuur, gaat het plasma door met ‘branden’, zolang er voldoende brandstof in de reactor wordt gestopt. In toekomstige fusie-centrales is het niet nodig om deze toestand te bereiken: het is voldoende als er veel meer energie uit de centrale komt dan er nodig is om het proces in stand te houden. JET heeft 16 MW aan fusievermogen opgewekt, en bereikte daarmee Q=0.65. Er kwam dus iets minder energie uit JET dan er nodig was om de reactie op gang te houden. De volgende machine, ITER, is ontworpen om Q=10 te halen, terwijl toekomstige fusiereactoren waarden voor Q van 40 of 50 kunnen bereiken. Vooruitgang van het wereldwijd kernfusieonderzoek
Ignition
Ontoegankelij k gebied Br em ss tr ah lu ng slim ie t
De meeste huidige fusiemachines gebruiken geen tritium als brandstof gebruiken en wekken dus geen energie opwekken. Om hun prestaties toch met elkaar te kunnen vergelijken, wordt op basis van de karakteristieken van de machine uitgerekend welke Q de machine zou halen als wél met tritium zou worden gewerkt. De figuur toont waarden van Q, uitgezet tegen de temperatuur van het plasma, voor een groot aantal tokamaks wereldwijd. De machines met de beste prestaties bereiken omstandigheden die in de buurt liggen van wat nodig is voor een echte fusie-elektriciteitscentrale.
Omstandigheden in de reactor
TFTR
Reactor= relevant conditions
DT-experimenten
15
booklet final NL.qxp
1/19/06
10:30 AM
Page 16
ITER en de Eur opese str a te gie voor fusie Het doel voor de lange termijn van fusie R&D in de lidstaten van de Europese Unie (plus de landen die meedoen via het Europese Euratom Kaderprogramma) is het “gezamenlijk maken van prototypes van fusie-elektriciteitscentrales die voldoen aan de eisen van de maatschappij: veilig, milieuvriendelijk, en economisch rendabel.” De strategie om dit doel voor de lange termijn te bereiken omvat onder andere de ontwikkeling van de experimentele fusiereactor ITER, die binnen een internationale samenwerkingsverband wordt ontwikkeld. Het uiteindelijke doel van de ITER tokamak is om de wetenschappelijke en technologische haalbaarheid van het gebruik van fusie-energie voor vreedzame doeleinden aan te tonen. ITER moet dit doel bereiken door een langdurig en efficint brandend deuterium-tritium plasma te demonstreren, met continu branden als uiteindelijk doel. Verder zullen in ITER technologien worden gedemonstreerd die in toekomstige fusiecentrales nodig zijn om in een ge ntegreerd systeem elektriciteit op te wekken.
16
ITER zal worden opgevolgd door een ‘demonstratiereactor’, DEMO geheten. DEMO moet, voor de eerste keer, in staat zijn om grote hoeveelheden elektriciteit op te wekken, en zelf genoeg tritium aan te maken. Voor de bouw van ITER, en later van DEMO, is een aanzienlijke betrokkenheid van de Europese industrie nodig. Verder zijn ondersteunend wetenschappelijke onderzoek en technologische R&D activiteiten nodig in de Europese fusielaboratoria en universiteiten. R&D activities in the fusion laboratories and universities. Schema van ITER
booklet final NL.qxp
1/19/06
10:30 AM
Page 17
In de afgelopen jaren is het ontwerpen van ITER (samen met internationale partners) één van de belangrijkste elementen geweest van het Europese fusie-onderzoeksprogramma. In grote lijnen is het ontwerp van deze machine vergelijkbaar aan die van JET (de Joint European Torus, in Culham, UK). In 1997 vestigde JET een wereldrecord door 16 MW fusievermogen op te wekken. Om de stap naar ITER te kunnen zetten is zijn veelvuldig modellen gemaakt op basis van de bestaande kennis die opgebouwd is met behulp van Europese en internationale fusie-experimenten. De ITER-samenwerking vindt plaats onder auspicin van de IAEA (International Atomic Energy Agency Internationaal Atoomenergieagentschap). Het doel van ITER is het aantonen van de wetenschappelijke en technologische haalbaarheid van het gebruik van fusieenergie voor vreedzame doeleinden.
