2. TINJAUAN PUSTAKA
2.1. Ekosistem Sungai Sungai merupakan suatu ekosistem perairan tawar yang dikenal secara umum selain waduk, danau maupun situ. Ekosistem sungai merupakan perairan mengalir (lotik) yang memiliki karakteristik aliran air yang cukup kuat dan memiliki pola pencampuran massa air yang lebih bersifat menyeluruh sehingga perairan sungai biasanya lebih keruh akibatnya proses penetrasi cahaya ke dasar sungai menjadi terhambat (Goldman & Horne 1983). Kondisi ekosistem perairan sungai berbeda dengan perairan tergenang (lentik) seperti danau, maupun waduk yang memiliki stratifikasi kolom air sehingga proses pencampurannya relatif kecil dan bersifat spasial. Karakteristik arus yang kuat pada ekosistem sungai biasanya dipengaruhi oleh iklim dan musim, dimana pada musim kemarau arus yang terjadi lambat sedangkan pada musim hujan arus yang mengalir sangat kuat sehingga mengakibatkan pengikisan tanah dan batuan (erosi) yang akhirnya menimbulkan sedimentasi. Berdasarkan pola arus yang terjadi, ekosistem perairan sungai dapat dibagi menjadi dua yaitu ekosistem perairan sungai berarus cepat dan lambat. Pada ekosistem sungai berarus cepat biasanya dicirikan oleh tipe substrat berbatu dan berkerikil serta segmen sungai berada pada gradien tinggi, sedangkan ekosistem sungai berarus lambat biasanya tipe substratnya berpasir dan berlumpur, ciri lainnya biasanya dalam, lebar, dan berlokasi di dataran rendah. Menurut Clapham (1983) pola arus merupakan faktor utama (pembatas) terhadap keberadaan jumlah dan tipe organisme autotrop sehingga pola arus ini merupakan faktor pengontrol produktivitas dari ekosistem perairan sungai. Menurut Thornton et al. (1990) produsen primer di sungai, danau, dan waduk terdiri dari fitoplankton, bakteri, alga bentik (perifiton), dan makrofita. Pada kondisi perairan berarus perifiton lebih berperan sebagai produsen primer, sedangkan fitoplankton cenderung lebih dominan peranannya pada sungai yang dalam dan besar (Welch 1980).
6
2.2. Hidromorfometri Sungai Ciliwung Sungai Ciliwung merupakan salah satu sungai besar yang mengalir sepanjang kurang lebih 120 km yang melewati beberapa wilayah, yaitu Kota Bogor, Kab. Bogor, Depok, dan Jakarta dengan luas daerah pengaruhnya (DAS) sekitar 387 km2. Hulu Sungai Ciliwung berada di Gunung Gede, Gunung Pangrango serta Puncak, dan bermuara di wilayah perairan laut Jawa. Akibat tekanan berbagai bentuk aktivitas domestik dan industri yang berada di sepanjang DAS-nya kondisi air sungai Ciliwung mengalami penurunan kualitas dan tidak sesuai lagi dengan peruntukkannya. Beban bahan pencemar yang paling utama masuk ke perairan Sungai Ciliwung umumnya adalah bahan organik dan logam berat. Sumber pencemar yang berpotensi menurunkan kualitas air Sungai Ciliwung sebagian besar berasal dari aktivitas antropogenik dari limbah rumah tangga, pertanian/sawah, peternakan, dan industri (Kido et al. 2009). Keberadaan bahan pencemar, selain mengakibatkan turunnya kualitas perairan juga berpengaruh terhadap hilangnya keanekaragaman hayati khususnya spesies asli/endemik (Khosla et al. 1995; Brahmana & Firdaus 1997). Keberadaan Sungai Ciliwung sangat penting bagi sektor pertanian (irigasi), industri, maupun bahan baku air minum untuk masyarakat Kota Depok dan Jakarta. Kegiatan antropogenik yang berada disepanjang DAS Ciliwung bila tidak dikelola dengan baik akan berdampak negatif terhadap sumberdaya airnya seperti permasalahan pencemaran. Kondisi ini dapat menimbulkan gangguan, kerusakan, dan bahaya bagi makhluk hidup yang bergantung pada sumberdaya air serta hidup dan ditemukan pada ekosistem sungai mulai dari tanaman air, plankton, perifiton, bentos dan ikan. Biota yang terpengaruh langsung terhadap kondisi lingkungan yang berubah-ubah di perairan sungai adalah biota-biota yang siklus hidupnya relatif menetap seperti bentos maupun perifiton. 2.3. Perifiton Perifiton merupakan gabungan beberapa ganggang, cyanobacteria, mikroba heterotrofik, dan detritus yang melekat pada permukaan batuan, kayu dan tanaman serta hewan air yang terendam pada ekosistem perairan (Odum 1971). Perifiton di perairan mengalir pada umumnya terdiri dari diatom (Bacillariophyceae), alga hijau berfilamen (Chlorophyceae), bakteri atau jamur berfilamen, protozoa, dan
