TINJAUAN PUSTAKA Empulur Sagu Tanaman sagu termasuk tumbuhan monokotil dari famili Palmae, sub famili Calamoideae, genus Metroxylon, spesies Eumetroxylon. Tanaman ini banyak ditemukan di hutan hujan dan toleran terhadap pH tanah yang asam dan mengandung unsur Al, Fe dan Mn yang tinggi. Fase vegetatif tanaman ini berada pada 7-15 tahun setelah penanaman dan selama masa inilah pati diakumulasi pada batang. Pati sagu akan maksimum pada saat sebelum tahap berbuah (10-13 tahun setelah penanaman). Ukuran dari batang sagu dan kandungan patinya bergantung pada jenis sagu, umur dan habitat pertumbuhannya. Sagu (Metroxylon sp.) dikenal sebagai tanaman penghasil karbohidrat. Sebagai sumber karbohidrat, tanaman sagu memiliki keunggulan dibandingkan dengan tanaman penghasil karbohidrat lain karena relatif sudah tersedia lahan yang telah ditanami sehingga dapat langsung dimanfaatkan, berkembang biak dengan anakan sehingga panen dapat berkelanjutan tanpa melakukan peremajaan ataupun penanaman ulang, dapat dipanen dan diolah tanpa musim, resiko terkena hama penyakit tanaman kecil, dan tingkat pemanfaatannya masih sedikit (Bustaman 2008). Areal sagu Indonesia sangat luas yaitu sekitar 1,128 juta ha (Bustaman 2008). Setiap satu batang pohon sagu rata-rata mengandung 200-400 kg pati sagu (Safitri et al. 2009). Pati sagu diisolasi dari batang sagu. Batang sagu bagian dalam disebut empulur. Pada saat ekstraksi, empulur sagu yang digunakan harus segar dan segera diproses, karena jika ditunda akan mengakibatkan pati menjadi kecoklatan akibat aktivitas enzim katalisis reaksi oksidasi senyawa polifenol menjadi kuinon (Onsa et al. 2000). Empulur sagu kering didominasi pati (81.51-84.72%) dan serat (3.204.20%). Bagian tengah batang sagu mengandung pati lebih tinggi dibandingkan bagian luar (Tabel 1). Batang sagu yang diekstraksi patinya akan menyisakan ampas sebagai limbah. Konversi langsung empulur sagu menjadi glukosa akan menghemat penggunaan air dan energi untuk ekstraksi dan pengeringan pati, sekaligus sebagai salah satu cara pemanfaatan limbah.
4
Tabel 1. Komposisi empulur sagu kering Empulur Utuh (%) 83.50 0.38 3.32 3.80 1.15 2.87 1.02
Bagian Luar (%) 81.51 0.49 4.20 4.00 1.76
Bagian Tengah (%) 83.20 0.38 3.33 3.50 1.27
Bagian dalam (%) 84.72 0.31 3.20 3.20 1.06
Pati Lemak Kasar Serat Kasar Abu Protein Pentosan Asam organik (sebagai asam malat) Air 9.79 12.03 12.74 12.67 Sumber : Fujii et al. (1986), data dalam % basis kering, kecuali kadar air Pati
Pati sagu umumnya berwarna putih, bersifat tidak larut dalam air, tidak berasa dan tidak berbau. Granula pati sagu berbentuk elips agak terpotong, permukaannya datar, dan berukuran 15-65 μm. Granula pati terdiri atas bagian kristalin yang dibentuk oleh amilopektin dan amilosa, serta daerah amorf yang mengandung titik percabangan dari amilopektin (Zhang et al. 2006), yang ditunjukkan oleh Gambar 1.
Daerah kristalin Daerah amorf
Gambar 1 Struktur granula pati Pati mengandung dua komponen utama yaitu 20%-30% amilosa dan 70%80% amilopektin, yang keduanya merupakan polimer dengan konformasi glukosa pada 4C 1 . Pati merupakan homopolimer glukosa dengan ikatan α-glikosidik. Pati terdiri atas dua fraksi yang dapat dipisahkan dengan air panas, fraksi terlarut disebut amilosa dan fraksi tidak terlarut disebut amilopektin. Tabel 2 berikut adalah karakteristik dari amilosa dan amilopektin.