Impressie van de ITER-site in Cadarache - F
Parallel aan ITER wordt gewerkt aan de voorbereiding van R&D aspecten van DEMO die een lange voorbereidingstijd vragen. Een belangrijk doel is het ontwikkelen van geavanceerde materialen die geoptimaliseerd zijn voor het gebruik in fusiecentrales, bijvoorbeeld materialen die slechts in beperkte mate radioactief worden.
17
booklet final NL.qxp
1/19/06
10:30 AM
Page 18
Het Europees fusie-onderzoeksgebied
18
Een belangrijk kenmerk van het Europese fusie-onderzoeksprogramma is het feit dat het programma op Europees niveau wordt gecoördineerd, wat een intensief gebruik mogelijk maakt van alle relevante R&D faciliteiten. Op allerlei fusie-gerelateerde gebieden wordt binnen Europese samenwerkingsverbanden onderzoek uitgevoerd. Van bijzonder belang is de samenwerking voor de exploitatie van JET, en in het technologieprogramma dat binnen EFDA (de European Fusion Development Agreement) wordt uitgevoerd. Het onderzoek binnen EFDA richt zich sterk op ITER, maar omvat ook onderzoek dat voor de opvolger van ITER, DEMO, nodig is. Dit onder één noemer gebrachte gecoördineerde fusieprogramma waaraan kleine en grote laboratoria meewerken, endat gericht is op het bereiken van een gemeenschappelijk doel, is een voorbeeld van een European Research Area. Door de succesvolle samenwerking staat Europa nu internationaal voor-aan op het gebied van magnetische-opsluiting fusie-onderzoek. Resultaten die in de verschillende Europese fusie-instituten geboekt zijn, hebben de bouw van JET mogelijk gemaakt, en de vooruitgang naar ITER. Geen enkel individueel instituut uit één land had dit alleen tot stand kunnen brengen. Naast de grootschalige internationale samenwerking rond ITER, zijn ook samenwerkingsverbanden met niet-Europese partners opgezet, met als doel de beste expertise ter wereld samen te brengen rond onderwerpen van gemeen-schappelijk belang. Deze samenwerkingsverbanden bestaan uit bilaterale en multilaterale overeenkomsten tussen Europese en niet-Europese laboratoria.
booklet final NL.qxp
1/19/06
10:30 AM
Page 19
ed Gebaseerd op het Euratom-verdrag, wordt het fusieonderzoeks- en ontwikkelingsprogramma in Europa gecoˆrdineerd door de Europese Commissie. Het programma wordt ge mplementeerd door:
• De EFDA-overeenkomst, die zorgt draagt voor: - Fusie technologie activiteiten door de geassocieerde fusie-instituten en de industrie - Het gemeenschappelijk gebruik van de JET-onderzoeksfaciliteit - Europese bijdragen aan internationale samenwerkingen zoals ITER • Contracten van beperkte duur in landen die geen “associatie-instituut” hebben. • Een overeenkomst voor het bevorderen van de mobiliteit van onderzoekers, en voor Euratom onderzoeksbeurzen. In het 6de EU kaderprogramma (wat loopt van 2002 tot 2006) is fusie-energieonderzoek een Thematisch Onderzoeksgebied met een hoge prioriteit, met een EU-budget van 750 miljoen euro. Van dat bedrag gaat maximaal 200 miljoen euro naar het opstarten van de bouw van ITER.
Het succes van het Europese fusieonderzoeksprogramma is een product van ongeveer 2000 natuurkundigen en ingenieurs die werkzaam zijn in Europese laboratoria en in de Europese industrie. 19
booklet final NL.qxp
1/19/06
10:30 AM
Page 20
Fusie door ma gnetische opsluiting Fusie op basis van magnetische opsluiting maakt gebruik van magneetvelden om het plasma in een reactorvat op te sluiten. Deze magneetvelden isoleren het plasma van de wand van de machine en van de buitenwereld. De geladen deeltjes waaruit het plasma bestaat kunnen alleen langs de magneetvelden bewegen, en niet loodrecht daarop.
