23
BAB V HASIL DAN PEMBAHASAN 5.1 Pemilihan Pohon Contoh Pohon contoh yang digunakan dalam penyusunan tabel volume ini hanya dibatasi pada lima jenis, yaitu bipa (Pterygota forbesii F.V.Muell), jambu (Eugenia spp), matoa (Pometia pinnata Forst), medang (Litsea firma Hook.f) dan merbau (Instia spp). Hal ini dikarenakan kelima jenis tersebut merupakan jenis yang dominan yang terdapat di IUPHHK-HA PT. Mamberamo Alasmandiri. Pengambilan data pohon contoh ini dilakukan secara purposive sampling pada areal petak tebangan dan areal pembuatan jalan. Pengukuran dilakukan pada pohon rebah dan volume yang diambil adalah volume dengan kulit. Jumlah pohon contoh yang diteliti sebanyak 597 pohon. Proporsi jumlah pohon yang digunakan untuk penyusunan model regresi sebesar 2/3 dari total pohon dan proporsi untuk uji validasi sebesar 1/3 dari total pohon . Jumlah pohon contoh per jenisnya tersaji dalam Gambar 1. 110
120
110
Jumlah Pohon
100 80 60
59
62
60
40
55 28
29
55 29
20 0 Model Bipa
Jambu
Validasi Matoa
Medang
Merbau
Gambar 1 Sebaran jumlah pohon yang digunakan untuk penyusunan model regresi dan validasi. 5.2. Penyusunan Model Regresi Penyebaran data diameter (dbh) dan volume (va) untuk masing-masing jenis dapat dilihat pada Gambar 2 di bawah ini.
24
Scatterplot of Va vs Dbh 0 Bipa
50
100
Jambu
M atoa
8 6 4 2
Jenis Bipa Jambu Matoa Medang Merbau
Va
0 M edang
8
M erbau
0
50
100
6 4 2 0 0
50
100
Dbh Panel variable: Jenis
Gambar 2 Diagram pencar (scatterplot) antara diameter (dbh) dan volume (va) untuk setiap jenis. Diagram pencar antara diameter (dbh) dan volume (va) untuk semua jenis pohon yang diteliti menunjukkan pola non linear. Hal ini dapat dijadikan dasar untuk memilih persamaan regresi yang akan diujikan. Dalam penelitian ini persamaan yang digunakan hanya persamaan Berkhout. Persamaan Berkhout yang diujikan kedalam bentuk model adalah persamaan Berkhout yang ditransformasikan terlebih dahulu kedalam bentuk linearnya yaitu : Log V= Log a + b Log D dan persamaan Berkhout yang tanpa transformasi yaitu : V= aDb. Tabel 5 Model regresi untuk penyusunan tabel volume R² (%) 1 Bipa V=0.0002235Dbh 2.37 0.091 97.00 2.38 V= 0.0002214Dbh * 0.425 92.43 2.37 2 Jambu V=0.0001809Dbh 0.101 96.70 2.32 V= 0.0002293Dbh * 0.465 90.40 3 Matoa V=0.0001938Dbh 2.38 0.082 97.80 2.22 V=0.0003735Dbh * 0.392 94.31 2.37 4 Medang V=0.0001972Dbh 0.094 96.80 2.37 V=0.0001972Dbh * 0.304 95.24 5 Merbau V=0.0001304Dbh 2.47 0.080 98.00 2.14 V=0.0004759Dbh * 0.283 96.14 Keterangan : * = persamaan Berkhout tanpa transformasi No
Jenis
Persamaan Penduga
s
R²adj (%) 96.90 92.43 96.70 90.40 97.80 94.31 96.80 95.24 98.00 96.14
F hit 1829.8 696.2 1713.4 546.2 4753.6 1791.7 1828.5 1199.7 5402.8 2692.7
F tab α=5% 4.01 4.01 4.01 4.01 3.93 3.93 4.00 4.00 3.93 3.93
F tab α=1% 7.10 7.10 7.09 7.09 6.88 6.88 7.08 7.08 6.88 6.88
25