7
rotifera (tidak banyak pada perairan tidak tercemar), serta beberapa jenis benthos (Welch 1952). Komunitas pembentukan perifiton yang ada pada substrat dalam perairan seperti ditunjukkan pada Gambar 2. Perifiton meskipun tidak banyak digunakan, tetapi cocok untuk penilaian kualitas perairan sungai (Patrick 1973; Stevenson & Lowe 1986; Rott 1991; Round 1991; Stevenson & Pan 1999). Berdasarkan tipe substrat tempat menempelnya, perifiton dapat diklasifikasikan sebagai berikut: a. Epilithic, perifiton yang menempel pada batu. b. Epidendritic, perifiton yang menempel pada kayu. c. Epiphytic, perifiton yang menempel atau hidup pada permukaan daun maupun batang tumbuhan. d. Epizoic, perifiton yang menempel pada permukaan tubuh hewan. e. Epipelic, perifiton yang menempel pada permukaan sedimen. f. Epipsamic, perifiton yang menempel pada permukaan pasir. Perifiton dalam ekosistem perairan berfungsi sebagai sumber makanan penting bagi organisme dengan tingkat trofik yang lebih tinggi, seperti: avertebrata, larva, dan beberapa ikan. Perifiton
juga dapat menyerap bahan
pencemar yang ada di perairan, sehingga dapat membatasi penyebarannya di lingkungan khususnya perairan. Komunitas perifiton biasa digunakan dalam sistem produksi akuakultur yaitu sebagai sumber makanan bagi ikan. Proses perkembangan perifiton merupakan bentuk proses akumulasi yaitu terjadinya peningkatan biomassa seiring dengan bertambahnya waktu. Akumulasi tersebut merupakan hasil kolonisasi dan komposisinya, dimana keberadaannya sangat dipengaruhi oleh kemampuan perifiton dan media penempelnya. Kemampuan
perifiton
dalam
menempel
pada
substratnya
menentukan
eksistensinya terhadap pencucian arus sehingga keberadaan komunitasnya tetap mantap.
Perifiton yang menempel pada substrat mati seperti batuan
keberadaannya akan lebih mantap, tidak mengalami perubahan, rusak maupun mati, meskipun terbentuknya komunitas berjalan lambat (Ruttner 1974).
8
Keterangan :
a. Bakteri b. Navicula menisculus var. upsaliensis - prostrate, mucilage coat. c. Gomphonema parvulum – short stalks, d. Gomphonema olivaceum – long stalks,
e. Fragilaria vaucheriae – rosette, mucilage pads, f. Synedra acus – large rosette, mucilage pads, g. Nitzschia sp.- rosette, mucilage pads, h. Stigeocionium sp.- upright filaments
Gambar 2. Materi pembentukan perifiton (Annonim, 2009) Komposisi alga yang biasa ditemukan pada perairan sungai dan menempel pada batuan (Epilithic) dan tanaman air (Epiphytic) dari hasil penelitian yang dilakukan
Bishop (1973) terdiri atas Cyanophyta, Rhodophyta, Cryptophyta,
Bacillariophyta, Chrysophyta, Euglenophyta, dan Chlorophyta. Sedangkan menurut Hynes (1972) bentik alga yang sering ditemukan pada perairan dalam jumlah besar antara lain: Synedra, Nitzschia, Navicula, Diatoma, dan Surirella. Diatom dari kelompok pennales merupakan alga bentik yang mendominasi pada perairan berarus kuat dan seiring dengan menurunnya arus, maka keanekaragaman alga dalam perairan akan meningkat selain diatom juga tumbuh alga bentik dari kelompok Chlorophyta dan Myxophyta (Whitton 1975). Kelompok diatom jenis pennales pada perairan berarus cenderung mendominasi karena berkaitan dengan bentuk sel (frustul) yang simetris bilateral dan sistem aliran air yang melewati sitoplasma sehingga mampu bergerak meluncur melawan arus. Selain itu, pada frustule yang berupa sobekan sobekan
9
sel
(raphe),
terdapat
sitoplasma
yang
di
dalamnya
mengandung