Spoel
Spoel
Plasma met magneetveld
Fusie met magnetische opsluiting
Door de magnetische veldlijnen rond te buigen in een cirkel, zijn de plasmadeeltjes, in principe geheel opgesloten. Omdat de plasmadeeltjes niet meer bij de wand kunnen komen, behouden ze hun hoge temperatuur. In echte torus-vormige systemen lekt er wel energie weg door een aantal mechanismen zoals straling, en door botsingen van deeltjes waardoor deeltjes uiteindelijk naar de wand kunnen bewegen.
20
Plasma zonder magneetveld
De magneetvelden worden opgewekt door sterke elektrische stromen in spoelen buiten het reactorvat. Elektrische stromen die worden opgewekt in het plasma dragen ook bij aan het maken van de magnetische ‘kooi’.
booklet final NL.qxp
1/19/06
10:30 AM
Page 21
In één typpe machine, de tokamak, functioneert het plasma zelf als de secundaire draai winding van een transformator (de eerste draai winding is een externe spoel). Een verandering van de stroom in de primaire draai winding veroorzaakt een stroom in het plasma. Naast het genereren van een magneetveld dat helpt om het plasma op te sluiten, zorgt deze plasmastroom ook – vanwege de elektrische weerstand van het plasma – Spoelen van het Plasmastroom toroidale magneetveld Plasma voor de verhitting van het plasma. Omdat een transformator niet continu Magneetveldlijn eenzelfde stroom kan leveren (dan moet de stroom in de primaire winding steeds toenemen, en dat gaat maar tot een Schema van een tokamak zeker maximum), kan het plasma maar een beperkte tijd in stand worden gehouden. Als het plasma continu moet branden, moet dat met andere methoden tot stand worden gebracht. Een tweede type machine, die “stellarator” wordt genoemd, gebruikt hetzelfde principe van magnetische opsluiting, maar heeft externe draaien spoelen met een zeer complexe vorm. Daardoor heeft een stellerator geen transformator nodig om een stroom in het plasma op te wekken. Stelleratoren kunnen daardoor in principe eindeloos werken. De W7-X stellerator in Greifswald (Duitsland) is de grootste stellerator die op dit moment wordt gebouwd. Nog andere magnetische configuraties die nauw verwant zijn aan deze machines zijn de compacte (sferische) tokamak en de “reversed field pinch” (een fusie-experiment waarin het magneetveld van richting verandert). Spoelen van het poloidale magneetveld
Schema van een tokamak
21
booklet final NL.qxp
1/19/06
10:30 AM
Page 22
De belang rijkste componenten v an een tokamak Central spoel
De primaire kring van de transformator. Het plasma zelf is de secundaire draaikring.
Draaien Spoelen voor het torodiale veld en het poloidale veld
Deze draaien spoelen genereren het sterke magneetveld (ongeveer 5 tesla, wat 100.000 maal sterker is dan het magnetisch veld van de aarde) dat het plasma opsluit en er voor zorgt dat de geladen deeltjes de wand van het reactorvat niet raken.
Divertor
De divertor verwijdert onzuiverheden en het gevormde helium uit het vacuümvat. Het is de enige plaats waar het plasma met opzet de wand raakt.
22
booklet final NL.qxp
1/19/06
10:30 AM
Page 23
Cryostaat
De cryostaat omsluit het reactorvat en de draaiingen spoelen die het magneetveld opwekken. Hij wordt gekoeld tot -200 graden Celsius, om te helpen de supergeleidende magneten (die nog extra worden gekoeld) op de vereiste temperatuur van -269 graden Celsius te houden.
Vacuümvat
Het vacuümvat is hermetisch afgesloten en verhindert dat lucht in de reactorkamer komt.
