'
>
stroken van lijnenplannen .rf"■!«*■*-»•"--1*<**1* '*"**•jP” huidplaat uitslagen numerieke en optische brandsnijgegevens complete staalpakketten scheepsbouwkundige berekeningen sterkteberekeningen computerprogramma 's
navalconsult-holland bv noordhoek 37 postbus 1023 f50 ca p ap en d rech t te^ü^S - 1*5 17 77 - telex 20277 *
... * ' *****
Jr
Schip en W e rf - Officieel orgaan van de Nederlandse Vereniging van Technici op Scheepvaartgebied De Centrale Bond van Scheepsbouwmees ters in Nederland CEBOSINE Het Maritiem Research Instituut Nederland MARIN. Verschijnt vrijdags om de 14 dagen
INFO-SPECIAL VOOR
MMUHEMHNOfFSflORHECHNIEK SCHIP EN WERF
Redactie Ir. J. N. Joustra, P. A. Luikenaar, Dr. ir. K. J. Saurwalt en Ing. C. Dam Redactie-adres Heemraadssingel 193, 3023 CB Rotterdam telefoon 010-4762333
The Netherlands continental shelve
V o o r a d verten ties, abonnem enten en losse nu m m e rs Uitgevers W yt & Zonen b.v. Pieter de Hoochweg I 11 3024 BG Rotterdam Postbus 268, 3000 AG Rotterdam telefoon 0 10-4762566*, aangesloten op telecopier telex 21403 postgiro 58458
by Prof. Ir. S. Hengst*
A b o n ne m enten Jaarabonnement 1986 ƒ 76,— buiten Nederland ƒ 122,— losse nummers ƒ 24,50 (alle prijzen incl. BTW) Bij correspondentie inzake abonnementen s.v.p. het 8-cijferige abonnementsnummer vermelden. (Zie adreswikkel.) V o rm g e vin g en d ru k Drukkerij W yt & Zonen b.v. R eprorecht Overname van artikelen is toegestaan m et b ro n vermelding en na overleg m et de uitgever. V o o r het kopiëren van artikelen u it dit blad is re p ro recht verschuldigd aan de uitgever. V o o r nadere inlichtingen w ende men zich to t de Stichting Reprorecht. Joop Eijlstraat I I , 1063 EM A m sterdam. ISSN 0036 - 6099
V o o rp la a t omslag: Assemblage van het Helder B Tripod Plat form aan boord s.s.c.v. Hermod Foto: Bob Fleumer
Introduction The results of the sixth round of licensing in 1986 indicated the influence of the fall of the oil price on activities of the oil companies, active on the Dutch continental shelve. The focus is on formerly defense zones, acreage closed to leasing up till now, the higher risk area’s, and acreage relin quished from the second round in 1960. In the Dutch sector, offshore started with seismic research in 1963 and in a two year period approximately 40.000 line km. were investigated. In the years tilt 1981 the aver age dropped to approximately 10.000 line km. and increased again to 25.000 line km. in 1983/1984 (approx. 1% of the world total). Drilling activities covered untill now approx imately 55% of the blocks, with a con centration on the K, L, P and Q blocks. Some 600 wells were drilled, approximate ly 70% was wildcatting or appraisal, repre senting approximately 2% of the world total. In the world oil scenery The Netherlands represent a quantité négligeable’ and one can question to which extent the develop ments in the Dutch sector are influenced by the international market. Oil companies showed however, untill now, keen interest in the Dutch continental shelve.
