Berkala MIPA, 23(1), Januari 2013
Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif Joko Harianto1, Nana Fitria2, Puguh Wahyu Prasetyo3, Vika Yugi Kurniawan4 Jurusan Matematika, Universitas Gadjah Mada, Yogyakarta Indonesia
[email protected],
[email protected],
[email protected], 4
[email protected]
1
Intisari Dalam artikel ini akan dikemukakan Teorema Cayley Hamilton pada matriks atas ring komutatif R sebagai perluasan dari matriks atas lapangan F yang telah dikenal pada Aljabar Linear. Pembahasan Teorema Cayley Hamilton akan terkait dengan suatu polinomial karakteristik dari matriks yang diberikan. Tentu saja, pendefinisian polinomial karakteristik dari matriks atas R tidak berbeda dengan pendefinisian polinomial karakteristik dari matriks atas F yang telah dikenal pada Aljabar Linear. Dalam Aljabar Linear, Teorema Cayley Hamilton mengatakan bahwa . Ternyata, Teorema Cayley Hamilton masih tetap berlaku pada matriks atas ring komutatif R. Jika diberikan ring komutatif R maka dapat dibentuk ring komutatif yaitu himpunan polinomial-polinomial atas R. Selain itu, dapat dibentuk juga ring yaitu himpunan matriks yang semua entrinya merupakan polinomial atas R. Selanjutnya, jika diberikan yaitu himpunan polinomial–polinomial dengan koefisiennya berupa matriks atas R, maka dapat dibentuk suatu pemetaan , sehingga diperoleh . Adanya isomorfisma melalui pemetaan sangat berguna untuk menunjukkan Teorema Cayley Hamilton pada matriks atas R. Salah satu aplikasi Teorema Cayley Hamilton yaitu invers dari suatu matriks A atas ring R merupakan suatu bentuk polinomial atas R dalam A. Lebih lanjut sebagai akibat dari Teorema Cayley Hamilton diperoleh bahwa radikal dan prima minimal dari ideal null A sama dengan radikal dan prima minimal dari ideal yang dibangun oleh polinomial karakteristik dari matriks A. Kata kunci: Cayley Hamilton, Polinomial karakteristik.
Abstract This paper will explain the Cayley-Hamilton theorem on matrices over a commutative ring R as an generalization of the matrix over a field F which has been known in Linear Algebra. Discussing Cayley-Hamilton theorem would be associated with a characteristic polynomial of a given matrix. Of course, defining characteristic polynomial of matrix over R is no different with the defining characteristic polynomials of matrices over F which has been known on Linear Algebra. In Linear Algebra, Cayley Hamilton theorem says that . Apparently, Cayley-Hamilton theorem can be applied to matrices over a commutative ring R. If given a commutative ring R can be formed commutative ring R [X] that the definition is the set of polynomials over R. In addition, the ring also can be formed that the definition is the set of all matrices whose entries are polynomials over R. Furthermore, if given is the set of polynomials with coefficients in the form of a matrix over R, then it may be formed of a mapping such that . The existence of the isomorphism by mapping ψ is very useful to show the Cayley Hamilton theorem on matrices over R. One application of the Cayley Hamilton theorem which is the inverse of
43
J. Harianto dkk., Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif.
a matrix A the ring R is a form of polynomials over R in A. Further as a result of the Cayley-Hamilton theorem is obtained that the radical and minimal prime ideal of A is equal to null and prime radical of the ideal minimum established by the characteristic polynomial of matrix A. Keywords: Cayley-Hamilton theorem, characteristic polynomial.