Mantel
De mantelmodules bevatten lithium. Als de neutronen die bij het fusieproces vrijkomen reageren met het lithium, ontstaat tritium. Het tritium wordt afgescheiden en als brandstof in de plasmakamer gebracht. De energie van de neutronen wordt afgevoerd met een koelvloeistof waarmee stoom wordt gemaakt. De stoom drijft elektrische generatoren aan.
23
booklet final NL.qxp
1/19/06
10:30 AM
Page 24
Plasma verhitting De stroom die door het plasma in een tokamak loopt, draagt bij tot de verhitting. Deze zogenaamde Ohmse verhitting wordt minder efficint naarmate het plasma heter wordt. In de huidige fusie-experimenten bereikt het plasma een temperatuur van een paar miljoen graden, dat wil zeggen, ongeveer 10 keer te laag om voldoende fusiereacties te laten plaatsvinden. Om een hogere temperatuur te bereiken maakt men daarom gebruik van extra verhitting door externe bronnen.
Antenne van het radiofrequent verhittingssysteem van Tore Supra (CEA, Cadarache – Frankrijk)
Plasma kan ook worden verhit met microgolven, net als in een magnetron.Daarbij worden intense elektromagnetische golven met verschillende frequenties het plasma ingestuurd, waar ze door de plasmadeeltjes worden geabsorbeerd. Drie van zulke systemen worden ontwikkeld: Ion Cyclotron Resonance Heating met frequenties tussen de 40 en 55 MHz, Electron Cyclotron Resonance Heating met frequenties tussen de 100 en 200 GHz, en Lower Hybrid Heating, met frequenties tussen 1 en 8 GHz.
24
OHMSE VERHITTING Stroom
VERHITTING Spoel Golfgeleider DOOR MIDDEL VAN RADIO-FREQUENTE GOLVEN
VERHITTING DOOR HET INSCHIETEN VAN SNELLE NEUTRALE DEELTJES
Ge oniseerde en opgesloten ionen Energetische waterstofatomen Neutralisator
Bron van waterstofionen
Stralen Bundels van elektrisch neutrale deeltjes worden met hoge energie het plasma ingeschoten. Omdat ze nog neutraal zijn, worden ze niet opgesloten door het magneetveld, maar kunnen ze in het plasma doordringen. In het plasma staan ze door botsingen hun energie af aan de plasmadeeltjes, waardoor het plasma opwarmt. Neutrale-bundel verhittingssysteem op JET
booklet final NL.qxp
1/19/06
10:30 AM
Page 25
Meten aan en modeller en v an het plasma Om te begrijpen hoe een fusiereactor ontworpen moet worden is het nodig om alle processen die zich in het plasma afspelen te begrijpen. Dit vereist geavanceerde en complexe meetinstrumenten, die “diagnostieken” worden genoemd. Meetinstrumenten worden ontwikkeld in verschillende Europese laboratoria. Ze maken het mogelijk om alle aspecten van het plasma te meten: van de dichtheid en temperatuur in het centrum van het plasma – waarbij vaak lasers worden gebruikt – tot de hoeveelheid onzuiverheden in het plasma, en waar die vandaan komen. De gegevens die deze meetinstrumenten verzamelen worden gebruikt om nieuwe computermodellen te ontwikkelen waarmee het gedrag en de prestaties van het fusieproces kunnen worden voorspeld, en die het mogelijk maken om het proces bij te sturen zodat het optimaal verloopt.
Schema van ITER-diagnostieken
25
booklet final NL.qxp
1/19/06
10:30 AM
Page 26
ITER, de w e g naar fusie-ener gie ITER is de volgende stap in de ontwikkeling van een fusie-elektriciteitscentrale Het ITER-project is gebaseerd op succesvolle internationale samenwerking met een breed sca;a aan technologische R&D-projecten. ITER zal in staat zijn 400MW aan fusievermogen op te wekken tijdens een periode van 6 minuten, wat later uitgebreid moet worden naar continu bedrijf. De kosten van de bouw van ITER bedragen ongeveer 4.6 miljard euro (schatting uit het jaar 2000). Zodra er een overeenkomst wordt bereikt tussen de verschillende internationale partners, zal het bouwen van ITER 8 tot 10 jaar in beslag nemen. Daarna zullen er gedurende 20 jaar fusie-experimenten met ITER worden gedaan. ITER is gebaseerd op de wetenschappelijke resultaten van vele fusie-experimenten over de hele wereld.