5
Tabel 2 Karakteristik amilosa dan amilopektin Karakteristik
Amilosa
Amilopektin
Linear
Bercabang
Retrodegradasi
Stabil
Derajat polimerisasi
103
104-105
Panjang rantai rata-rata
103
20-25
Hidrolisis oleh β-amilase
87%
54%
650 nm
550 nm
Struktur dasar Stabilitas dalam larutan
λ maks kompleks iodin Sumber: Aiyer (2005)
Amilosa mempunyai struktur lurus dengan ikatan α-(1,4)-D-glikosidik sedangkan amilopektin mempunyai struktur bercabang dengan ikatan α -(1,6)-Dglikosidik sebanyak 4-5% dari berat total (Winarno 1995). Struktur kimia amilosa dan amilopektin dapat dilihat pada Gambar 2.
Amilosa
Glukopiranosa
Amilopektin
Gambar 2 Struktur amilosa dan amilopektin Mutu pati sagu ditentukan oleh ukuran, bentuk, aroma, rasa dan faktor lainnya. Pati sagu yang diperdagangkan harus memenuhi standar mutu yang telah ditetapkan. Badan Standarisasi Nasional mengeluarkan Standar Nasional Indonesia untuk mutu pati sagu yang dapat dilihat pada Tabel 3 berikut.
6
Tabel 3 Standar mutu pati sagu (SNI 01-3729-1995) Karakteristik
Kriteria
Kadar air (% b/b)
Maks. 13
Kadar abu (% b/b)
Maks. 0.5
Kadar serat kasar (% b/b)
Maks. 0.11
Derajat asam (ml NaOH 1N/100g)
Maks. 4
Kadar SO 2 (mg/kg)
Maks. 30
Kehalusan (lolos ayakan 100 mesh) % b/b
Min. 95
Total Plate Count (koloni/g)
Maks. 106
Jenis pati lain selain pati sagu
Tidak boleh ada
Sumber: Dewan Standarisasi Nasional (1995) Lignoselulosa Komponen lain dari empulur sagu yaitu serat (selulosa, hemiselulosa, dan lignin). Selulosa merupakan polimer glukosa yang membentuk rantai linier dan dihubungkan oleh ikatan β-1,4-glikosidik. Struktur linier ini menyebabkan selulosa bersifat kristalin. Molekul-molekul selulosa memiliki kecenderungan membentuk ikatan hidrogen intramolekul dan intermolekul. Hidrolisis sempurna selulosa
menghasilkan
glukosa,
sedangkan
hidrolisis
tidak
sempurna
menghasilkan selobiosa dan oligosakarida. Struktur selulosa dapat dilihat pada Gambar 3.
Gambar 3 Struktur selulosa Hemiselulosa merupakan rantai polimer bercabang dari berbagai jenis monomer
gula-gula
anhidro
yang
dapat
dikelompokkan
berdasarkan
penyusunnya, yaitu heksosa (glukosa, mannosa, galaktosa), pentosa (xilosa, arabinopiranosa,
arabinofuranosa),
asam
heksuronat
(glukoronat,
metil
glukoronat, galakturonat) dan deoksi heksosa (rhamnosa dan fruktosa). Struktur hemiselulosa berupa rantai bercabang, amorf, dengan ikatan yang lebih lemah dan
7
lebih mudah larut dari pada selulosa. Gambar 4 berikut merupakan struktur dari hemiselulosa.