Persamaan regresi terbaik antara persamaan Berkhout dengan transformasi dan persamaan Berkhout tanpa transformasi dapat dilihat dari nilai simpangan baku (s) terkecil, koefisien determinasi (R²) dan koefisien determinasi terkoreksi (R² adj) terbesar pada masing-masing jenis. Lima jenis yang diuji yaitu bipa (Pterygota forbesii F.V.Muell), jambu (Eugenia spp), matoa (Pometia pinnata Forst), medang (Litsea firma Hook.f) dan merbau (Instia spp) yang memiliki nilai s terkecil, R² dan R²adj terbesar dimiliki oleh persamaan Berkhout yang melalui transformasi. Nilai F hitung dari uji Fisher digunakan untuk menguji keberartian model regresi (overall fit test). Apabila nilai F lebih besar dari nilai F tabel, maka H0 ditolak yang berarti bahwa satu atau lebih peubah bebas dalam model berpengaruh nyata pada taraf nyata (α) tertentu. Berdasarkan Tabel 5, diperoleh bahwa keseluruhan model regresi memiliki nilai F hitung yang lebih besar daripada F tabel pada taraf nyata 1% dan 5%. Hal ini menggambarkan bahwa peubah diameter (dbh) berpengaruh nyata terhadap volume pada taraf nyata 5% dan 1%. Bila dibandingkan antara persamaan Berkhout tanpa transformasi dan persamaan Berkhout dengan transformasi, nilai F hitung terbesar untuk setiap jenis dimiliki oleh persamaan Berkhout dengan transformasi.
5.3 Validasi Model Regresi Validasi model persamaan regresi dilakukan dengan menghitung nilai Simpangan Agregat (SA), Simpangan Rata-rata (SR), Root Mean Square Error (RMSE), bias dan uji χ² (chi-square). Persamaan yang baik menurut Spurr (1952) memiliki nilai SA tidak melebihi 1% dan SR nya tidak melebihi 10%. Selain itu, persamaan yang baik memiliki nilai bias dan RMSE yang kecil, serta pengujian χ² (chi-square) menunjukkan hasil bahwa antara volume pendugaan dengan menggunakan tabel (vt) tidak berbeda nyata dengan volume aktualnya (va) atau nilai χ² hitung ≤ χ² tabel.
26
Tabel 6 Uji validasi model regresi SA
SR (%)
RMSE (%)
bias (%)
χ² hit
χ² α=5%
χ² α=1%
-0.207
40.33
33.93
-11.35
7.15
40.11
46.96
Jambu
V= 0.0002214Dbh * V=0.0001809Dbh2.37
-0.177 0.017
35.98 36.75
31.91 37.51
-9.26 -0.03
3.98 4.17
40.11 41.34
46.96 48.28
Matoa
V= 0.0002293Dbh2.32* V=0.0001938Dbh 2.38
0.069 0.135
31.71 20.92
40.18 29.75
7.36 12.35
4.71 6.12
41.34 72.15
48.28 81.07
V=0.0003735Dbh 2.22* 0.154 20.67 36.68 2.37 Medang V=0.0001972Dbh -0.005 27.36 34.80 V=0.0001972Dbh 2.37* 0.036 24.00 36.56 2.47 Merbau V=0.0001304Dbh -0.087 31.11 30.09 2.14 V=0.0004759Dbh * -0.084 24.52 30.45 Keterangan : * = persamaan Berkhout tanpa transformasi
22.71 1.09 6.78 -9.78 4.36
6.74 4.05 4.42 7.20 6.71
72.15 41.34 41.34 72.15 72.15
81.07 48.28 48.28 81.07 81.07
Jenis
Persamaan Penduga V=0.0002235Dbh 2.37
Bipa
2.38
Nilai simpangan rata-rata untuk seluruh persamaan memiliki nilai yang lebih besar dari 10%. Nilai simpangan agregat yang kurang dari 1% hanya persamaan Berkhout jenis medang (Litsea firma Hook.f) yang melalui proses transformasi. RMSE yang dihasilkan untuk seluruh persamaan nilainya berada diatas 29%.
Bias terkecil dihasilkan oleh persamaan Berkhout dengan
transformasi untuk jenis jambu dengan nilai -0.03%. Bias bernilai negatif berarti bahwa volume model yang dihasilkan cenderung underestimate terhadap volume aktual, sedangkan bias bernilai positif berarti volume model yang dihasilkan cenderung overestimate terhadap volume aktualnya. Uji χ² (chi-square) menunjukkan bahwa pada seluruh persamaan memiliki nilai χ² yang lebih kecil dibanding nilai χ² tabel pada taraf nyata 5% dan 1%. Hal ini berarti bahwa seluruh persamaan menunjukkan bahwa antara pendugaan volume dengan persamaan regresi (vt) tersebut tidak berbeda nyata dengan volume aktualnya (va).