26
Prototype op werkelijke schaal van een divertorelement voor ITER
Gyrotron - bron van hoogfrequente microgolven
Hoge heat-flux test va
booklet final NL.qxp
1/19/06
10:30 AM
Page 27
Hoog-vermogen lassen (11 kW) voor vacuümvat-secties.
Testen van een prototype van de toroidaalveld magneetspoel.
Gyrotron - bron van hoogfrequente microgolven
Platform voor remotehandling tests voor de ITER-divertor
oge heat-flux test van hitte-bestendige tegels
Opstelling om mantel-modules te testen Test van een full-scale prototype van de divertor vertical target bij Framatome.
27
booklet final NL.qxp
1/19/06
10:30 AM
Page 28
Tec hnolo gisc he acti viteiten voor de lang e ter mijn Naast het werk voor ITER wordt er veel onderzoek en ontwikkeling gedaan van technologie voor DEMO. Europese studies naar de ‘mantel’ (het deel van het vacuümvat dat het plasma omsluit, en waarin uit lithium tritium wordt gemaakt), concentreren zich op het gebruik van helium gekoeld lithium-lood, en heliumgekoelde keramische breeder-kogeltjes. Dit onderzoek is belangrijk voor de ontwikkeling van de tritiumcyclus van een fusiecentrale. Onderzoek naar de ontwikkeling van materialen in Europa concentreert zich op het ontwikkelen van bijzondere staalsoorten (zogenaamde lage-activatie ferritische en martensitische staalsoorten), zoals EUROFER, en – op de langere termijn – op het onderzoeken van composietmaterialen uit siliciumcarbide.
Radiotoxiciteit (in relatieve eenheden voor inademing)
Vragen omtrent veiligheid en milieu worden ook aangepakt. Dit werk is vooral gericht op het verbeteren van veiligheidsconcepten, en op het minimaliseren van de hoeveelheid geactiveerd materiaal. Studies hiernaar hebben aangetoond dat een fusiecentrale zo kan worden ontworpen dat een ongeluk binnen de centrale nooit kan leiden tot een noodzaak voor evacuatie van omwonenden. In andere socio-economische studies worden de economische aspecten en lange-termijn scenario’s voor fusie in de energiemix bestudeerd.
28
Helium-deelsystemen
He
Fusiematerialen Steenkolenas
Opslag (jaren)
Pb-17Li
B e r e ke n d e r a d i o t ox i citeit van ver schillende types fusieelektriciteitscentrale in ver gelijking met de r a d i o t ox i c i t e i t v a n s t e e n ko l e n a s
Versterkte lagen aangebracht op de eerste wand Pol.
Ontwerp voor prototype van de mantel
Rad. Tor.
Eerste wand en rooster van de staalsoort EUROFER
booklet final NL.qxp
1/19/06
10:30 AM
Page 29
Corrosietest van vloeibaar metaal
Tritiumpomp Berilliumkogeltjes
Voorwerpen van de staalsoort EUROFER Materiaaleigenschappen van EUROFER
Koeling
Hitteschild
Koudeschild
De KFKI experimentele reactor – Hongarije
He
Invoerkanalen uit siliciumcarbide composietmateriaal
Het stralingsprofiel van de IFMIF bundel
29
booklet final NL.qxp
1/19/06
10:30 AM
Page 30
Educatieve activiteiten in Eur opa
De rondreizende tentoonstelling Fusie Expo is gemaakt om een breed algemeen publiek en studenten te informeren over de fusieonderzoeksactiviteiten in Europa. De tentoonstelling heeft reeds vele Europese steden bezocht.