Gambar 4 Struktur hemiselulosa Lignin yaitu polimer yang terdiri atas unit fenil propana melalui ikatan eter dan ikatan karbon. Terdapat tiga jenis fenil propionic alkohol yang merupakan monomer lignin yaitu coniferyl alkohol (guaiacyl propanol), coumaryl alkohol (phydroxyphenyl propanol) dan sinapyl alkohol (syringyl alkohol). Secara umum struktur lignin cukup kompleks dan adanya ikatan aril-alkil dan ikatan eter menyebabkan lignin tahan terhadap hidrolisis (Judoamidjojo et al. 1989). Struktur lignin dapat dilihat pada Gambar 5. . Ikatan karbon
Cincin aromatik
Ikatan eter (-O-) Gugus alkohol
Rantai methoxyl Gugus fenol
Gambar 5 Struktur lignin (Sixta, 2006)
8
Pre-teatment untuk Bahan Lignoselulosa Hidrolisis bahan lignoselulosa dapat dilakukan dengan cara asam atau enzim, namun membutuhkan perlakuan pendahuluan (pre-treatment) untuk mempermudah reaksi oleh enzim. Pre-treatment yang diberikan haruslah efisien dan mampu melepaskan struktur kristalin selulosa, dapat mengembangkan sisi amorf dan melepaskan lignin (disebut delignifikasi). Wegener (1995) menyebabkan
Menurut Fengel dan
delignifikasi idealnya menghilangkan lignin namun tidak
kerusakan
pada
komponen
holoselulosa
(selulosa
dan
hemiselulosa). Tujuan utama proses pre-treatment adalah untuk memperbesar akses enzim dalam melakukan hidrolisis. Akses enzim dapat ditingkatkan dengan cara menurunkan lignin, menurunkan kristalinitas selulosa, meningkatkan porositas dan luas permukaan bahan.
Bioetanol dengan yield dan produktivitas rendah dan tinggi residu
Selulosa
Tanpa pre-treatment Lignin
Lignoselulosa
Hemiselulosa Mikrofibril Makrofibril
Serat selulosa Enzim pendegradasi
Pre-treatment
Bioetanol dengan yield dan produktivitas tinggi dan Rendah residu
Enzim pendegradasi
Gambar 6 Pengaruh pre-treatment terhadap akses enzim pendegradasi
9
Sejumlah reaksi heterogen terjadi pada hidrolisis menggunakan asam pada konsentrasi rendah dan menyebabkan terbentuknya “hydrocellulose”, yaitu produk dengan derajat polimerisasi yang rendah namun kristalinitas yang lebih tinggi. Hidrolisis selulosa sangat dipengaruhi oleh derajat kristalinitas dan bentuk swelling selulosa. Kinetika hidrolisis selulosa secara asam sangat tergantung pada ikatan hidrogen, sehingga sangat berguna untuk memungkinkan terjadinya proses sakarifikasi biomassa. Contoh yang diberi perlakuan asam 65% mampu mengubah bentuk serat selulosa menjadi selulosa berbentuk seperti gel (Xiang et al. 2003). Proses pre-treament dapat dilakukan melalui beberapa metode yaitu secara fisik, kimia atau fisiko kimia, dan biologis. Tabel 4 memperlihatkan metode pretreatment dan bentuk biomassa setelah mengalami proses perlakuan pendahuluan. Tabel 4 Pengaruh pre-treatment terhadap bentuk biomassa Metode Fisik
Kimia dan fisikokimia
Biologis
Proses Penggilingan Iradiasi Lainnya seperti hidrotermal, penggunaan tekanan tinggi dan pirolisis. Explosion Alkali Asam Gas Agen oksidasi Ekstraksi pelarut
