VI.a. Analisis Korelasi dan Regresi A. Pendahuluan Ilmu Ekonomi banyak mempelajari hubungan antara berbagai variabel ekonomi. Dari adanya hubungan tersebut dipergunakan untuk mempredeksi pengaruh satu variabel terhadap variabel lainnya. Contoh : Jumlah barang yang diminta merupakan fungsi dari harga à q = f(p) Penawaran merupakan fungsi dari harga à S = f(p) Fungsi tersebut menunjukkan fakta yang muncul sebagai akibat atau disebabkan munculnya sesuatu yang lain Kita dihadapkan pada fakta kausalitas. Dari contoh diatas dapat dijelaskan bahwa jumlah barang yang diminta akan berubah sebagai akibat adanya perubahan harga. Hubunganhubungan fungsional tersebut menjelaskan ketergantungan variabel terikat (dependent variable) pada variabelvariabel bebas (independent variable) dalam bentuk yang spesifik. Hubungan fungsional tersebut bisajadi merupakan hubungan yang sederhana antar variabel. Dalam prakteknya lebih sering dijumpai hubungan fungsional yang rumit dan sulit untuk dijelaskan. Alat yang sering dipergunakan untuk mendekati kejadian diatas adalah regresi. Analisis regresi ada berbagai macam jenis dan yang akan dibahas disini dua jenis yang sering dipergunakan, yaitu analisis regresi sederhana dan analisis regresi berganda. B. Analisis Korelasi Sederhana Langkah awal yang harus dilakukan (sebelum menganalisis regresi) adalah mengetahui bahwa dua variabel yang akan dianalisis memiliki hubungan yang kuat. Hal ini dapat dilakukan dengan melakukan analisis korelasi. Kita perlu hatihati dengan korelasi palsu, yaitu apabila dianalisis dinyatakan memiliki korelasi kuat, akan tetapi sebenarnya sama sekali tidak berhubungan. Misal : penjualan TV meningkat seriing dengan peningkatan penjualan celana jeans. Analisis korelasi adalah sekumpulan teknik statistika yang dipergunakan untuk mengukur keeratan hubungan (korelasi) antara dua variabel. Contoh : Suatu perusahaan berpendapat bahwa dengan mendemostrasikan cara pemakaian produk akan mendorong peningkatan penjualan. Manajer perusahaan tersebut ingin mengetahui hubungan antara jumlah demostrasi dengan jumlah barang yang terjual dari 10 kelompok salesforce. Berdasarkan laporan masingmasing kelompok salesforce diperoleh data. Kelompok Jumlah demonstrasi Jumlah barang terjual Amir 20 30 Ali 15 18 Bambang 18 20 Dodo 28 25 Endang 24 29 Endro 12 22 Farid 10 12 Fajar 30 29 Yuni 35 34 Zainul 26 24 Dari permasalahan pada contoh diatas diperoleh keterangan bahwa jumlah barang terjual tergantung pada jumlah demostrasi yang dilakukan. Berarti jumlah barang terjual berlaku sebagai variabel terikat (dependent variable). Sedangkan jumlah demonstrasi adalah variabel yang mempengaruhi jumlah barang terjual. Berarti jumlah demostrasi berlaku sebagai variabel bebas (independent variable). Langkah yang dijalankan untuk menganalisis korelasi adalah : 1. Buat diagram pencar (scatter plot diagram) dengan sumbu datar adalah variabel bebas (jumlah demonstrasi) disebut sumbu X dan sumbu tegaknya adalah variabel
terikat (jumlah barang terjual) disebut sumbu Y. Hasilnya seperti gambar dibawah ini.
