Adatbiztonság a gazdaságinformatikában PZH 2013. december 9.
1. Tekintsük a következő rejtjelező kódolást: nyílt üzenetek halmaza {a,b}, kulcsok halmaza {K1,K2,K3,K4,K5}, rejtett üzenetek halmaza {1,2,3,4,5}. A kódolást a következő mátrix írja le: a b K1 1 2 K2 2 4 K3 3 1 K4 5 3 K5 4 5 Pl. Ek3(a)=3. A kulcs valószínűségeloszlása PK={2/5, 1/5, 1/5, 1/10, 1/10}, az üzenet valószínűségeloszlása PX={1/3, 2/3}. a.) Definiálja a tökéletes rejtjelezést 2p b.) Tökéletes rejtjelezést valósít meg a adott rejtjelezés? 4p 2. Integritásvédelmi feladatban kulcsolt hash lenyomatot számolunk H iteratív hash függvénnyel, ahol egy N blokkból álló M dokumentumot egy k kulcsblokk prefix-szel bővítjük a lenyomat számítást megelőzően. a.) Mikor tekintünk biztonságosnak egy üzenethitelesítő kódot (MAC)? 2p b.) Helyes-e a konstrukció, azaz nem ad-e támadási lehetőséget? 4p c.) Változik-e a válasz, ha MD-padding-et is alkalmazunk? 3p 3. Egy webszerver és egy böngésző az TLS protokollt használja a HTTP forgalom védelmére. A handshake során Diffie-Hellman kulcscserét szeretnének használni. A szervernek fix DH paramétereket tartalmazó tanúsítványa van, a kliensnek nincsen tanúsítványa. A szerver nem kéri, hogy a kliens hitelesítse magát. Adja meg, hogy ebben az esetben mely handshake üzenetek kerülnek átvitelre, és vázlatosan adja meg azok tartalmát! (8p) 4. Melyik biztonságosabb? Számítással indokoljon! a.) (a) egy 6 számjegyből álló véletlen PIN kód vagy (b) egy 4 alfanumerikus (case sensitive) karakterből álló véletlen jelszó? (4p) b.) (a) egy 6 számjegyből álló véletlen PIN kód vagy (b) egy 8 karakterből álló felhasználó által választott jelszó? (4p) 5. Unix/Linux hozzáférésvédelem az órán előadott módon Tekintsük az alábbi /etc/passwd file részletet: u1:x:1003:1004:,,,:/home/u1:/bin/bash u2:x:1004:1005:,,,:/home/u2:/bin/bash u3:x:1005:1006:,,,:/home/u3:/bin/bash u4:x:1006:1007:,,,:/home/u4:/bin/bash
Az /etc/group file releváns része: u1:x:1004: u2:x:1005: u3:x:1006: u4:x:1007: g1:x:1008:u1,u2 g2:x:1009:u2,u3,u4 g3:x:1010:u2,u3 A fájl hozzáférési jogosultságok az alábbiak: root@gotcha:/adatbizt# ls -la total 16 drwxr-xr-x 4 root root 4096 2011-04-22 10:49 drwxr-xr-x 25 root root 4096 2011-04-22 10:51 drwxrwsr-x 2 u1 g1 4096 2011-04-22 10:50 drwxr-xr-x 2 u2 g1 4096 2011-04-22 10:50 root@gotcha:/adatbizt# total 20 drwxrwsr-x 2 u1 g1 drwxr-xr-x 4 root root -rw-r----- 1 u1 u4 -rw-rw---- 1 u1 g1 -rwxrwxrwx 1 u1 g2 root@gotcha:/adatbizt# total 16 drwxrwxr-x 2 u2 g1 drwxr-xr-x 4 root root -rw-r--r-- 1 root g1 --w------- 1 root g1
a.) b.) c.) d.)