5.4 Pemilihan Model Persamaan Regresi Terbaik Pemilihan model persamaan regresi terbaik dilihat dari nilai-nilai statistik saat penyusunan model regresi dan uji validasi model. Nilai-nilai statistik yang dipakai pada proses pemilihan model regresi meliputi koefisien determinasi (R²), koefisien determinasi terkoreksi (R²adj), simpangan baku (s) dan F hitung.
27
Persamaan yang paling baik adalah yang memiliki nilai koefisien determinasi (R² dan R²adj) terbesar, simpangan baku (s) terkecil dan nilai F hitung yang terbesar. Uji validasi yang digunakan sebagai kriteria dalam pemilihan model regresi terbaik meliputi nilai SA, SR, RMSE, bias dan χ² (chi-square). Persamaan yang paling baik adalah yang memiliki nilai SA, SR, RMSE bias dan nilai χ² terkecil. Tabel 7 Pemilihan model persamaan regresi terbaik Peringkat
V=0.0002235Dbh 2.37 V= 0.0002214Dbh2.38* V=0.0001809Dbh 2.37 V= 0.0002293Dbh2.32* V=0.0001938Dbh 2.38 V=0.0003735Dbh 2.22* V=0.0001972Dbh 2.37 V=0.0001972Dbh 2.37*
1 2 1 2 1 2 1 2
Model R2 F R² adj hit 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2
V=0.0001304Dbh 2.47 V=0.0004759Dbh 2.14*
1 2
1 2
Jenis
Persamaan Penduga s
Bipa Jambu Matoa Medang Merbau
1 2
1 2
SA 2 1 1 2 1 2 1 2 2 1
Validasi RM SR e SE 2 2 2 1 1 1 2 1 1 1 2 2 2 1 1 1 2 2 2 1 1 1 2 2 2 1
1 2
2 1
χ² hit 2 1 1 2 1 2 1 2
∑
Pering kat
14 13 10 17 10 17 10 17
2 1 1 2 1 2 1 2
2 1
13 14
1 2
Keterangan : * = persamaan Berkhout tanpa transformasi
Persamaan regresi terbaik bipa (Pterygota forbesii F.V.Muell) adalah V=0,0002214Dbh2,38 dengan nilai R² sebesar 92,43%. Persamaan regresi terbaik jambu (Eugenia spp) adalah V=0,0001809Dbh2,37 dengan nilai R² sebesar 96,7%. Persamaan
regresi
terbaik
matoa
(Pometia
Pinnata
Forst)
adalah
V=0,0001938Dbh2.38 dengan nilai R² sebesar 97,8%. Persamaan regresi terbaik medang (Litsea firma Hook.f) adalah V=0,0001972Dbh2,37 dengan nilai R² sebesar 96,8%
dan
persamaan
regresi
terbaik
merbau
(Instia
spp)
adalah
V=0,0001304Dbh2,47 dengan nilai R² sebesar 98%. Berdasarkan Tabel 7, persamaan terbaik untuk jenis bipa adalah persamaan Berkhout tanpa transformasi, sedangkan persamaan terbaik untuk empat jenis lainnya (jambu, medang, matoa dan merbau) adalah persamaan Berkhout dengan transformasi. 5.5 Penggabungan Persamaan Regresi Pengelompokan jenis dalam penyusunan tabel volume dilakukan dengan menggabungkan persamaan regresi yang memiliki model yang sama yaitu
28
persamaan Berkhout dengan transformasi. Penggabungan persamaan regresi dilakukan dengan asumsi bahwa faktor jenis tidak berpengaruh dalam penyusunan persamaan regresi, sehingga dapat dibuat persamaan regresi dari data gabungan tersebut. Sebelum dilakukan penggabungan persamaan regresi, dilakukan uji keseragaman model regresi menggunakan analisis kovarian. Pengelompokan jenis yang diuji meliputi pengelompokan dari lima jenis, pengelompokan dari empat