Jml Barang terjual
40
2. Hitung Koefisien Korelasi · Koefisien korelasi dinotasikan dengan r dengan sebutan r Pearson atau korelasi product moment Pearson · Koefisien korelasi memiliki nilai –1 sampai dengan +1 . · Data yang dapat diolah adalah data yang berskala interval atau rasio. · Kekuatan dan arah korelasi terlihat pada gambar dibawah ini
35 30 25 20 15 10 5 0 0
5 10 15 20 25 30 35 40 Jml demostrasi
Korelasi negatif sempurna
Korelasi negatif kuat
Korelasi negatif sedang
1,00
Korelasi negatif lemah
Korelasi positif sempurna
Tidak ada korelasi
0,5
Korelasi positif lemah
0
Korelasi positif sedang
0,5
Korelasi negatif
Korelasi positif kuat
1,0
Korelasi positif
Rumus : Koefisien Korelasi (r) n ( å XY ) - ( å X ) ( åY )
r=
2 2 én ( ù ) - ( êë å X å X ) úû
2 2 én ( ù ) - ( êë åY åY ) úû
Dari permasalahan diatas diperoleh hasil perhitungan sbb : Kelompok Amir Ali Bambang Dodo Endang Endro Farid Fajar Yuni Zainul Total
r =
r =
X
Y
20 15 18 28 24 12 10 30 35 26 218
30 18 20 25 29 22 12 29 34 24 243
X 2 400 225 324 784 576 144 100 900 1225 676 5354
Y 2 900 324 400 625 841 484 144 841 1156 576 6291
XY 600 270 360 700 696 264 120 870 1190 624 5694
10( 5694 ) - ( 218 )( 243 )
[10 ( 5354 ) - ( 218 ) ] [10 ( 6291 ) - ( 243 ) ] 2
3966
[6016 ][3861 ]
2
= 0,822903
Riset Bisnis – Rahmad Wijaya
68
3. Interpretasi. Koefisien korelasinya positif, berarti terdapat hubungan langsung dan positif antara dua variabel tersebut. Nilai korelasi 0,822903 berarti hubungan antara dua variabel tersebut termasuk kuat. C. Koefisien Determinasi (R 2 ): Koefisien Determinasi adalah bagian dari keragaman total variabel terikat (Y) yang dapat diterangkan oleh keragaman variabel bebas (X). Koefisien ini dihitung dengan mengkuadratkan koefisien korelasi Dari contoh diatas berarti R 2 = (0,822903) 2 = 0,67717. Kita dapat mengatakan bahwa 67,71 % keragaman dari jumlah barang terjual dapat diterangkan oleh keragaman dari jumlah demostasi yang dilakukan kelompok salesforce. D. Analisis Regresi Linier Sederhana Dari gambar diagram pencar diatas dapat dikembangkan suatu persamaan yang menyatakan hubungan antara dua variabel dan memperkirakan nilai variabel terikat Y berdasarkan nilai variabel bebas X. Kita dapat membuat suatu garis (persamaan) untuk mewakili data yang terdapat pada diagram pencar tersebut. Garis yang baik adalah garis yang paling sesuai (fit) terhadap data. Garis yang paling sesuai (bestfitting) dapat diperoleh melalui metode matematika yang disebut kaidah kuadrat terkecil. Kaidah ini juga meminimumkan jumalah kuadrat jarak deviasi vertikal terhadap garis. Rumus : Regresi Y’ = a + bX dimana Y’ = adalah nilai prediksi (perkiraan) dari variabel Y berdasarkan nilai variabel X yang dipilih. a = titik potong Y. Merupakan nilai perkiraan bagi Y ketika X = 0 b = kemiringan garis atau perubahan ratarata pada Y’ untuk setiap satu unit perubahan (naik atau turun) pada variabel bebas X. X = sembarang nilai variabel bebas yang dipilih. Nilai a dan b diperoleh dari rumus : b =
n ( å XY ) - ( å X )( å Y ) n ( å X 2 ) - ( å X ) 2 a =