1. Landasan Teori Pada bagian ini akan dibahas tentang radikal dan prima minimal dari sebuah ideal dalam suatu ring komutatif R. Bagian ini digunakan untuk membahas pada bagian selanjutnya, yaitu hubungan antara polinomial karakteristik dari suatu matriks yang didefinisikan atas suatu ring komutatif dengan order dari idealnya. Apabila diberikan suatu ring komutatif R, Sebuah ideal dari R disebut ideal prima jika dan apabila maka atau . Selanjutnya apabila diperhatikan terdapat hubungan antara ideal prima dari R dengan subset-subset dari R yang tertutup terhadap operasi perkalian. Definisi dari subset dari R yang tertutup terhadap operasi perkalian yaitu suatu himpunan bagian dikatakan tertutup terhadap perkalian jika dan apabila . Setelah dijelaskan tentang ideal prima dan subset dari R yang tertutup terhadap operasi perkalian, berikut akan diberikan definisi dari radikal suatu ideal. Selanjutnya perhatikan jika diberikan ideal dari , apabila , maka terdapat dua kemungkinan untuk , yaitu atau . Perhatikan , maka selanjutnya apakah atau . Secara analog dengan langkah ini diperoleh atau . Sehingga dapat dibentuk himpunan semua dengan sifat , untuk suatu . Dari sini muncul definisi radikal dari suatu ideal. Definisi 1.1 Diberikan
ideal dari . Radical dari , yang dituliskan dengan
, adalah himpunan
. Contoh 1.2
Perhatikan bahwa merupakan ring dengan operasi penjumlahan dan perkalian. merupakan ideal dari . Selanjutnya dapat ditunjukkan bahwa . Kemudian perhatikan bahwa merupakan ideal yang dibangun oleh 0. Selanjutnya diperoleh . Teorema 1.3 Diberikan ring R. Jika
merupakan ideal dari R, maka
merupakan ideal dari ring R.
Bukti Ambil sebarang . Hal ini berarti terdapat sedemikian hingga berlaku . Akan ditunjukkan bahwa . Hal ini ekuivalen menunjukkan bahwa terdapat sedemikian hingga berlaku . Katakan . Perhatikan bahwa
44
Berkala MIPA, 23(1), Januari 2013
Apabila diperhatikan lebih lanjut . Karena untuk . Hal ini berakibat . Dengan demikian dapat disimpulkan bahwa Kemudian ambil sebarang . Ambil sebarang ekuivalen menunjukkan
, maka .
. Hal ini berarti terdapat sedemikian hingga berlaku , akan ditunjukkan bahwa dan . Hal ini untuk suatu . Pilih , sehingga berlaku
Perhatikan bahwa dan telah diketahui bahwa . Sedangkan merupakan suatu ideal, hal ini berakibat . Sehingga dapat disimpulkan bahwa . Secara analog dapat ditunjukkan bahwa . Sehingga dapat disimpulkan bahwa
merupakan ideal dari ring R.
Teorema 1.4 Diberikan R suatu ring. Jika
merupakan ideal dari R, maka
.
Bukti Akan ditunjukkan bahwa . Ambil sebarang . Perhatikan bahwa . Jadi terdapat , sedemikian hingga . Sehingga dapat disimpulkan bahwa . Dengan demikian . Setelah dibahas tentang radikal suatu ideal beserta contohnya, berikut akan dijelaskan definisi dari prima minimal. Misalkan ideal dari . Selanjutnya dibentuk himpunan semua ideal prima yang memuat . Tentu saja himpunan ini bersifat tidak tunggal. Lalu dari sini ada sifat dari himpunan tersebut yang bersifat minimal, sehingga hal ini memotivasi munculnya definisi dari prima minimal suatu ideal. Definisi 1.5 Diberikan A merupakan ideal sejati dari R. Sebuah ideal prima dari R yang memuat A dan minimal yang bersesuaian dengan V (A) disebut dengan prima minimal dari A . Dengan V (A) merupakan himpunan semua ideal prima yang memuat A . Dengan demikian, sebuah ideal merupakan prima minimal dari ( ), jika ideal prima, , dan sedemikian hingga tidak ada ideal prima dari dengan . Kita akan menunjukkan bahwa setiap ideal yang berbeda dari mempunyai paling sedikit saru prima minimal. Sekarang amati bahwa jika merupakan ideal prima dari , maka merupakan satu-satunya prima minimal dari Berikut akan diberikan suatu contoh untuk memperjelas. Contoh 1.6 Perhatikan bahwa merupakan ring dengan operasi penjumlahan dan perkalian bilangan bulat. Apabila diperhatikan lebih lanjut merupakan daerah faktorisasi