mucopolysaccharides yang mampu mengeluarkan helaian cairan perekat sehingga mampu menempel di substrat dan memungkinkan untuk membantu bergerak (Sze 1993; Basmi 1999). Perkembangan perifiton di perairan sangat dipengaruhi oleh faktor lingkungan antara lain kecerahan, kekeruhan, tipe substrat, kedalaman, pergerakan air, arus, pH, alkalinitas, kesadahan, dan nutrien. Populasi perifiton akan menurun pada perairan yang kurang mendapatkan cahaya cukup. Faktor kekeruhan pada perairan baik yang diakibatkan oleh lumpur maupun plankton juga mengakibatkan penurunan populasi perifiton khususnya yang hidup di dasar dan tergantung pada cahaya yang masuk ke perairan untuk perkembangannya (Wetzel 1979). 2.4. Perifiton sebagai Bioindikator Pencemaran Perairan Komunitas perifiton memiliki peran dalam ekosistem air tawar dan merupakan reaktor biogeokimia bertenaga surya, habitat biogenik, gambaran elemen hidrolik, maupun sistem peringatan dini untuk perubahan lingkungan, serta keberadaan keanekaragaman hayati (Stevenson 1996; Wehr & Sheath 2003; Azim et al. 2005). Kondisi lingkungan dengan habitat yang stabil sangat mendukung tercapainya suatu komunitas organisme baik flora maupun fauna dalam suatu ekosistem, sehingga dapat tetap eksis dan berkembang dengan baik. Perubahan yang terjadi pada variabel lingkungan dapat mempengaruhi komunitas organisme secara menyeluruh mulai pada komposisi jenis, spesies, bentuk morfologi individu, anatomis, fisiologis, dan jumlah individu.
Organisme yang mampu
maupun yang tidak mampu bertahan hidup pada kondisi lingkungan yang mengalami perubahan biasanya dapat dijadikan sebagai biota indikator dari lingkungan yang bersangkutan.
Perubahan yang mendasar pada struktur
komunitas akibat adanya perubahan lingkungan adalah terjadinya perubahan keanekaragaman jenis dari komunitas yang bersangkutan (Basmi 1999). Salah satu manfaat penggunaan perifiton sebagai bioindikator adalah karena secara umum spesies perifiton bersifat menetap dalam waktu yang lama dan mampu merespon bahan polutan yang terlarut dalam perairan, sehingga
10
mampu memberikan informasi tentang kondisi kualitas suatu perairan sesuai dengan yang sebenarnya (Crossey & La Point 1988; Stewart & Davies 1990). Masuknya beban polutan ke dalam ekosistem perairan akan mempengaruhi komponen biota akuatik terutama pada struktur dan fungsinya dalam rantai makanan yang dapat diketahui dengan adanya perubahan komposisi, jumlah, dan kelimpahan taksanya. Penilaian kualitas lingkungan yang dewasa ini banyak dilakukan untuk melengkapi hasil pendugaan parameter fisika dan kimia adalah dengan memasukkan parameter biologi. Menurut Soewignyo et al. (1986), penentuan kualitas perairan secara biologi dapat dianalisis secara kuantitatif yaitu dengan melihat jumlah kelimpahan jenis organisme yang hidup di lingkungan perairan tersebut dan dihubungkan dengan keanekaragaman tiap jenisnya dan cara penentuan yang lain adalah dengan analisis secara kualitatif dengan melihat jenisjenis organisme yang mampu beradaptasi pada kondisi lingkungan tertentu. Penggunaan perifiton sebagai indikator penilaian kualitas perairan telah banyak dilakukan penelitian oleh banyak peneliti maupun ahli. Hasil penelusuran dari beberapa literatur, abstrak, dan web ilmu pengetahuan yang dilakukan oleh Scott (2010) dengan fokus utama berkaitan dengan ekologi perifiton ditemukan kurang lebih 150 paper yang terbagi menjadi 7 topik bahasan utama yaitu: 1). Pengaruh perubahan fisik, 2). Pengaruhnya terhadap pemaparan dan respon, 3). Faktor lingkungan yang membatasi, 4). Hubungan persaingan, 5). Pengaruh akibat pemangsaan, 6). Perifiton sebagai indikator lingkungan, 7). Kedudukan perifiton dalam siklus rantai makanan pada lingkungan kolam. Secara garis besar beberapa hasil publikasi yang berkaitan dengan keberadaan perifiton dapat dilihat pada Gambar 3.