. .. d1 d2
ls -la d1 4096 2011-04-22 4096 2011-04-22 4 2011-04-22 16 2011-04-22 8 2011-04-22 ls -la d2
10:50 10:49 10:50 10:50 10:50
. .. f1 f2 f3
4096 4096 7 6
10:50 10:49 10:50 10:50
. .. f4 f5
2011-04-22 2011-04-22 2011-04-22 2011-04-22
mely felhasználók tudják olvasni a d1/f1 fájlt és miért? (2p) mely felhasználóknál fut le sikeresen a cp d1/f2 d2/f6 parancs?(2p) ki tudja módosítani az f4 fájl jogosultságait (pl. chmod o+w d2/f4) (2p) kinek ad ’rm: remove write-protected regular file ’f4’ hibaüzenetet a rendszer, ha az f4 fájlt próbálja törölni? (2p)
6. Egy spamszűrő az órán ismertetett Bayes szűrést használja. Feltételezi, hogy Pr(S)=Pr(W)=0,5. Adatbázisa a következő adatokat tanulta meg: Pr(olcsón|S)=0,01 Pr(eladó|S)=0,01 Pr(telek|S)=0,05 Pr(olcsón|H)=0,001 Pr(eladó|H)=0,005 Pr(telek|H)=0,1 Adott egy levél: „Telek olcsón eladó” tartalommal. Mekkora az esélye, hogy a levél spam? Számolja ki az órán tanult módon a levél kombinált spam-valószínűségét (három tizedes jegy precizitású részszámítások elegendőek)! (8p) Pontozás: 1: 0-17, 2: 18-25,
3: 26-33, 4: 34-40,
5: 41-47
Megoldások Adatbiztonság a gazdaságinformatikában PZH 2013. december 9.
Név: Neptun kód:
1. a.) (2p)
b.) (4p)
2. a.) (2p)
b.) (4p)
c.) (3p)
3. (8p)
4. a.) (4p)
b.) (4p)
5. a.) (2p)
b.) (2p)
c.) (2p)
d.) (2p)
6. (8p)
Megoldások Adatbiztonság a gazdaságinformatikában PZH 2013. december 9. 1.b) Nem. Pl. P(Y=1|X=a)=2/5 P(Y=1|X=b)=1/5 , igy X nyilt szöveg es és Y rejtett szöveg valószinüségi változó nem független. 2.b.) Támadható. Ha ugyanis M üzenethez H(k||M) lenyomatot megfigyeljük, ahol k a kulcsblokk prefix, akkor egy tetszőleges y blokkal kiegészített x||y üzenethez az iterációs eljárás miatt nyilván H(H(k||M),y) alapján könnyen kiszámolhatjuk a lenyomatot a k kulcs ismerete nélkül. c.) Az sem segít, ha a bithossz suffix trükköt alkalmazzuk (MD padding), mivel ekkor az eredeti bithossz is az üzenet részeként tekinthető, s a fenti támadás alkalmazható. 3.A következő handshake üzenetek kerülnek átvitelre: CS: & client-hello & : kliens véletlenszáma, javasolt algoritmus-csokrok listája \\ SC: & server-hello & : szerver véletlenszáma, választott algoritmus-csokor, session ID \\ SC: & server-certificate & : szerver azonosító, szerver publikus DH paraméterei, CA aláírása\\ SC: & server-hello-done & : \\ CS: & client-key-exchange & : kliens DH paraméterei \\ CS: & (change cipher spec) \\ CS: & client-finished & : eddigi handshake üzeneteken és a mester titkon számolt MAC \\ SC: & (change cipher spec) \\ SC: & server-finished & : eddigi handshake üzeneteken és a mester titkon számolt MAC \\ 4. a.) (a) 6*log10 = 6*3.322 = 19.932 bit (b) 4*log62 = 4*5.954 = 23.816 bit b.) (a) 19.932 bit (b) 4 + 7*2 = 18 bit 5. a.) u1 és u4 b.) c.)
u1 és u2 csak a tulajdonos, azaz a root
d.)
u2-nek, mert ugyan a d2 az ő tulajdona és így tud törölni, de a f4 fájlra nincs írás joga.
6. Pr(S|olcsón)=Pr(olcsón|S)/(Pr(olcsón|S)+Pr(olcsón|H)) = 0,01 / (0,01+0,001)=0,909 Pr(S|eladó)= 0,01/ (0,01+0,005)=0,667 Pr(S|telek)= 0,05/(0,05+0,1)=0,333 p= Pr(S|olcsón)* Pr(S|telek)* Pr(S|eladó) / ( Pr(S|olcsón)* Pr(S|telek)* Pr(S|eladó) + (1-Pr(S|olcsón))* (1-Pr(S|telek))*(1-Pr(S|eladó)) azaz
p= 0,202/ (0,202 + 0,02) = 0,202/0,222=90,991%