Redactionele bijdragen The Netherlands continental shelve
I
Developments in the Dutch Shipbuilding Industry
II
Offshore pipelines in European maritime areas
25
Fatigue Analysis-Offshore Structures
35
P ro d u k tin fo rm a tie Na plattegrond Holland Offshore
63
L ijs t van a d ve rte e rd e rs Inhoudsopgave
Seismic surveys Future interests of oil companies can be seen from the Exploration licences applied for the 5th round, which are concentrated in F and M blocks, along the coast and the southern part of the Dutch continental shelve (P and Q blocks). Over 20 recon naissance licenses were in force in 1985 and some companies started seismic ex-
104
'Technical University Delft.
ploration on a speculative basis in anticipa tion of the sixth round. Placid, Amoco, Conoco and NAM appear to be the most active companies during the recent years. In 1985 a total of 91 explora tion licences were effective in the Dutch sector of the continental shelve, covering 32.000 km2, 19 of which were granted in the fifth round in 1985. Drilling Wildcatting and appraisal drilling have been rather good so far. Approximately 65% of the wells is dry, 25% is gas and 10% is oil. Indications are that the drilling in 1986 remains at 1985 level. A total of 38 explora tion and appraisal wells were started in 1985. The sixth round of offering includes 23 blocks, the application deadline was closed by March 31 this year. An average success ratio of over 30% since 1968 when explora tion drilling started is by no means poor. But 85% of the gas reserves has been found offshore, so activities for exploration drilling are focussing on oil. The prevailing market conditions will not induce production activi ties offshore. However, the ratio between probable and proven reserves is gradually reducing for both oil and gas on- and offshore in spite of the fact that new gas reserves were found in 1984 and 1985. The K and L blocks remain the leading area's. Production The oflshore industry was greatly stimu lated by the first and second oil crisis which is demonstrated by the increase in number of platforms installed in 1975 and 1982 (see fig. 1), after the first and second oil crisis. The same can be said from the develop ments in the North Sea where the number .of platforms installed increased from an average of approximately 5 per year uptill
1
1974, to more than 20 per year over 1975 through 1978, then dropping to an average of 10 per year in 1978, 1979 and 1980, coming back to more than 20 platforms after 1981 (fig. 2). The production of gas in the Dutch sector was triggered by the first oil crisis. Because of the rather small amount of platforms installed yearly - an average of 5 platforms per year over a 12 years period - (see fig. 3), it is difficult to draw conclusions from the second oil crisis with respect to the Dutch sector. In 1982 the first oil production platforms were installed, in less than two years after the second oil crisis. The economics of these fields must be rather doubtful following the sharp price decrease of the crude to the level of 1974, around US $ 10 - 1 2 per barrel. Taking into consideration the rate of inflation from 1974 till 1985, the comparable price per barrel might be even half of that. Still the Dutch offshore scenery is less vulnerable to changes in the oil price com pared to e.g. the U.K., Norway and Dan mark because the major part of the fields is producing gas. Moreover a relatively large part of the gas is produced onshore. Although the price of gas is coupled to the oilprice, this mechanism has an equalizing effect. The 'connection' to the distribution system has also a stabilizing effect on the market share of the producing companies because contracts have to be negociated on a relatively long term. These factors make that the Dutch offshore activities might not be as much influenced by changes in oil prices. Price setting and market shares are a dif ferent game for gas and the Dutch share in
Fig. 1 this market is not in immediate danger. It cannot be denied, however, that the steep decrease in oil prices will slow down new production developments. So far the gas production has shown a stable growth over the last years. From a production level of approximately 8 - 1 0 million m3 in 1970, gas production offshore went gradually up to 16 billion m3 in 1985, i.e. 20% of the total production in the Netherlands. Oil production increased from 150.000 tonnes in 1982 to 3 million tonnes in 1985 (approx. 50.000 b.p.d.) covering more than 50% of the total on- and offshore production.
Fig. 2
The factors influencing the rate of return are outside the control of the producing com panies. Because of the rather small size of the fields on the Dutch continental shelve and the limited production of oil, initial in vestments play an important role.
OFFSHORE PLATFORMS.INSTALLED YEARLY, 400
WORLDWIDE
^
« 01 'S =Ü300 « V)
to ta l number of platform s Î5000
c
in
V -— ? I oil price drops
E 2 year
*2 200H co
2year
"ql
1st o il- c r is is
% 100 E 3 C
V
2nd oil-crisis '
-•--rT
Î
year of installation -T ~
65
'70
'75
'80
Sources:0ff shore/ocean in d u s try /Smit -in t.