11
Respon algae terhadap bertambahnya unsur hara di sungai (Huntsman 1948)
Kolonisasi dan periodisitas algae sungai (Brown 1908)
1900
1905
1910
Pengaruh aliran pada respirasi perifiton (McIntire 1966)
Lingkungan penentu penyebaran diatom (Patrick 1948)
Suksesi perifiton (Eddy 1925)
Aliran metabolisme (Odum 1958)
1915
Keterbatasan CO2 dalam proses fotosintesis bryophytes di perairan (Blackman & Smith 1910)
1920
1925
1930
1935
1940
Fiksasi N oleh cyanobacteria (Allison & Morris 1930)
1945
1950
1979
1981
1983
1987
1989
1991
1970
1975
Metoda 32P untuk produktivitas perifiton (Elwood & Nelson 1972)
Meta analisis keterbatasan unsur hara (Francoeur 2001) Ekologi alga (Stevenson et al. 1996)
1985
1965
Pengaruh aliran pada perpindahan massa (Whitford & Schumacher 1961)
Dinamika perifiton (Pringle et al. 1988)
1977
1960
Kondisi cahaya dibawah tutupan tanaman sempadan (McConnell & Singler 1959)
Karakteristik perifiton sungai di British (Bucher 1940)
Pengaruh aliran pada pertumbuhan perifiton (Horner & Welch 1981)
1955
Pengaruh cahaya dan aliran pada komposisi perifiton (McIntire 1968)
1993
1995
1997
Pengaruh UVR pada perifiton (Weidman et al. 2005)
1999
Batas lapisan perpindahan perifiton (Hart & Finell 1999) Hubungan klorofil dengan unsur hara (Biggs 2000)
2001
2003
2005
2007
2008
Pengaruh UVR dan DOC pada perifiton (Frost et al. 2007) Meta analisis dengan kontrol atasbawah dibandingkan bawah-atas (Hillebrand 2002)
Gambar 3. Publikasi ekologi perifiton dari awal abad 20th hingga tahun 2008 (Scott 2010). Penggunaan perifiton untuk menilai kualitas air sungai didasarkan pada 3 pendekatan yaitu : 1. Pendekatan yang paling lama (tua) yaitu berdasarkan konsep indikator spesies, seperti pemakaian jenis alga untuk menilai kualitas air. Pendekatan yang paling lama digunakan adalah sistem saprobik (Hill et al. 2000), sistem ini masih digunakan secara luas untuk monitoring penilaian kualitas air dan air buangan meskipun hingga saat ini banyak mengalami perbaikan (Lange-Bartelot 1979; Frederich et al. 1992). Sistem saprobik terbukti memiliki kelemahan dalam pemantauan kerusakan ekosistem sungai, karena tidak memberikan informasi keterkaitannya antara keberadaan beban unsur hara dengan rendahnya keragaman hayati yang terbentuk (Patrick 1973; Guzkowska & Gasse 1990). 2. Pendekatan yang didasarkan pada struktur komunitas dimana anggapan bahwa lingkungan yang masih alami (pristine) akan mendukung tingginya keanekaragaman
hayati dibandingkan
dengan lingkungan yang
telah
12
mengalami gangguan, jadi keberadaan struktur komunitas mencerminkan kesehatan dari suatu ekosistem. Indeks struktur komunitas (keragaman, kelimpahan, kekayaan taksa dan keseragaman) biasa digunakan dalam pemantauan pencemaran sungai dari point source (Freidrich et al. 1992). 3. Pendekatan indeks biotik yang digunakan untuk menilai kualitas air dan ekosistem sungai secara terintegrasi (Fausch et al. 1984; Karr et al. 1986; Kerans & Karr 1994). Indeks biotik dikembangkan dengan memadukan dua konsep pendekatan antara indikator spesies dan struktur komunitas dalam penilaian kualitas air berdasarkan hubungan parameter fisika kimia kondisi saat ini dan yang sebelumnya. Dalam pendekatan ini memanfaatkan analisis multivariat untuk mengetahui hubungan antara data kondisi lingkungan dengan keberadaan organisme dikaitkan dengan pendekatan kondisi karakteristik ekologi danau maupun sungai (Frits et al. 1993; Dixit & Smol 1994; Pan et al. 1996, Reynoldson et al. 1997). 2.5. Indeks Integritas Biotik Perifiton (Periphyton Index Biotik Integrity) Penilaian kualitas perairan dengan menggunakan indeks biotik saat ini banyak dikembangkan dan digunakan karena dalam informasi yang diberikan terhadap keberadaan kualitas perairan akan mendekati keadaan yang sebenarnya. Indeks biotik terintegrasi dapat didesain untuk pengukuran kekayaan spesies, struktur trofik, dan kelimpahan organisme. Keseluruhan indek yang dihasilkan dari total jumlah metrik yang ada merupakan respon dari sumber polutan baik khusus sampai umum ataupun gabungan dari gangguan tersebut (Karr 1993). Perkembangan indeks multimetrik untuk ekosistem sungai yang terintegrasi biasanya diperlukan kondisi daerah acuan (reference site). Konsep penilaian kualitas perairan dengan menggunakan Periphyton Index Biotic Integrity (PIBI) merupakan penilaian yang menggabungkan beberapa metrik yang disesuaikan dengan kondisi lingkungan perairan, antara lain: 1. Metrik Kekayaan Taksa Relatif: Jumlah total dari semua spesies yang ada dalam komunitas. Kekayaan spesies diatom biasanya menurun dengan meningkatnya kontaminasi bahan organik (Amblard et al. 1990; Witton et al. 1991), logam berat (Pratt et al. 1987; Crossey & La Point 1988;