jenis, pengelompokan dari tiga jenis dan
pengelompokan dari dua jenis. Dari pengelompokan tersebut dihasilkan 26 kemungkinan komposisi jenis. Tabel 8 Nilai F hitung dari analisis kovarian No 1 2 3 4 5 6 7 8 9 10 11
Pengelompokan Jenis 5 Jenis 4 Jenis
3 Jenis
Komposisi Jenis
F hit
F tab (α=5%)
F tab (α=1%)
BJMaMeMr
10.076
2.395
3.367
BMaMeMr BJMeMr BJMaMr BJMaMe JMaMeMr BJMa BJMe BJMr BMaMe BMaMr
11.597 12.396 13.450 8.476 4.733 12.955 11.408 18.174 6.157 18.052
2.631 2.636 2.632 2.636 2.631 3.036 3.047 3.036 3.036 3.036
3.840 3.833 3.841 3.851 3.840 4.701 4.727 4.701 4.700 4.701
12 13
BMeMr JMaMe
16.634 3.725**
3.036 3.035
4.700 4.699
14 15
JMaMr JMeMr
5.492 3.854**
3.028 3.035
4.683 4.699
MaMeMr BJ BMa BMe BMr JMa
5.788 22.334 11.560 7.353 34.816 6.508**
3.028 3.923 3.898 3.921 3.898 3.898
4.682 6.859 6.790 6.855 6.790 6.789
16 17 18 19 20 21 22 23 24 25 26 Keterangan :
2 Jenis
JMe 4.561** 3.921 JMr 0.011* 3.898 MaMe 0.008* 3.897 MaMr 9.699 3.885 MeMr 7.297 3.897 B=Bipa, J=Jambu, Ma=Matoa, Me=Medang, Mr=Merbau *=tidak nyata pada α=5% dan α=1%, **=tidak nyata pada α=1%
6.853 6.789 6.787 6.753 6.787
29
Pengelompokan dari lima jenis pohon dan pengelompokan dari empat jenis pohon menghasilkan nilai F hitung yang lebih besar dari F tabel pada taraf nyata 5% dan 1%. Hal ini berarti faktor jenis memiliki pengaruh yang nyata dalam penyusunan persamaan regresi, sehingga tidak memungkinkan untuk dilakukan penggabungan persamaan regresi baik dari lima jenis maupun empat jenis pohon. Pengelompokan dari tiga jenis pohon menghasilkan dua komposisi jenis yang memiliki nilai F hitung lebih kecil dibanding dari F tabel pada α=1%, yaitu : komposisi jenis jambu-matoa-medang dan komposisi jambu-medang-merbau. Pengelompokan dari dua jenis pohon menghasilkan empat komposisi yang memiliki nilai F hitung lebih kecil dari F tabel. Komposisi jambu-matoa dan komposisi jambu-medang yang memiliki nilai F hitung lebih kecil dibanding F tabel pada α=1%. Komposisi jambu-merbau dan komposisi matoa-medang memiliki nilai F hitung yang lebih kecil pada α=5% dan α=1%. Tabel 9 Nilai-nilai statistik dari model regresi kelompok jenis No
F tab α=5%
F tab α=1%
3.88 3.88 3.90 3.92 3.90 3.90
6.75 6.75 6.79 6.85 6.79 6.79
χ² hit
χ² α=5%
χ² α=1%
V=0.0001909Dbh 2.38 0.09 25.43 34.30 -0.27 15.25 2.42 V=0.0001592Dbh -0.03 30.70 33.91 -4.97 16.21 2.38 V=0.0001878Dbh 0.10 24.90 33.00 8.41 10.35 V=0.0001903Dbh 2.37 0.01 31.70 36.86 1.36 8.61 2.44 V=0.0001465Dbh -0.04 32.11 33.73 -4.48 12.28 2.38 V=0.0001950Dbh 0.10 17.48 28.25 7.46 10.65 B=Bipa, J=Jambu, Ma=Matoa, Me=Medang, Mr=Merbau
137.70 137.70 105.27 75.62 105.27 105.27
149.73 149.73 115.88 84.73 115.88 115.88
Komposisi
1 JMaMe 2 JMeMr 3 JMa 4 JMe 5 JMr 6 MaMe Keterangan :
Persamaan Penduga
S
R² (%)
R²adj (%)
F hit