30
Fusie-expo in Santander – Spanje (Dec. 2003)
booklet final NL.qxp
1/19/06
10:30 AM
Page 31
De Fusion Road Show
De Fusion Road Show, ontwikkeld door de Associatie Euratom-FOM (Nederland), is een goed voorbeeld van een succesvolle educatieve activiteit van de fusiegemeenschap. De show is een interactieve presentatie van de basisprincipes van fusie, ondersteund met live experimenten.
31
booklet final NL.qxp
1/19/06
10:30 AM
Page 32
Eir of or um Via EFDA neemt het Europese fusieprogramma deel aan EIROforum, een samenwerkingsverband tussen zeven Europese intergouvernementele wetenschappelijke onderzoeksinstituten die verantwoordelijk zijn voor onderzoeksfaciliteiten en laboratoria. Eén van de hoofddoelen van EIROforum is een om actieve en constructieve rol te spelen in het promoten van de kwaliteit en de impact van Europees wetenschappelijk onderzoek. Een specifiek doel van EIROforum is het coördineren van de educatieve activiteiten van de betrokken organisaties. De zeven leden van EIROforum zijn
• CERN European Organisation for Nuclear Research (Zwitserland)), • EFDA European Fusion Development Agreement (UK, Duitsland), • EMBL European Molecular Biology Laboratory (Duitsland), • ESA
• ESO
European Space Agency (EU),
European Southern Observatory (Duitsland, Chili)
• ESRF European Synchrotron Radiation Facility (Frankrijk) • ILL
32
Institut Laue-Langevin (Frankrijk).
Physics on Stage 3 – Teachers in action
booklet final NL.qxp
1/19/06
10:30 AM
Page 33
Onderwijs- en tr ainingsacti viteiten in Eur opa Onderwijs en training van jonge onderzoekers is een belangrijk deel van het werkprogramma van de Associaties. Veel onderzoekers van de Associaties hebben onderwijstaken in academische instellingen, vooral universiteiten, en ongeveer 200 tot 250 master- en doctoraatsstudenten doen hun onderzoek in één van de Associatie-laboratoria. Meerdere Associaties organiseren cursussen op masterniveau, en zomerscholen over fusie en plasmafysica voor studenten op masterniveau en recent afgestudeerde onderzoekers.
Een aantal van de zomerscholen die door de Associaties worden georganiseerd zijn: - De Carolus Magnus Zomerschool de drie Associaties verenigd in de TEC-groep (Belgi, Duitsland, Nederland) - De Culham Zomerschool – Associatie Euratom-UKAEA (UK) - De Volos Zomerschool – Associatie Euratom-Griekenland (Griekenland) - De IPP-CR Zomerschool Associatie Euratom Instituut voor Plasmafysica (Tsjechi).
33
booklet final NL.qxp
1/19/06
10:30 AM
Page 34
R&D spin-of f naar ander e high-tec h g e bieden De industrie heeft een grote bijdrage geleverd bij het bouwen van fusie-experimenten en bij het ontwikkelen van technologie die nodig is voor fusie R&D. De industrie heeft op haar beurt baat gehad bij deze samenwerking omdat zij deskundigheid en commercile producten heeft kunnen ontwikkelen in verschillende gebieden buiten de fusiecontext. Voorbeelden van spin-offs zijn productietechnieken die gebruik maken van plasma s, behandeling van oppervlakken, verbetering van verlichting, plasmaschermen, vacu¸mtechnologie, (hoog)vermogenselektronica en metallurgie.