13
Scanferlato & Cairns 1990; Sudhakar et al. 1991; Witton et al. 1991), dan pestisida (Kosinski 1984). 2. Metrik Keanekaragaman Shannon (ukuran kekayaan dan kesamaan taksa) metrik ini biasa digunakan oleh para ahli biologi, karena relatif mudah diinterpretasikan dan dibandingkan. Bahls (1993) menyatakan bahwa indeks keanekaragaman shannon relatif sensitif terhadap perubahan kualitas air. 3. Pencemaran Toleransi Index (PTI) Indeks Pencemaran didasarkan pada rasio diatom terhadap toleransinya: 1) paling toleran, 2) kurang toleran dan 3) tidak toleran (sensitif). Rasio tersebut kemudian dikalikan dengan jumlah kelompok masing-masing (1, 2, atau 3), dan jumlah untuk masing-masing memberikan nilai Indeks Pencemaran. Bahls (1993) menguraikan kriteria yang digunakan untuk menetapkan taksa diatom ke grup toleransi polusi dianalisis sebagai variabel ekologi. 4. Metrik Cyanobacteria Berbeda dengan % dari diatom, pada peningkatan % Cyanobacteria akan cenderung menunjukkan adanya peningkatan gangguan pada lingkungan, terutama sebagai hasil dari pengayaan hara dan organik maupun paparan zat-zat beracun (Palmer 1969; Patrick 1977; Bott & Rogenmuser 1978; Steinman et al. 1991; Leland 1995). 5. Indeks Pengendapan (siltation index) Indeks pengendapan adalah kelimpahan relatif dari spesies Navicula dan Nitzschia dalam populasi diatom yang menunjukkan substrat tidak stabil, sehingga berkaitan tingkat sedimentasi di dasar sungai (Bahls 1993). Peningkatan
kelimpahan
Navicula
dan
Nitzschia
di
lingkungan
menunjukkan adanya gangguan di lingkungan perairan tersebut. 6. Metrik Diatom Eutraphentic. Diatom Eutraphentic telah banyak digunakan untuk mengidentifikasi dan menilai perairan yang telah dipengaruhi oleh unsur hara (Palmer 1969; Lange-Berlatot 1979; Hall & Smol 1992; Christie & Smol 1993; Pan et al. 1996.). Dengan meningkatnya % diatom eutraphentic, maka menunjukkan
14
kecenderungan adanya peningkatan material organik pada perairan tersebut (Hill et al. 2000). 7. Achnanthes minutissima (%) Kelimpahan persen dari A. minutissima yang ditemukan berkaitan dengan terjadinya peristiwa pencemaran atau gangguan lingkungan perairan akibat pertambangan maupun bahan kimia beracun, dimana terjadinya peningkatan kelimpahan mengindikasikan besarnya gangguan (misalnya 0-25% = tidak ada gangguan, 25-50% = gangguan ringan, 50-75% = gangguan sedang, 75100% = gangguan berat). Spesies ini sering mendominasi di sungai akibat dari drainase tambang, serta gangguan kimia lainnya (Stevenson & Bahls 1999). 8. Metrik klorofil-a Konsentrasi klorofil a secara luas telah digunakan untuk penilaian melimpahnya unsur hara yang ada di perairan sungai, mulai dari skala penelitian sampai regional (Leland 1995; Pan et al. 1999). 9. Matrik Biomassa (AFDM) Hubungan antara areal pertanian dengan kualitas air tidak mudah untuk diintepretasikan. Leland (1995) melaporkan bahwa meningkatnya biomassa perifiton merupakan akibat dari masuknya bahan unsur hara dari lahan pertanian, sementara yang lain melaporkan bahwa berkurangnya biomassa perifiton dalam perairan sungai diakibatkan oleh gangguan bahan kimia (Clark et al. 1979; Boston et al. 1991; Sigmon et al. 1997). Nilai tengah hasil pengukuran AFDM/m2 digunakan sebagai nilai referensi untuk metrik biomassa (Hill et al. 2000). 10. Indeks Autotrofik Rasio AFDM: Chla adalah ukuran dari jumlah bahan organik relatif terhadap biomassa perifiton. Rasio dari 50 sampai 200 adalah khas untuk perifiton didominasi kumpulan bentik. Nilai lebih dari 200 dapat menunjukkan kualitas air yang buruk (APHA 1995).