Fungi dan Aktinomiset
Perubahan pada biomassa Transformasi struktur lignin Meningkatkan porositas dan luas permukaan bahan Menurunkan kristalinitas selulosa Menurunkan derajat polimerisasi Meningkatkan luas permukaan bahan Delignifikasi parsial atau hampir lengkap Menurunkan kristalinitas selulosa Menurunkan derajat polimerisasi Hidrolisis hemiselulosa parsial atau lengkap Delignifikasi Mereduksi derajat polimerisasi selulosa Hidrolisis hemiselulosa secara parsial
Sumber: Taherzadeh dan Karimi (2008) Iradiasi Gelombang Mikro Gelombang mikro merupakan gelombang elektromagnetik yang berada pada daerah antara infrared dan frekuensi radio. Daerahnya antara 300 MHz – 30
10
GHz. Microwave domestik dan industrial dioperasikan pada 900 MHz – 2,45 GHz. Jantung dari microwave disebut dengan megatron yang akan menghasilkan radiasi listrik. Pada frekuensi 2,45 GHz, energi foton yang dibawa microwave sekitar 1 joule per mol. Jika bahan yang mengandung molekul polar dan ion diradiasi oleh microwave maka radiasi ini akan mepercepat proses kimia, biologi, dan fisik (Sridar 1998). Keuntungan menggunakan microwave yaitu energi yang dibutuhkan rendah, prosesnya beragam dan selektif, dapat bekerja secara otomatis dan waktu yang dibutuhkan relatif singkat (Datta 2001). Iradiasi microwave pada bahan akan menyebabkan dua efek yaitu efek termal dan non termal. Efek termal yaitu dengan mempercepat pemanasan dan efek non termal dengan mengintensifkan tumbukan antar partikel yang selanjutnya akan mempengaruhi laju reaksi (Keshwani 2009). Peran Iradiasi Microwave terhadap Degradasi Pati dan Lignoselulosa Penelitian tentang penggunaan pemanasan microwave untuk degradasi pati telah digunakan untuk bahan seperti gandum, beras, kentang dan jagung, baik dalam larutan air maupun asam. Kebanyakan kajian menggunakan microwave oven 2450 MHz. Konsentrasi pati bervariasi antara 1-50%, namun umumnya 10% pati (Yu et al. 1996 dan Kunlan et al. 2001), sedangkan pada konsentrasi yang lebih tinggi telah dilakukan oleh Khan et al. (1979), Palav dan Seetharaman (2006) dan Nikolic et al. (2008). Hanya sedikit peneliti yang mencantumkan suhu seperti Yu et al. (1996) dan Tsubaki et al. (2009).
Sebagian besar hanya
mencantumkan derajat power yang digunakan atau persentase dari power (Kunlan et al. 2001, Palav dan Seetharaman 2006, Nikolic et al. 2008). Tsubaki et al. (2009) melaporkan proses pelarutan pati pada suhu tinggi, sebagian besar pati larut pada suhu 200 sampai 220 oC namun diikuti oleh dekomposisi produk menjadi produk sekunder yang memberi warna kegelapan. Waktu terlama yang telah digunakan adalah 10 menit, namun proses hidrolisis pati berjalan sempurna kurang dari 10 menit. Perlakuan pemanasan pati dengan microwave dapat menggunakan air atau asam pada konsentrasi rendah, baik HCl atau H 2 SO 4 .
Namun Kunlan et al. (2001) telah melaporkan penambahan garam
yang mengandung ion Cl dan SO 4 dapat meningkatkan laju hidrolisis pati.