45
J. Harianto dkk., Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif.
tunggal. Kemudian dibentuk merupakan ideal dari . Faktorisasi 20 = 22.5, dengan demikian ideal prima yang memuat adalah dan . Sehingga dari sini dapat dibentuk himpunan lengkap prima-prima minimal dari yaitu . Setelah diberikan definisi dan contoh dari prima minimal suatu ideal, berikut akan diberikan suatu teorema yang menghubungkan prima minimal dari suatu ideal dengan subset tertutup dengan perkalian yang salin asing dengan ideal tersebut. Teorema 1.7 Misalkan A merupakan ideal sejati dari R. Sebuah ideal B merupakan prima minimal dari A jika dan hanya jika B c maksimal, subset tertutup dengan perkalian dari R yang saling asing dengan A . Bukti: Misalkan maksimal, subset dari R yang tertutup terhadap operasi perkalian yang saling asing dengan . Karena merupakan subset yang tertutup terhadap operasi perkalian, merupakan ideal prima dari R. Karena . Misalkan ideal prima dari R sedemikian hingga . Selanjutnya , dan merupakan subset tertutup terhadap perkalian dari R yang saling asing dengan . Dengan sifat kemaksimalan dari , kita dapat menarik kesimpulan bahwa , oleh sebab itu , dan prima minimal dari . Sebaliknya, misalkan merupakan prima minimal dari . Selanjutnya merupakan subset tertutup terhadap operasi perkalian dari R yang saling asing dengan . Dari [Brown, 6.10] diperoleh dengan maksimal, yang merupakan merupakan subset tertutup terhadap operasi perkalian dari R yang saling asing dengan . Selanjutnya perhatikan bahwa terdapat ideal prima sedemikian hingga , dan . Khususnya, . Karena merupakan prima minimal dari . Akan tetapi , dan maksimal, yang merupakan merupakan subset tertutup terhadap operasi perkalian dari R yang saling asing dengan . Dari teorema diatas apabila diperhatikan lebih lanjut. apabila diberikan suatu ideal dari R, katakan . berakibat sebarang ideal prima dari R yang memuat memuat sebuah prima minimal dari . Untuk lebih jelasnya perhatikan Akibat 1.6 berikut ini. Akibat 1.8 Misalkan merupakan ideal sejati dari R. Sebarang ideal prima dari R yang memuat memuat sebuah prima minimal dari . Bukti Misalkan merupakan ideal prima dari R dengan sifat . Perhatikan bahwa merupakan subset dari R yang tertutup dengan operasi perkalian yang saling asing dengan . Dari [Brown, 6.10], termuat didalam , dengan tertutup dengan operasi perkalian yang bersifat maksimal dan saling asing dengan . [Brown 6.3] mengimplikasikan bahwa terdapat ideal prima sedemikian hingga , dan . Akan tetapi perhatikan bahwa , dan dengan sifat kemaksimalan dari T, mengakibatkan , .
46
Berkala MIPA, 23(1), Januari 2013
2. Pembahasan Dalam pembahasan ini, akan dikemukakan Teorema Cayley-Hamilton pada matriks atas ring komutatif R. Selanjutnya, akan dibahas juga beberapa aplikasi dan akibat dari Teorema Cayley-Hamilton terkait dengan radikal dan prima minimal suatu ideal dari suatu matriks atas ring komutatif R. Sebelum membahas Teorema Cayley-Hamilton pada matriks atas ring komutatif R, terlebih dahulu akan diberikan beberapa definisi dan teorema yang terkait dengan Teorema Cayley Hamilton. Misalkan T merupakan suatu ring dan T tidak harus ring komutatif, didefinisikan polinomial ring dengan X indeterminate atas T sebagai berikut:
dengan menotasikan pangkat dari suatu polinomial . Berikut ini merupakan teorema pembagian dalam suatu polinomial atas ring tak komutatif. Teorema 2.1 Jika dan , dengan merupakan himpunan semua unit di T, maka terdapat dengan tunggal sedemikian sehingga: a. , dengan atau . b. , dengan atau . Dari Teorema 2.1, karena T ring tak komutatif sehingga polinomial tidak harus sama dengan polinomial . Didefinisikan polinomial dan sebagai berikut.
Definisi 2.2 Misalkan
dan
a.
dikatakan sisa kanan dari pembagian dengan atau . b. dikatakan sisa kiri dari pembagian dengan atau .
, oleh oleh
jika
,
jika
,
Perlu diperhatikan bahwa jika T merupakan suatu ring tak komutatif dan , maka untuk suatu , dapat memiliki dua kemungkinan arti yang berbeda, yaitu dan . Oleh karena itu, agar tidak memberikan arti yang ambigu maka diberikan definisi berikut. Definisi 2.3 Misalkan
dan
(a)
dikatakan evaluasi kanan dari
(b)
dikatakan evaluasi kiri dari
Jika T ring tak komutatif, maka .