15
2.6. Parameter Fisika-Kimia 2.6.1. Kedalaman Perairan Jumlah dan jenis hewan bentos termasuk perifiton dipengaruhi oleh kondisi kedalaman perairan. Welch, (1952) menyatakan bahwa daerah litoral paling banyak jumlah dan jenis biota air jika dibandingkan dengan daerah sublitoral dan profundal. 2.6.2. Arus Kecepatan arus merupakan faktor lingkungan yang sangat berpengaruh terhadap keberadaan biota yang ada di perairan mengalir (lotik), kondisi arus suatu perairan sungai dipengaruhi oleh adanya perbedaan gradien atau ketinggian lokasi antara bagian hulu dengan hilir, semakin besar perbedaan ketinggiannya, maka arus air yang mengalir akan semakin deras.
Takao et al. (2006)
menyebutkan bahwa kecepatan aliran dan fluktuasi dari debit sungai merupakan faktor utama dari organisasi biologi yang ada dalam sistem lotik. Sedangkan Welch (1980) menambahkan, sungai dangkal dengan kecepatan arus cepat, biasanya didominasi oleh diatom perifitik.
Alga bentik yang mendominasi
perairan yang berarus kuat dikarakteristikkan oleh adanya diatom golongan pennales (Tabel 1). Tabel 1. Distribusi alga dalam kaitannya dengan arus (Round 1964) Arus (m/detik)
Tipe komunitas
Jenis yang mendominasi
< 0,2 – 1
Alga bentik
>1
Alga bentik
> 0,5 – 1 >1
Fitoplankton Fitoplankton
Alga epipelik dan epifitik: seperti Nitzschia, Navicula, Caloneis, Eunotia, Tabellaria, Synedra, Oscillatoria, Oedogonium, Bulbochaete Alga epilitik: seperti Achnantes, Meridion, Diatoma, Ceratoneis. Diatom kecil bersel tunggal, alga biru. Volvocales, Chrysomonads.
Mason (1981) mengklasifikasi sungai berdasarkan kecepatan arusnya ke dalam lima kategori yaitu arus yang sangat cepat (> 100 cm/detik), cepat (50-100 cm/detik), sedang (25-50 cm/detik), lambat (10-25 cm/detik), dan sangat lambat
16
(< 10 cm/detik). Kecepatan arus akan mempengaruhi jenis dan sifat organisme yang hidup di perairan tersebut (Klein 1972). Menurut Whitton (1975) kecepatan arus adalah faktor penting di perairan mengalir. Kecepatan arus yang besar (> 5 m/detik) mengurangi jenis flora yang dapat tinggal sehingga hanya jenis-jenis yang melekat saja yang tahan terhadap arus dan tidak mengalami kerusakan fisik. 2.6.3. Suhu Menurut Perkins (1960), Suhu perairan sangat erat kaitannya dengan komposisi substrat, kekeruhan, masukan air hujan, luas permukaan perairan yang langsung terkena sinar matahari, serta masukan air limpasan. Suhu perairan sungai pada umumnya terdapat perbedaan antara di permukaan yang selalu lebih tinggi dibandingkan dengan suhu pada kolom perairan (mendekati dasar perairan) (Nybakken 1988). Suhu berperan sebagai pengatur proses metabolisme dan fungsi fisiologis organism, sehingga suhu sangat berpengaruh terhadap percepatan atau perlambatan pertumbuhan dan reproduksi alga.