å
Y
n
- b
å
X n
Dari contoh diatas dapat dihitung sbb : Kelompok Amir Ali Bambang Dodo Endang Endro Farid Fajar Yuni Zainul Total
X 20 15 18 28 24 12 10 30 35 26 218
Y 30 18 20 25 29 22 12 29 34 24 243
X 2 400 225 324 784 576 144 100 900 1225 676 5354
Riset Bisnis – Rahmad Wijaya
XY 600 270 360 700 696 264 120 870 1190 624 5694
Y 2 900 324 400 625 841 484 144 841 1156 576 6291
69
10( 5694 ) - ( 218 )( 243 ) b = 10 ( 5354 ) - ( 218 ) 2
a =
b = 0,659242
243 218 - 0,659242 10 10
a = 9,928524
sehingga diperoleh persamaan regresi : Y’ = a + bX Y’ = 9,928524 + 0,659242 X Interpretasi : Nilai a = 9,928524 ; berarti jika tidak dilakukan demostrasi sama sekali ( X = 0 ), maka jumlah barang terjual sebanyak 9,928524 unit. Nilai b = 0,659242 ; berarti setiap penambahan jumlah demostrasi diharapkan akan menaikkan jumlah barang terjual sebanyak 0,659242 unit Cara menggambar garis regresi : Kelompok Amir Ali Bambang Dodo Endang Endro Farid Fajar Yuni Zainul
X 20 15 18 28 24 12 10 30 35 26
Y' 23,113 19,817 21,795 28,387 25,75 17,839 16,521 29,706 33,002 27,069
Y' = Y' = Y' = Y' = Y' = Y' = Y' = Y' = Y' = Y' =
Persamaan 9,92852 + 0,659242 ( 9,92852 + 0,659242 ( 9,92852 + 0,659242 ( 9,92852 + 0,659242 ( 9,92852 + 0,659242 ( 9,92852 + 0,659242 ( 9,92852 + 0,659242 ( 9,92852 + 0,659242 ( 9,92852 + 0,659242 ( 9,92852 + 0,659242 (
20 ) 15 ) 18 ) 28 ) 24 ) 12 ) 10 ) 30 ) 35 ) 26 )
Dari nilai X dan Y’ diatas diperoleh diagram pencar sbb :
Jml Barang terjual
40 35 30 25 20 15 10 5 0 0
5 10 15 20 25 30 35 40 Jml demostrasi
Kesalahan Baku Pendugaan Jika semua titik terletak pada garis, maka jumlah barang yang terjual dapat diduga dengan kebenaran 100 %. Dari Gambar diatas ternyata tidak semua titik terletak pada garis regresi. Semakin banyak jumlah pengam,atan, maka titiktitik akan semakin mendekati garis. Besarnya ketidakakuratan pendugaan dapat hitung dengan kesalahan baku pendugaan (Standart Error of Estimation) dengan konsep yang sama dengan standart deviasi. Rumusnya : å ( Y - Y ' ) 2 S y , x =
Kelompok Amir Ali Bambang Dodo Endang Endro Farid Fajar Yuni Zainul
X
Y 20 15 18 28 24 12 10 30 35 26
30 18 20 25 29 22 12 29 34 24
Riset Bisnis – Rahmad Wijaya
Y' 23,1134 19,8172 21,7949 28,3873 25,7503 17,8394 16,5209 29,7058 33,0020 27,0688
n - 2
(YY') (YY') 6,8866 47,4258 1,8172 3,3020 1,7949 3,2216 3,3873 11,4738 3,2497 10,5603 4,1606 17,3104 4,5209 20,4389 0,7058 0,4981 0,9980 0,9960 3,0688 9,4176 0,0000 124,6446
70
Jadi : kesalahan baku pendugaan sebesar : ( 124 , 6446 ) 2 = 15,5806 10 - 2 Atau dapat pula menggunakan rumus : S y , x =
2
S y , x = E. 1. 2. 3. 4.
å Y
- a ( åY ) - b ( å XY ) n - 2
Asumsi Pokok Regresi Linier Untuk setiap nilai X, ada sekumpulan nilai Y yang menyebar normal. Semua nilai tengah distribusi normal Y terletak pada garis regresi. Deviasi standar distribusidistribusi normal ini sama. Nilainilai Y secara statistik saling beba. Artinya bahwa pada pemilihan sampel, nilai Y yang terpilih untuk suatu X tertentu tidak tergantung pada nilai Y untuk X yang lainnya.