.
pada , jika pada , jika
. Namun, jika T ring komutatif maka
47
J. Harianto dkk., Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif.
Dalam teorema berikut, diberikan sifat dari ring tak komutatif. Teorema 2.4 Jika
dan
dan
, maka terdapat
dalam suatu polinomial atas
sedemikian sehingga:
(a) (b)
Dalam teorema ini, merupakan sisa kanan dari pembagian oleh dan merupakan sisa kiri dari pembagian oleh . Dari Teorema 2.4, diperoleh akibat yang merupakan syarat perlu dan cukup suatu polinomial atas ring tak komutatif dikatakan pembagi kanan dan kiri, sebagai berikut: Akibat 2.5 merupakan pembagi kanan dari jika dan hanya jika . Selanjutnya, merupakan pembagi kiri pada jika dan hanya jika . Jika diketahui ring komutatif R, maka dapat dibentuk suatu ring komutatif dan dapat juga dibentuk suatu ring . Misalkan diambil dengan
Perhatikan bahwa matriks A dapat dituliskan menjadi
Secara umum, setiap matriks dengan
dapat dituliskan dalam bentuk dan
.
Dengan demikian, dapat dibentuk suatu pemetaan dengan
Berikut ini diberikan lemma yang menyatakan hubungan antara ring dengan ring melalui pemetaan . Lemma (2.6) Ring
isomorfis dengan ring
melalui pemetaan
Adanya isomorfisma antara ring dengan ring sangat bermanfaat untuk menjelaskan Teorema Cayley Hamilton pada matriks atas ring. Untuk membahas Teorema Cayley Hamilton tentu saja terkait dengan suatu polinomial 48
Berkala MIPA, 23(1), Januari 2013
karakteristik dari matriks atas ring yang diberikan. Berikut ini akan diberikan definisi polinomial karaktristik dari suatu matriks atas ring. Definisi (2.7) Misalkan didefinisikan sebagai
. Polinomial karakteristik dari A dinotasikan
,
Dari definisi (2.7), dengan menggunakan ekspansi Laplace diperoleh merupakan suatu polinomial berpangkat di dalam bentuk berikut: .
dengan
dan
.
Dalam Aljabar Linear, Teorema Cayley Hamilton mengatakan bahwa dengan A adalah matriks yang semua entri-entrinya merupakan anggota dari lapangan F. Ternyata untuk , Teorema Cayley Hamilton masih tetap berlaku. Berikut Teorema Cayley Hamilton pada matriks atas ring. Teorema 2.8 (Cayley-Hamilton) Jika diketahui , maka Bukti: Telah diketahui bahwa
.
merupakan polinomial dalam bentuk
Selanjutnya, dari definisi (2.7) diperoleh
= dengan
Sehingga
merupakan pembagi kanan pada
dan menurut Akibat (2.5), maka Jadi dapat disimpulkan bahwa .
Berikut ini akan disajikan aplikasi dari Teorema Cayley Hamilton yang terkait dengan invers suatu matriks atas ring. Akibat 2.9 Jika invertible, maka untuk suatu . Bukti: Jika , maka dengan . Sehingga dapat diambil dan diperoleh .
49
J. Harianto dkk., Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif.
Untuk
, telah diketahui bahwa dengan . Dalam hal ini, merupakan unit di R karena A invertible. Teorema Cayley Hamilton mengatakan bahwa
(1)
dapat diambil .
Sehingga Persamaan (1) menunjukkan bahwa Perhatikan bahwa jika diambil sebarang homomorfisma dengan
. , maka dapat dibentuk suatu
Jelas bahwa Selanjutnya, tentu saja akan dapat diselidiki kernel dari ini akan diberikan dahulu definisi kernel dari pada
pada
. Namun, berikut
.