Perubahan suhu berpengaruh
terhadap proses fisika, kimia, dan biologi badan air, sehingga suhu juga berperan dalam mengendalikan kondisi ekosistem perairan. Menurut Welch (1980) kisaran suhu yang optimum untuk pertumbuhan suatu organisme akuatik seperti alga dari filum Chlorophyta dan diatom berkisar pada suhu 30 – 35 oC, sedangkan Cyanophyta bisa toleran terhadap kisaran suhu yang lebih tinggi diatas 30 0C. 2.6.4. Kekeruhan (Turbiditas) Gambaran sifat optik air dapat dilihat dari nilai kekeruhannya, kondisi ini sangat tergantung pada banyaknya cahaya yang terserap dan dipancarkan kembali oleh bahan-bahan yang terdapat dalam air baik bahan organik maupun anorganik yang terlarut dan tersuspensi biasanya berupa pasir halus dan lumpur maupun yang berupa plankton dan mikroorganisme lainnya (APHA 1995; Davis & Cornwell 1991). Peningkatan kekeruhan pada perairan dapat mengurangi produktivitas primer dari suatu perairan. Menurut Lloyd (1985), pada perairan dangkal dan jernih peningkatan kekeruhan hingga 25 NTU mengakibatkan produktivitas primer turun antara 13 – 50%, sedangkan di danau dan sungai peningkatan
17
kekeruhan sebesar 5 NTU mengurangi produktivitas primer berturut-turut 75% dan antara 3 – 13%. Kekeruhan yang tinggi dapat mengakibatkan terganggunya proses osmoregulasi pada suatu organisme, seperti pernafasan dan penglihatan organisme akuatik (Effendi 2003). 2.6.5. Konduktivitas Konduktivitas merupakan gambaran kemampuan air dalam menghantarkan arus listrik secara numerik karena ionisasi garam-garam terlarut dalam air (Cole 1988). Nilai konduktivitas suatu perairan alami berkisar antara 20 – 1500 µmhos/cm (Boyd 1988), sedangkan limbah industri nilai konduktivitasnya mencapai 10.000 µmhos/cm (APHA 1995). Nilai konduktivitas perairan lebih dari 500 µmhos/cm, maka hidrobiota termasuk perifiton mengalami tekanan secara fisiologis (Afrizal 1992). 2.6.6. Derajat keasaman (pH) Perairan alami pada umumnya memiliki kisaran pH antara 6,5 – 8,5 tergantung pada suhu, oksigen terlarut dan kandungan garam-garam ionik yang ada dalam perairan. Sebagian besar biota akuatik memiliki batas toleransi terhadap pH. Secara umum kondisi pH antara 7 – 8,5 merupakan kondisi ideal yang disukai oleh biota perairan (Effendi 2003). Kondisi pH menentukan dominansi biota akuatik khususnya fitoplankton
misalkan alga biru lebih
menyukai pH netral sampai basa dan respon pertumbuhannya negatif terhadap asam (pH<6), sedangkan Chrysophyta umumnya pada kisaran pH 4,5–8,5; dan pada umumnya kisaran pH yang netral akan mendukung keanekaragaman jenis diatom (Wetzel 1979). 2.6.7. Oksigen Terlarut (DO) Proses metabolisme dan respirasi organisme akuatik
memerlukan
ketersediaan oksigen terlarut, sehingga keberadaan oksigen terlarut sangat vital bagi organisme akuatik, selain itu konsentrasi oksigen terlarut juga dapat digunakan sebagai indikator kualitas air (Odum 1971). Keberadaan oksigen terlarut di perairan berasal dari difusi oksigen dari udara ke dalam perairan serta hasil proses fotosintesis dari fitoplankton, sedangkan berkurangnya konsentrasi oksigen terlarut disebabkan oleh proses respirasi dan dekomposisi bahan-bahan
18
organik yang ada di perairan. Berkurangnya oksigen terlarut berkaitan dengan banyaknya bahan-bahan organik dari limbah industri yang mengandung bahanbahan yang tereduksi dan lainnya (Welch 1952). Kandungan oksigen terlarut pada sistem perairan mengalir seperti sungai pada umumnya tinggi, sedangkan konsentrasi karbondioksida bebasnya cenderung kecil, hal ini disebabkan adanya kecepatan arus pada sistem sungai yang memberikan sumbangan terhadap proses difusi oksigen ke dalam perairan (Hynes 1972). Perairan tawar
kandungan
oksigen terlarut berkisar antara 8 mg/liter pada suhu 25 oC. Konsentrasi oksigen terlarut pada perairan alami biasanya kurang dari 10 mg/l (Mc Neely et al. 1979). Kualitas air di perairan mengalir dapat dikelompokkan menjadi lima golongan berdasarkan konsentrasi oksigen terlarut menurut Sachmitz (1971) in Lumbantobing (1996) Tabel 2. Tabel 2. Penggolongan kualitas air berdasarkan kandungan oksigen terlarut (Sachmitz 1971 in Lumbantobing 1996). Golongan
Kandungan oksigen terlarut (ppm)
Kualitas air
I
> 8 atau perubahan terjadi dalam waktu pendek
Sangat baik
II
6,0
Baik
III
4,0
Kritis
IV
2,0
Buruk
V
< 2,0
Sangat buruk
2.6.8. Alkalinitas Alkalinitas merupakan gambaran kapasitas air dalam menetralkan asam, sehingga alkalinitas dapat disebut juga sebagai kapasitas penyangga (buffer capacity) terhadap perubahan pH perairan. Keberadaan alkalinitas perairan berkaitan dengan kandungan karbonat yang berasal dari pelapukan batuan dan tanah yang terlarut dalam air. Perairan dengan nilai alkalinitas tinggi secara tidak langsung akan berpengaruh terhadap meningkatnya produktivitas perairan. Perairan alami biasanya memiliki nilai alkalinitas sekitar 40 mg/l CaCO3 (Boyd 1988).