Gambar dibawah ini mengilustrasikan asumsiasumsi tersebut :
F. Hubungan antara Koefisien Korelasi, Koefisien Determinasi, dan Standart Deviasi
Jika kesalahan bakunya kecil, maka hubungan antara variabel bebas dan variabel terikat adalah erat. Kuncinya pada å(YY’) 2 Koefisien korelasi juga mengukur keeratan hubungan antara dua variabel tersebut. Kedua hal diatas samasama menjelaskan keeratan hubungan antara dua variabel, tetapi memiliki skala yang berbeda dalam rangka memberitahukan kuatnya hubungan. Sedangkan koefisien determinasi dapat dikatakan sebagai kuadrat dari koefisien korelasi. Hubungan ketiga hal diatas dapat dijelaskan dengan tabel ANOVA (analysis of variance). Adapaun format tabel ANOVA sbb: Sumber keragaman DF SS Regresi 1 SSR Kesalahan (residual) n 2 SSE SST Total SST=SSR+SSE
MS SSR / 1 SSE / (n2)
Keragaman total, yaitu å(YY’) dibagi menjadi dua komponen: 1. Komponen yang dijelaskan oleh regresi (variabel bebas). 2. Komponen kesalahan atau keragaman yang tak terjelaskan. Regresi = SSR = å(Y’Y) 2 Kesalahan = SSE = å(YY’) 2 Keragaman Total = SST = å(YY) 2
Riset Bisnis – Rahmad Wijaya
71
Koefisien Determinasi dapat diperoleh dengan rumus : r
2
=
SSR SST
= 1 -
SSE SST
Kesalahan baku pendugaan juga dapat dirumuskan dari tabel ANOVA
S
y , x
=
SSE n - 2
G. Pengukuran dan Skala Pemahaman tentang skala pengukuran data sangat diperlukan bagi peneliti untuk memilih alat analisis yang seharusnya dipergunakan sesuai dengan skala data yang akan diolah. Aplikasi analisis regresi mengasumsikan bahwa skala data yang dipergunakan adalah rasio atau interval. Skala data pada level dibawahnya (nominal dan ordinal) tidak diperkenankan untuk diolah dengan menggunakan regresi. Penyimpangan penggunaan skala diatas biasanya terjadi pada penelitian yang mempergunakan kuesioner dengan skala likert dan skala semantik. Meskipun sebagian peneliti berpendapat bahwa jawaban responden (sangat setuju, setuju, netral, tidak setuju, sangat tidak setuju) bisa dikatakan masuk pada skala interval, tetapi makna matematis dari data tersebut tidak ada. Misalkan : Data tersebut dioperasikan secara matematis (dijumlahkan, dikalikan, dibagi, dsb), tidak akan memiliki makna yang benar. Apabila hal ini dipaksakan dipergunakan, maka peneliti akan kesulitan untuk melakukan implikasi. H. Kondisi Dalam hubungan Kausalitas Regresi merupakan analisis kausalitas. Beberapa kondisi yang perlu dipahami sebelum menarik suatu kesimpulan dari analisis akusalitas adalah : a. Concomitant Variation. Concomitant Variation adalah suatu kondisi yang menyangkut timbulnya sebab dan akibat apakah bersamaan atau tidak. Pada analisis regresi, perubahan pada variabel bebas (X) akan mengakibatkan perubahan pada variabel terikat (Y). Hal yang perlu diperhatikan disini adalah elemen waktu yang melingkupi kedua variabel tersebut. Perubahan variabel bebas (Xt) pada periode t akankah berakibat perubahan pada varibel terikat (Y) pada periode yang sama (t) atau tidak. Pada beberapa kasus bisajadi kejadian pada periode t akan berdampak perubahan pada periode t + 1, atau t + 2 dst. Contoh : Pemerintah percaya bahwa dengan melakukan reboisasi (luas kawasan resapan air) akan mengurangi kerugian akibat banjir. Dalam kasus ini variabel bebas luas resapan air (reboisasi) tidak berdampak langsung pada tahun yang sama. b. Time order of Occurrence of Variables Kodisi urutan kejadian merupakan hal yang perlu diperhatikan. Apakah benar variabel bebas (X) terjadi terlebih dahulu, abru kemudian berdampak pada variabel terikat (Y) ? Beberapa kasus sangat mungkin terjadi hubungan resiprokal (saling mempengaruhi). Contoh : Hubungan frekuensi belanja ke supermarket dan frekuensi penggunaan kartu kredit. Mana yang benar ? (1) Orang yang sering berbelanja ke supermarket sering dan suka menggunakan kartu kredit. (2) Orang yang memiliki kartu kredit sering berbelanja ke supermarket. c. Absence of other Possible Causal Factors Suatu kejadian terkadang disebabkan tidak hanya satu sebab, namun bisa lebih dari satu sebab. Perlu dicermati, sebaiknya sebab (variabel bebas) dihadirkan bersama sama ataukah sendirisendiri ?. Kehadiran variabel bebas secara bersamasama terkadang justru menetralisir akibat (variabel terikat), sehingga akibat yang muncul sulit dideteksi.