V=0.0001909Dbh 2.38 0.0910 97.20 97.20 7923.4 V=0.0001592Dbh2.42 0.0909 97.30 97.30 8246.6 2.38 V=0.0001878Dbh 0.0902 97.30 97.30 6079.7 2.37 V=0.0001903Dbh 0.0984 96.60 96.60 3461.3 2.44 V=0.0001465Dbh 0.0880 97.60 97.50 6724.6 V=0.0001950Dbh2.38 0.0858 97.50 97.40 6526.3 B=Bipa, J=Jambu, Ma=Matoa, Me=Medang, Mr=Merbau
Tabel 10 Uji validasi dari model regresi kelompok jenis Komposisi JMaMe JMeMr JMa JMe JMr MaMe Keterangan :
Persamaan Penduga
SA
SR (%)
RMSE (%)
bias (%)
30
Tabel 11 Pemilihan model terbaik dari pengelompokan tiga jenis dan pengelompokan dua jenis Peringkat
JMaMe JMeMr
V=0.0001909Dbh 2.38 V=0.0001592Dbh2.42
2 1
Model R2 F R² adj hit 2 2 2 1 1 1
JMa JMe JMr MaMe
V=0.0001878Dbh 2.38 V=0.0001903Dbh 2.37 V=0.0001465Dbh 2.44 V=0.0001950Dbh2.38
3 4 2 1
3 4 1 2
Komposisi
Persamaan Penduga s
Keterangan :
3 4 1 2
SA 2 1
3 4 1 2
3 1 2 4
Validasi RM SR e SE 1 2 1 2 1 2 2 3 4 1
2 4 3 1
4 1 2 3
χ² hit 1 2
∑
Pering kat
15 12
2 1
2 1 4 3
25 26 20 19
3 4 2 1
B=Bipa, J=Jambu, Ma=Matoa, Me=Medang, Mr=Merbau
Pengelompokan dari tiga jenis pohon yang memiliki persamaan terbaik adalah persamaan V=0,0001592Dbh2,42 dengan komposisi jenis jambu-medangmerbau. Persamaan terbaik dari dua jenis pohon yang dikelompokan adalah persamaan
V=0,0001950Dbh2,38 dengan komposisi matoa-medang. Bipa
(Pterygota forbesii F.V.Muell) tidak dapat dikelompokan dengan jenis manapun yang diteliti. Hal ini dikarenakan karakteristik ukuran dan bentuk pohon bipa (Pterygota forbesii F.V.Muell) yaitu panjang bebas cabang (pbc) memiliki nilai yang jauh lebih besar dibanding dengan jenis lain pada diameter yang sama.
5.6 Perbandingan Persamaan Regresi Perbandingan
persamaan
regresi
bertujuan
untuk
membandingkan
persamaan regresi gabungan dari pengelompokan jenis dengan persamaan jenis penyusunnya. Hal ini dilakukan dengan melihat nilai-nilai statistik dari persamaan regresi tersebut beserta uji validasinya. Tabel 12 Perbandingan persamaan regresi Pengelompokan 3 Jenis
s
R²
R2 adj
F hit
SA
SR
RMSE
e
χ² hit
∑
Peringkat
1
JMaMe Jambu Matoa Medang
2 4 1 3
2 4 1 3
2 4 1 3
1 4 2 3
3 2 4 1
2 4 1 3
2 4 1 3
2 1 4 3
4 2 3 1
20 29 18 23
2 4 1 3
2
JMeMr Jambu Medang Merbau
2 4 3 1
2 4 3 1
2 4 3 1
1 4 3 2
3 2 1 4
2 4 1 3
2 4 3 1
3 1 2 4
4 2 1 3
21 29 20 20
3 4 1 1
No
31
Tabel 12 Perbandingan persamaan regresi Pengelompokan 2 Jenis
s
R²
R2 adj
F hit
SA
SR
RMSE
e
χ² hit
∑
Peringkat
1
JMa Jambu Matoa
2 3 1
2 3 1
2 3 1
1 3 2
2 1 3
2 3 1
2 3 1
2 1 3
3 1 2
18 21 15
2 3 1
2
JMe Jambu
2 3
3 2
3 2
1 3
2 3
2 3
2 3
3 1
3 2
21 22
2 3
Medang JMr Jambu Merbau
1 2 3 1
1 2 3 1
1 2 3 1
2 1 3 2
1 2 1 3
1 2 3 1
1 2 3 1
2 2 1 3
1 3 1 2
11 18 21 15
1 2 3 1
MaMe Matoa
2 1
2 1
2 1
1 2
2 3
1 2
1 2
2 3
3 2
16 17
1 2
Medang 3 3 3 3 1 3 3 1 1 21 Keterangan : kata yang bercetak tebal adalah persamaan dari pengelompokan jenis
3
No
3
4