Kennisoverdracht vanuit de fusiewereld gebeurt ook door onderzoekers die van de fusieonderzoeksgemeenschap naar andere technologiegebieden overstappen. Zij brengen vaardigheden met zich mee die zij tijdens hun activiteiten in het fusieonderzoek verworven hebben. Dit soort kruisbestuiving en interdisciplinaire uitwisseling is één van de drijvende krachten die de Europese wetenschap en technologie voortstuwen. 34
Ionenmotor voor gebruik in de ruimtevaart.
booklet final NL.qxp
1/19/06
10:30 AM
Page 35
Ref er enties Achtergrondliteratuur: Towards a European Strategy for the Security of Energy Supply, Green Paper, European Commission, COM (2000)769 http://europa.eu.int/comm/energy_transport/en/lpi_lv_en1.html Relevante websites: http://europa.eu.int/comm/research/energy/fu/fu_en.html http://www.efda.org http://www.jet.efda.org http://www.iter.org http://www.fusion-eur.org http://www.eiroforum.org Verdere informatie kan worden verkregen via: R.Antidormi Europese Commissie Directoraat-Generaal RTD J6 Fusie Associatieovereenkomsten Wetstraat 200 B-1049 Brussel - Belgie tel: +32 229 98899 - fax: +32 229 64252 e-mail:
[email protected] http://europa.eu.int/comm/research/energy/fu/fu_en.html
35
booklet final NL.qxp
1/19/06
10:30 AM
Page 36
VERKOOP EN ABONNEMENTEN De publicaties van het Publicatiebureau waarvoor een vergoeding wordt gevraagd, zijn verkrijgbaar bij zijn over de hele wereld verspreide verkoopkantoren. Hoe kan men in het bezit komen van een publicatie? Op de lijst van verkoopkantoren kiest u een kantoor, waar u vervolgens een bestelling plaatst. Hoe kan men in het bezit komen van de lijst van verkoopkantoren? x x
Ofwel kunt u de internetsite van het Publicatiebureau raadplegen: http://publications.eu.int/ ofwel vraagt u om toezending van de lijst per fax: (352) 29 29-42758 en ontvangt u deze op papier.
booklet final NL.qxp
1/19/06
10:30 AM
Page 37
Europese Commissie Fusie, een energieoptie voor de toekomst van Europa Luxemburg: Bureau voor officiële publicaties der Europese Gemeenschappen
2005 — 40 pp. — format A5, 14.8 X 21.0 cm ISBN 92-894-7717-2 Price (excluding VAT) in Luxembourg: EUR 25
37
booklet final NL.qxp
1/19/06
10:30 AM
Page 38
Over “De Star maker s”
De acht minuten durende film “Starmakers” toont ITER, een grote experimentele machine die binnen een wereldwijd samenwerkingsverband wordt gebouwd. ITER is de volgende stap op weg naar een elektriciteitscentrale op basis van kernfusie. De film geeft een virtuele indruk van dit grote project. Tijdens de Fusion Expo kan deze film in 3D worden bekeken met behulp van speciale brillenglazen. De uitgedeelde versie is 2D en daar is geen speciale bril voor nodig. De film werd gemaakt door het Centre de Recherches en Physique des Plasmas, Ecole Polytechnique FÈdÈrale de Lausanne (CH) met financile steun van het Directoraat-Generaal voor Onderzoek van de Europese Commissie. De film is met de computer gerealiseerd door Digital Studios SA (Parijs Frankrijk), en is gebaseerd op de ontwerptekeningen van ITER, die eveneens met behulp van computers gemaakt zijn.
38
booklet final NL.qxp
1/19/06
10:30 AM
Page 39
39
booklet final NL.qxp
1/19/06
10:30 AM
Page 40
15
Dit boekje beschrijft hoe het onderzoek naar kernfusie in Europa wordt gecoördineerd. Het volgende generatie fusie-experiment ITER, dat nu in de startblokken staat, moet het pad effenen om in de tweede helft van deze eeuw een flink deel van de wereldenergiebehoefte met fusie op te wekken. De informatie in dit boekje werd verzameld uit de fusieonderzoeksactiviteiten in Europa.
KI-60-04-256-NL-C
Bij de beslissing over het Specifieke programma van Euratom zei de Europese Ministerraad: “Fusie-energie kan in de tweede helft van deze eeuw bijdragen tot de grootschalige productie van elektriciteit zonder de uitstoot van broeikasgassen. De vooruitgang die in het fusie-onderzoek is geboekt rechtvaardigt een intensief programma om het uiteindelijke doel van een fusie-elektriciteitscentrale te bereiken.