Riset Bisnis – Rahmad Wijaya
72
Regresi Berganda A. Analisis Regresi Berganda Regresi berganda merupakan perluasan dari regresi sederhana. Rumus Umum regresi berganda adalah : Y’ = a + b1X1 + b2X2 + b3X3 + ….. + bkXk Dimana : Y’ = adalah nilai prediksi (perkiraan) dari variabel Y berdasarkan nilai variabel X yang dipilih. a = intersep Y, yang merupakan titik potong dengan sumbu Y. bk = perubahan bersih Y per unit akibat adanya perubahan Xk dengan menggap X liannya konstan. Ini disebut koefisien regresi parsial (koefisien regresi). X1, X2, X3, …Xk = variabel bebas Contoh : Seorang peneliti pemasaran tertarik untuk meneliti pengaruh frekuensi iklan dan jumlah salesforce pada perusahaan makanan ringan terhadap volume penjualannya. Data yang diperoleh sebagai berikut : Nama produk
Volume Penjualan (000 unit) Y
Frekuensi Iklan (tayangan / hari) X1
20 15 48 52 35 29 41 33 12 25
5 4 10 13 9 11 14 13 8 16
Chiko Zetset Demi Mie Kraak Jelly Stiko Waf Kabo Yippi Gadon
Jumlah Agen (unit) X2
Jml salesforce (orang) X3
5 3 9 5 4 7 10 6 8 4
25 25 39 40 28 22 36 24 14 20
Pada pembahasan regresi sederhana, kita masih dimungkinkan untuk menggambarkan secara fisik dua dimensi, karena hanya terdiri dari dua variabel. Pada regresi berganda jumlah variabel yang terlibat lebih dari dua, sehingga sulit untuk digambarkan dan akan merupakan perhitungan yang membosankan bila dihitung dengan kalkulator. Banyak paket program komputer yang dapat dipergunakan untuk menghitung regresi berganda, seperti, SPSS, MINITAB, STATISTICA, SAS, dll. Sebagian hasil pengolahan data dengan menggunakan SPSS ver 6.0 sbb : * * * * M U L T I P L E R E G R E S S I O N * * * * Listwise Deletion of Missing Data Equation Number 1 Dependent Variable.. Y Block Number 1. Method: Enter X1 X2 X3 Variable(s) Entered on Step Number 1.. X3 2.. X1 3.. X2 Multiple R ,95916 R Square ,91998 Adjusted R Square ,87997 Standard Error 4,65965 Analysis of Variance DF Sum of Squares Mean Square Regression 3 1497,72590 499,24197 Residual 6 130,27410 21,71235 F = 22,99346 Signif F = ,0011
Riset Bisnis – Rahmad Wijaya
73
Variables in the Equation Variable B SE B Beta T Sig T X1 1,259634 ,420960 ,364205 2,992 ,0242 X2 ,075768 ,711127 ,013131 ,107 ,9186 X3 1,272563 ,191369 ,806630 6,650 ,0006 (Constant) 17,177394 6,424499 2,674 ,0368 End Block Number 1 All requested variables entered. * * * * M U L T I P L E R E G R E S S I O N * * * * Equation Number 1 Dependent Variable.. Y Residuals Statistics: Min Max Mean Std Dev N *PRED 11,3217 50,4792 31,0000 12,9002 10 *RESID 6,0274 4,9058 ,0000 3,8046 10 *ZPRED 1,5254 1,5100 ,0000 1,0000 10 *ZRESID 1,2935 1,0528 ,0000 ,8165 10 Total Cases = 10 DurbinWatson Test = 2,11892