19
2.6.9. Unsur Hara (Nutrien) Unsur hara yang penting di perairan adalah nitrogen dan fosfor. Nitrogen di perairan biasanya dalam bentuk nitrogen bebas, nitrat, nitrit, ammonia, dan amonium. Unsur fosfor dapat ditemukan dalam bentuk senyawa anorganik yang terlarut (ortofosfat dan polifosfat) dan senyawa organik yang berupa partikulat (Effendi 2003). Nitrat dan amonia merupakan sumber utama nitrogen di perairan serta sumber nitrogen yang dapat dimanfaatkan secara langsung oleh tumbuhan akuatik maupun alga dan pada umumnya konsentrasi nitrat di perairan tidak tercemar biasanya lebih tinggi daripada konsentrasi amonia.
Nitrat juga merupakan zat
hara penting bagi organisme autotrof dan diketahui sebagai faktor pembatas pertumbuhan (Eaton et al. 1995). Nitrat nitrogen sangat mudah larut dalam air dan bersifat stabil, sedangkan nitrit biasanya ditemukan dalam jumlah yang sangat sedikit di perairan karena bersifat tidak stabil terhadap keberadaan oksigen. Kadar nitrat di perairan alami hampir tidak pernah lebih dari 0,1 mg/liter. Kadar nitrat yang lebih dari 5 mg/liter menggambarkan terjadinya pencemaran antropogenik yang berasal dari aktivitas manusia. Pada perairan yang menerima limpasan dari daerah pertanian yang banyak mengandung pupuk, kadar nitrat dapat mencapai 1.000 mg/liter (Davis & Cornwell 1991). Kadar nitrit di perairan relatif kecil karena segera dioksidasi menjadi nitrat. Senyawa nitrat dapat dihasilkan dari proses oksidasi sempurna senyawa nitrogen di perairan (Effendi 2003). Sumber amonia di perairan berasal dari proses penguraian nitrogen organik (protein dan urea) dan nitrogen anorganik (tumbuhan dan biota perairan yang telah mati) oleh mikroba jamur (proses amonifikasi). Perairan dengan pasokan oksigen cukup jarang ditemukan Amonia.
Kadar amonia di perairan alami
biasanya tidak lebih dari 0,1 mg/liter (McNeely et al. 1979). Amonia banyak digunakan dalam proses produksi urea, industri bahan kimia, serta industri bubur kertas. Kadar amonia yang tinggi dapat merupakan indikasi adanya pencemaran bahan organik yang berasal dari limbah domestik, industri, dan limpahan pupuk (run off) pupuk pertanian (Effendi 2003).
20
Unsur fosfor (P) di alam mayoritas berada dalam bentuk fosfat yang merupakan bentuk hasil oksidasi sempurna. Fosfat yang dijumpai dalam air merupakan hasil pelapukan dan terlarutnya mineral fosfat karena erosi tanah, pupuk, proses asimilasi dan disimilasi tumbuhan, deterjen, limbah industri dan domestik. Fosfat yang terdapat dalam perairan biasanya terdapat dalam bentuk terlarut dan tak terlarut. Menurut Goldman et al. (1983) unsur P merupakan kunci dalam produktivitas primer dan kesuburan suatu perairan yang biasanya terdapat dalam jumlah sedikit, sehingga unsur ini sering dianggap sebagai faktor pembatas bagi produktivitas perairan. Kandungan fosfat yang terlarut di perairan alami pada umumnya tidak lebih dari 0,10 ppm, sedangkan air sungai pada umumnya mempunyai kandungan fosfat berkisar 0,001 – 0,05 ppm (Jorgensen 1980). Kandungan fosfat dalam perairan yang tinggi akbat masuknya pencemaran bahan organik dari limbah rumah tangga (domestik) maupun industri, dan daerah pertanian dengan dipupuk yang mengadung unsur fosfat (Wardoyo 1975).