2
'85
The cost price per barrel (oil) or m3(gas) is a function of many factors, e.g. - expected lifetime of the field - rate of production per day - investments - cost of maintenance - operational cost The rate of return depends amongst others on: - oil price - local political issues - the dollar rate - developments in the Middle East - governmental policies, etc.
?
Factors governing the investments are: Expected production rate, environmental conditions, waterdepth, bottom conditions, field conditions, the available infrastructure (e.g. pipelines), required topside facilities, compressor stations, material prices, etc. On the Netherlands continental shelve the waterdepths vary from 20-40 meter for plat forms installed untill now. These platforms are mainly concentrated in the K, L, P and Q blocks. A well developed infrastructure of pipelines is available for gas in this area. The production costs per barrel or m3 can be estimated on basis of the initial invest ments, assuming the operational costs, in clusive maintenance - as a function of the initial investment-and an expected lifetime
s
ERVICE -
purchase and logistics ships management repair and maintenance catering / flotel management
^PERUSE ent based and
OFFSHORE GROUP
- project and operations mar on sound experience in | offshore industry
ISTANCE I [reduction ofJI
mporary capacity
ershoot bcontracting
OF THE BEAUFORT
ng
LY
A MEMBER
and sjervice agency r sales iervice pre5&wtalii>ns
tancy nd repairs ment
CONSTRUCTION
MEET US AT THE HOLLAND OFFSHORE ’86 EXHIBITION 25/26/27 november 1986 RAI AMSTERDAM Booth E 237
SEASTATE OFFSHORE BV P.O. Box 5255 3008 AG ROTTERDAM The Netherlands Tel.: (0)10 - 4806 222 Tlx.: 28683 seast nl Fax.: (0)10 - 4802 023
A DYNAMIC SERVICE ORGANISATION WE MAKE YOUR OVERHEAD A PROFITABLE WORKFORCE SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
3
2 stuks lieren 2500 kg t h ydraulische lam ollenrèm , type VTF2500/2
bel 01720-30321 voor interessante prijzen 15 ton s lier v 6m min statisch 30 ton Red kast type EC3600 Mn i 214 Md 60 000 Nm
6 ton s lier, in cl hydr lam ellenrem Red kast type E D 2250M n i 40 Md 25000 Nm
8 ton s lier Red kast type RAF60 i 35 in c l hydr opsp o e lin rich tin g Md 25000 Nm
800 kg s lier geg ro e id en ong egroeid lev incl hydr lam ellenrem red i van 3 39 tot 40 5 Md 1000 Nm
50 ton s pijp lin e reparatie davit Red kast type ET 3 3500 i 125; Md 300 000 Nm
AANDRÜVINGENBV. 4
K A LK O V E N W E G 28, 2401 LK A LP H E N A D RIJN P O S T B U S 429 2400 A K TE LE X : 39765 K O BR E NL VO O R M EER IN FO R M A T IE : TEL. 01720-30321 T E L E F A X 01720-43951
NUMBER OF PLATFORMS INSTALLED IN DUTCH NORTH-SEA SECTOR
er I < LU|
in ée
o
TOTAL NUMBER OF PLATFORMS INSTALLED
60
12
< 50
10
CL
CE LU CD
X 3
Z
X
QC O Ll
40
8
30
6 o
u.