Dari print out tersebut diperoleh keterangan : Sebelum kita menginterpretasikan hasil pengolahan regresi tersebut, sebaiknya diperhatikan terlebih dahulu nilai R 2 , F, dan signifikansi dari koefisien regresinya (sig T). Dari print out diatas terlihat bahwa koefisien determinasinya dan nilai Fnya signifikan. Dari sig T terlihat bahwa variabel X2 tidak signifikan (tidak penting /tidak nyata ) pengaruhnya, sehingga sebaiknya data diatas diolah kembali dengan meninggalkan variabel X2. Dan Hasilnya sbb : * * * * M U L T I P L E R E G R E S S I O N * * * * Listwise Deletion of Missing Data Equation Number 1 Dependent Variable.. Y Block Number 1. Method: Enter X1 X3 Variable(s) Entered on Step Number 1.. X3 2.. X1 Multiple R ,95908 R Square ,91983 Adjusted R Square ,89692 Standard Error 4,31808 Analysis of Variance DF Sum of Squares Mean Square Regression 2 1497,47942 748,73971 Residual 7 130,52058 18,64580 F = 40,15595 Signif F = ,0001 Variables in the Equation Variable B SE B Beta T Sig T X1 1,270128 ,379274 ,367239 3,349 ,0123 X3 1,277044 ,173006 ,809470 7,382 ,0002 (Constant) 16,945627 5,601900 3,025 ,0193 End Block Number 1 All requested variables entered. * * * * M U L T I P L E R E G R E S S I O N * * * * Equation Number 1 Dependent Variable.. Y
Riset Bisnis – Rahmad Wijaya
74
Residuals Statistics: Min Max Mean Std Dev N *PRED 11,0940 50,6478 31,0000 12,8991 10 *RESID 5,8098 4,7572 ,0000 3,8082 10 *ZPRED 1,5432 1,5232 ,0000 1,0000 10 *ZRESID 1,3455 1,1017 ,0000 ,8819 10 Total Cases = 10 DurbinWatson Test = 2,13191
Interpretasi : Multiple R ,95908
: menyatakan bahwa korelasi berganda varibel bebas terhadap variabel terikat sebesar 95,92 % yang berarti hubungannya positif yang kuat. R Square ,91983 : menyatakan bahwa 91,99 % perubahan pada variabel terikat (Y) dapat dijelaskan oleh variabel bebas, sedangkan sisanya dijelaskan oleh variabel yang tidak dimasukkan dalam model. Adjusted R Square ,87692 : sama dengan R Square, hanya saja nilai Ajusted R Square telah disesuaikan (ajusted) (dikoreksi dengan dfnya) Standard Error 4,31808 : Kesalahan baku berganda pendugaan (standart error od estimation).
B. TABEL AVONA Kemampuan menyeluruh (secara bersamasama) dari variabel bebas untuk menjelaskan perubahan variabel terikat dapat diuji dengan Uji F. Formulasi: H0 : b1 = b2 = 0 H1 : tidak semua b = 0 Kriteria: Dari tabel F dengan tingkat signifikansi 5 %; df pembilang = 2 dan df penyebut = 7 diperoleh nilai kritis 4,74. Nilai ini dibandingkan dengan nilai F hitung dengan kriteria : Jika F hitung < F tabel, maka Ho di terima Jika F hitung > F tabel, maka Ho di ditolak Kesimpulan : Dari hasil perhitungan (print out) diperoleh informasi bahwa F hitung sebesar 40,15595. Nilai F hitung lebih besar dari F tabel, berarti Ho di tolak, artinya tidak semua b = 0. Interpretasinya : frekuansi iklan (X1) dan jumlah salesforce (X3) mampu menjelaskan keragaman dari variabel terikat. Shortcut : kita dapat membaca data tabel anova lebih cepat dengan melihat nilai Signif F. Apabila nilai tersebut lebih kecil daripada tingkat kepercayaan yang dipergunakan, maka Nilai F signifikan C. Persamaan Regresi : Dari print out Variables in the Equation kita memperoleh informasi tentang persamaan regresi sbb : Y’ = a + b1X1 + b3X3 Y’ = 16,945627 + 1,270128 X1 + 1,277044 X3 Konstanta sebesar 16,945627 dapat diartikan sebagai besarnya volume penjualan (Y) yang diharapkan apabila perusahaan tidak memasang iklan (frekuensi iklan = 0), dan tidak mempergunakan salesforce dalam memasarkan produknya. Nilai negatif disini berbada diluar sampel, untuk itu nilai tersebut dapat dianggap sebagi nol.