Definisi 2.10 Misalkan . Kernel dari homomorfisma null ideal A dinotasikan yang didefinisikan sebagai
dikatakan
Dari definisi (2.10), jelas Teorema Cayley Hamilton mengatakan bahwa . Perlu diperhatikan bahwa untuk mencari polinomial-polinomial dalam dengan suatu matriks A yang telah diberikan tentu saja tidaklah mudah. Karena itu, berikut ini diberikan teorema terkait dengan yang merupakan syarat perlu dan cukup agar suatu polinomial merupakan ideal null A. Teorema 2.11 Misalkan
dan untuk suatu
Bukti: Misalkan terdapat matriks
.
jika dan hanya jika .
sedemikian sehingga (2)
Selanjutnya, kedua ruas Persamaan (2) dikalikan dengan
, diperoleh
(3)
Misalkan
50
Berkala MIPA, 23(1), Januari 2013
Sehingga ,
jelas bahwa karena merupakan matriks diagonal . Perhatikan Persamaan (3), menurut Teorema (2.4) dan Akibat (2.5) maka merupakan pembagi kanan pada sehingga
Jadi
.
Diketahui Misalkan
, maka
untuk suatu
.
Sehingga
dengan Menurut Teorema (2.4) dan Akibat (2.5), maka sehingga
merupakan pembagi kanan pada
untuk suatu
untuk suatu
Dengan kata lain, Teorema (2.11) mengatakan bahwa dengan
menotasikan ideal di yang dibangun oleh minor dari matriks . Berikut diberikan contoh untuk mencari polinomial dalam menggunakan Teorema (2.11). Contoh 2.12 Misalkan R = ℤ/4Z dan
Diperoleh
sehingga
51
J. Harianto dkk., Teorema Cayley-Hamilton pada Matriks atas Ring Komutatif.
Minor-minor (2.11),berlaku
tak nol dari matriks
Dari a) dan b), jelas bahwa . Jika ideal yang dibangun oleh
adalah
dan 2. Menurut Teorema
sehingga dapat diambil didefinisikan sebagai
maka dari contoh (2.12) dapat dilihat bahwa . Dalam hal ini, walaupun dan ternyata tidak selalu sama dengan . Berikut ini diberikan akibat dari Teorema Cayley Hamilton dan Teorema (2.11) yang terkait dengan radikal dan prima minimal dari dan . Akibat 2.13 Jika
, maka
.
Bukti: Dari Teorema Cayley Hamilton diketahui bahwa Akibatnya, . Selanjutnya, misalkan dan menurut Teorema (2.11), maka
, sehingga . Jelas bahwa
.
untuk suatu
(4)
dengan mengambil determinan kedua ruas Persamaan (4), dipereoleh:
Sehingga
, akibatnya
Akibat 2.14 Jika .
, maka prima minimal pada
. Jadi
.
sama dengan prima minimal pada
Bukti: Misalkan merupakan prima minimal pada . Jelas bahwa . Dari Akibat (2.13), diperoleh . Selanjutnya, dari Akibat (1.6) diketahui bahwa memuat prima minimal diperoleh pada
52
pada
. Karena
dan dari Akibat (2.13),
. Sehingga, dari Akibat (1.6) diperoleh memuat suatu ideal prima . Diketahui bahwa . Karena prima minimal pada ,
Berkala MIPA, 23(1), Januari 2013
dapat diambil kesimpulan bahwa prima minimal pada .
. Padahal,
sehingga
merupakan
Dengan kata lain, akibat ini menunjukkan bahwa setiap prima minimal pada merupakan prima minimal pada .
3. Kesimpulan 1. Jika diberikan ring komutatif R, maka dapat dibentuk ring komutatif dan ring . Selanjutnya, Jika diberikan ring , maka dapat dibentuk suatu pemetaan dengan . Diperoleh melalui pemataan . 2. Secara umum, Teorema Cayley-Hamilton pada matriks atas lapangan masih tetap berlaku untuk matriks atas ring komutatif. 3. Walaupun ideal null A belum tentu sama dengan ideal yang dibangun oleh yaitu , ternyata radikal dan prima minimal dari dua ideal tersebut sama.
Daftar Pustaka Anton, H., Rorres, C.W., 2004. Elementary Linear Algebra. John Wiley & Sons,Inc Brown, C.W.,1993. Matrices Over Commutative Rings. MARCEL DEKKER,INC Dummit, S.D., Foote, M.R., 2004. Abstract Algebra Third Edition. John Wiley & Sons, Inc John B Fraeleigh, 1994. A First Course in Abstract Algebra, Addison Wesley Publishing Company Inc, United States
53