Perbandingan persamaan regresi gabungan dari pengelompokan tiga jenis dengan persamaan regresi penyusunnya menunjukkan hasil bahwa persamaan regresi gabungan memiliki peringkat yang berada di antara persamaan regresi penyusunnya. Komposisi jambu-matoa-medang memiliki peringkat 2 dari 4 persamaan yang dibandingkan. Sedangkan komposisi jambu-medang-merbau memiliki peringkat 3. Perbandingan persamaan regresi gabungan dari pengelompokan dua jenis menunjukan hasil bahwa komposisi jambu-matoa, komposisi jambu-medang dan komposisi jambu-merbau memiliki peringkat 2 dari 3 persamaan yang dibandingkan. Sedangkan komposisi matoa-medang memiliki peringkat 1, hal ini berarti bahwa persamaan gabungan matoa-medang lebih baik daripada persamaan regresi penyusunnya yaitu persamaan regresi matoa dan persamaan regresi medang. Persamaan regresi gabungan dari pengelompokan jenis tidak selalu menjadi persamaan terbaik dibanding persamaan regresi jenis penyusunnya. Berdasarkan hasil perbandingan pada Tabel 12, diperoleh bahwa nilai persamaan regresi gabungan memiliki peringkat yang tidak lebih rendah dibanding persamaan jenis penyusunnya. Selain itu dari segi kepraktisan pemakaian di lapangan, persamaan regresi gabungan dari pengelompokan jenis jauh lebih praktis.
32
5.7 Aplikasi Terbaik dari Komposisi Persamaan Regresi Jenis yang dikaji pada penelitian ini hanya terbatas pada lima jenis yaitu bipa, jambu, matoa, medang dan merbau. Dari lima jenis tersebut penggabungan persamaan regresi hanya dapat dilakukan pada pengelompokan tiga jenis dan pengelompokan dua jenis. Jenis bipa (Pterygota forbesii F.V.Muell) tidak dapat dikelompokan dengan jenis manapun. Persamaan terbaik dari pengelompokan tiga jenis yaitu komposisi jambu-medang-merbau sedangkan persamaan terbaik dari pengelompokan dua jenis yaitu komposisi matoa-medang. Sehingga untuk aplikasi di lapangan, komposisi yang dapat dilakukan tanpa adanya pengulangan jenis adalah komposisi 3-1-1 yaitu : persamaan jambu-medang-merbau, persamaan matoa, persamaan bipa dan komposisi 2-2-1 yaitu : persamaan matoamedang, persamaan jambu-merbau serta persamaan bipa. Perbandingan antara kedua komposisi tersebut dilakukan dengan melihat nilai simpangan baku gabungan terkecil dan rata-rata koefisien determinasi (R²) terbesar. Nilai koefisien determinasi rata-rata dan nilai simpangan baku gabungan dapat dilihat pada Tabel 13. Tabel 13 Pemilihan komposisi persamaan terbaik untuk aplikasi di lapangan Komposisi Persamaan jambu-medang-merbau + matoa + bipa matoa-medang + jambu-merbau + bipa
Nilai Statistik R² ratas gab rata 0.088 97.37% 0.087 97.37%
Peringkat R² ratas gab rata 2 1 1 1
∑
Peringkat
3 2
2 1
Berdasarkan hasil yang diperoleh pada Tabel 13, sebaiknya IUPHHK-HA PT. Mamberamo Alasmandiri menggunakan tiga persamaan untuk menduga volume pohon dari lima jenis tersebut. Persamaan tersebut adalah persamaan V=0,0001950Dbh2,38 V=0,0001465Dbh2,44
untuk untuk
jenis jenis
V=0,0002214Dbh2,38 untuk jenis bipa.
matoa jambu
dan
dan
medang,
merbau,
serta
persamaan persamaan