11
Enzim Hidrolisis Proses hidrolisis dapat dilakukan menggunakan asam maupun secara enzimatis. Hidrolisis asam akan menghasilkan etanol dengan yield yang rendah menimbulkan masalah korosi dan menghasilkan produk samping yang dapat menghambat proses fermentasi (Safitri et al. 2009). Hidrolisis enzimatis bersifat spesifik dan ramah lingkungan. Enzim yang digunakan untuk hidrolisis pati yaitu enzim amilolitik sedangkan selulosa dihidrolisis oleh selulolitik dan hemiselulosa oleh xilanolitik. Enzim amilolitik bekerja menghidrolisis polisakarida (pati) menjadi gulagula sederhana. Enzim amilolitik yang digunakan untuk mendegradasi pati adalah α-amilase yang akan memecah pati menjadi maltosa. Enzim ini bekerja memutus ikatan α-(1,4)-glikosidik pada amilosa, amilopektin dan glikogen. Ikatan α-(1,6)glikosidik tidak dapat diputus oleh α-amilase namun dapat dibuat menjadi cabangcabang yang lebih pendek (Dordick 1991). Amiloglukosidase juga merupakan enzim amilolitik yang bekerja memecah ikatan α-(1,4), α-(1,6), α-(1,3), α-(1,2), dan α-(1,1) glikosidik. Enzim ini bekerja lebih lambat dibandingkan enzim αamilase. Enzim selulolitik bekerja mengkonversi selulosa menjadi glukosa. Enzim ini terdiri atas kompleks endo-β-1,4-glukanase, kompleks ekso- β-1,4-glukanase, dan β-1,4-glukosidase. Enzim ini dapat mengkonversi selulosa menjadi glukosa. Enzim xilanolitik terdiri dari kompleks 1,4-β-endoxilanase, β-xilosidase, α-Larabionofuronase, α-glukoronidase, asetil xilan esterase dan asam fenolat. Enzim ini bekerja mengkonversi xilan menjadi xilosa. Tabel 5. Karakteristik Enzim Selulolitik dan Xilanolitik dari Isolat Lokal Enzim Karakterisitk
Selulase1)
Mikroorganisme Bakteri Isolat J o Suhu optimum ( C) 60 pH optimum 6.5 Waktu optimum (hari) 7 Aktivitas puncak (U/ml) 0.057 Sumber : 1)Sinaga (2010), 2)Meryandini et al. (2008)
Xilanase2) Streptomyces 234-P16 90 5.0 5 0.27
12
Bioetanol Etanol (etil alkohol) merupakan cairan yang mudah menguap, mudah terbakar, tak berwarna, memiliki bau khas alkohol, dan merupakan alkohol yang paling sering digunakan dalam kehidupan sehari-hari. Etanol termasuk ke dalam alkohol rantai tunggal, dengan rumus kimia C 2 H 5 OH dan rumus empiris C 2 H 6 O dengan berat molekul 46,07 g/mol. Etanol dapat dibuat dari bahan nabati yang mengandung gula, pati atau lignoselulosa yang dikenal dengan istilah bioetanol. Bioetanol dapat diproduksi melalui proses fermentasi oleh khamir. Khamir merupakan jamur bersel satu yang bersifat mikroskopis, tidak memiliki flagel, tetapi ada beberapa yang membentuk filamen, bersifat saprofit dan parasit. Khamir tumbuh baik pada kondisi aerobik, walaupun demikian beberapa khamir dapat tumbuh pada kondisi anaerobik. Khamir dapat tumbuh dan memfermentasi gula menjadi etanol pada pH 3.5-6.0 dan suhu 28-35 oC.
Fermentasi etanol
memerlukan waktu 30-72 jam dengan suhu optimum untuk fermentasi antara 2530 oC, dan kadar gula berkisar antara 10-18% (Paturau 1969). Khamir akan mengubah gula sederhana menjadi etanol melalui jalur Embden Meyerhoff-Parnas (EMP). EMP mengubah glukosa menjadi asam piruvat melalui reaksi oksidasi-reduksi. Asam piruvat yang dihasilkan kemudian didekarboksilasi menjadi asetaldehida lalu mengalami dehidrogenasi sehingga terkonversi menjadi etanol. Bioetanol dapat diproduksi dari berbagai biomassa hasil pertanian, namun secara tradisional bahan hasil pertanian yang digunakan adalah yang mengandung gula dan pati. Gula sederhana dapat langsung digunakan oleh khamir, sedangkan pati dapat dengan mudah dikonversi dahulu menjadi glukosa oleh enzim atau asam, kemudian difermentasi oleh khamir menjadi etanol. Varga et al. (2004) memproduksi etanol dari jagung, limbah jagung dan tongkol jagung dan memperlihatkan kemampuan Saccharomyces cerevisiae
dalam menggunakan
fraksi hemiselulosa sebagai sumber karbon untuk fermentasi etanol.