Riset Bisnis – Rahmad Wijaya
75
Nilai b1 sebesar 1,270128 artinya apabila frekuensi iklan (X1) ditambah 1 kali penayangan per hari, maka diharapkan ada peningkatan volume penjualan (Y) sebesar 1.270 unit. Nilai b3 sebesar 1,277044 artinya apabila jumlah salesforce (X3) ditambah 1 orang, maka diharapkan ada peningkatan volume penjualan (Y) sebesar 1.277 unit. D. Pengujian koefisien Regresi secara Individual Nilai koefisien regresi diatas perlu diuji apakan nilai tersebut sama dengan nol atau bukan ?. Formulasi : H0 : b1 = 0 ; b3 = 0 H1 : b1 ¹ 0 ; b3 ¹ 0 Kriteria : Dari tabel tstudent dengan tingkat signifikasni 5 % dan df = n (k+1) = 10 – (2+1) = 7 diperoleh t tabel 2,365. Pengujian yang dilakukan dengan ujian dua arah (two tail). Kriteria yang dipergunakan : Jika t tabel £ t hitung £ t tabel, maka Ho diterima Jika t hitung > t tabel atau t hitung < t tabel, maka H0 ditolak Kesimpulan : Dari print out diperoleh informasi bahwa Variabel T hitung T tabel Signifikansi X1 3,349 2,365 Signifikan X3 7,382 2,365 Signifikan Konstanta 3,025 2,365 Signifikan Interpretasinya : Frekuensi Iklan dan jumlah salesforce pengaruhnya nyata terhadap perubahan volume penjualan. E. Kesalahan Baku Pendugaan Volume penjualan yang secara populasi dapat diduga dengan menggunakan persamaan regresi diatas dengan memasukkan nilai variabel bebasnya. Akan tetapi nilai yang diperoleh akan mengandung suatu kesalahan karena menggunakan nilai statistik. Besarnya kesalahan ini dapat dihitung dengan kesalahan baku berganda pendugaan. 2
Rumusnya :
S y ,12 =
å ( Y - Y ' )
n - ( k - 1 )
Langkah awal adalah dengan menghitung residu, yaitu perbedaan antara nilai pendugaan dengan nilai seesungguhnya. Kemudian nilai tersebut dikuadratkan. Dan akhirnya dijumlahkan sbb : Y
X1 20 15 48 52 35 29 41 33 12 25
X2 5 4 10 13 9 11 14 13 8 16
X3 5 3 9 5 4 7 10 6 8 4
25 25 39 40 28 22 36 24 14 20
Y' 21,33111 20,06099 45,56037 50,6478 30,24276 25,12075 46,80975 30,21509 11,09401 28,9173
(YY') 1,33111 5,06099 2,439631 1,352203 4,757243 3,879251 5,80975 2,784907 0,905987 3,9173
(YY') 2 1,771862 25,61357 5,951799 1,828453 22,63136 15,04859 33,75318 7,755707 0,820812 15,34525 130,5206
Kemudian dimasukkan rumus : S y ,12 =
130 , 5206 = 4,318078 10 - ( 2 + 1 )
Riset Bisnis – Rahmad Wijaya
76
Nilai tersebut adalah Standart Error of Estimation seperti keterangan diatas.
Riset Bisnis – Rahmad Wijaya
77