CE LU
m 4 X 3
20
î
ii
10 NUMBER OF PLATFORMS PER YEAR
Î
I '70
'73
'76
'78
'80 '82 PLATFORMS
'84
'86
'88
Fig. 3 considering the published production rates per day. This will give a rough indication of the cost price per barrel. True cost prices will be different for each field due to varying condi tions. Assuming a maximum production capacity of approximately 130.000 b.p.d. and an actual daily production of approx. 50.000 b.p.d. the cost price per barrel is estimated to be between $8-$9 per barrel for the fields which are now producing in the Dutch sector. Oil production started only in 1982 and the income might be stretched over a period of 10-15 years and looking at effects of inflation and the fact that operatio nal cost will have to be paid in money of the day. it is clear that at the governing oil prices, even the expression 'marginal field' is not anymore valid forthe Dutch continen tal shelve where it concerns the production of oil. Of a total gas production of approximately 80 billion m3 per year, offshore production reached 16 billion m3 in 1985, while in 1976 and 1977 gas production was over 100 billion m3, (practically 100% onshore). A costprice estimate is rather complicated under these circumstances. Margins should be better when producing gas, but the size of the offshore fields make the operation in the Dutch sector, with the actual price setting, a marginal business. Under these circumstances the long term objectives of oil companies and govern ment are becoming leading factors. Offshore gas field development will, more than ever, depend on the business environ ment for the oil companies. Price and poli tics appear to be the major factors. In case the profitability is in danger there is no other
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
choice for oil companies but to decline from further activities because the continuity of the operations can not be guaranteed. The
responsibility of the private enterprise is then influenced by politics, as one of the uncontrollable external factors Gov ernmental policies do control taxrates, in flation rates, fiscal rates etc. and these factors must play a role in budgetting mod els and scenario’s forming the basis for the medium and long term decisions in large private organisations. Where oil com panies are able to identify effects on their operations, governments appear to have a problem to establish medium and long term effects. On the other hand the income of governments is influenced by changes in oil prices. Long term objectives, formulated by Government are also different. The mar ket forces do not have a direct influence on governmental policy. Often government decisions are based on expectation of the reaction of the voting population. The frame work in which the industry has to act is in many aspects determined by all together different objectives. The government however is influencing the survival strategy of the industry by setting general policies and directions. The final government policy is a result of the process which is developed between political parties, which makes it nearly impossible to recognize the long
Fig. 4
INVESTMENTS/YEAR
1986-1990
IN DUTCH SECTOR
-drilling at 1985 level - development oil fields delayed by U year - gasfields at 50% of 1986 level
5
velopments. The withdrawal of the Windfall Profit Tax Bill is an example. The reduction in rate of corporation tax from 48% to 43% has no effect for holders of a production licence or a concession. However, the risks related to offshore operations should in duce government to take an innovative look into ways and means which will make offshore operations more attractive be cause particularly the level of investments is resulting in industrial activities. The marine and maritime industrial experi ence is of great importance for the future of a country where still 75% of our globe is covered with water. Again, stimulation should be created by e.g. putting a pre mium on efforts to realize reductions in initial investments, contrary to increasing cost by the introduction of rather lengthy procedures and requirements.
A model o f the Smit-Tak Semisubmersible maintenance vessel
term governmental objectives for a period over 10 to 15 years. The operator has to measure his economi cal decisions against the chances for mini mum profit and maximum risk. The recent changes in oil price indicate that the models used to develop different scenario's do have a number of variables with an unpre dictable wide spread. Therefore, forcasting offshore production developments is like raising mushrooms, everything is in the dark, and it is not known when and how the manure will be shoveled. The decisive fac tor remains the oilprice being fixed in a curious mix of emotions, local and in ternational politics, market forces and strategic issues. If the oilprice remains at the actual level, the supplying industry will suffer severely, and many companies will face difficult periods. In case the lower oilprices will induce an economic growth worldwide it will still take some years before the market is restored. On the other hand governments and oil companies have a definite need to maintain strategic reserves, oil companies will have to keep their share of the market.
6
Governments might see income disap pear. Upper and lower limits of the vari ables appear to be so far apart that it is virtually impossible to forcast within reasonable margins what the market will do. In the Dutch sector series of small gas and oil fields have been discovered at shallow waterdepth. The rather strict control of the ecological aspects on drilling and field de velopment may put restrictions on further activities, because of the additional cost to the operators. In spite of these restrictions a number of F, K and L blocks were licensed last year and a number of K, L, P and Q blocks are still under consideration for further licensing. Some plans have been shelved for the time being and 1986 is a year of rather limited action. This might continue until the end of this decade. The investment level will prob ably drop below the Hfl 3 billion yearly (see fig. 4), unless incentives can be introduced by the Dutch government. When the gov ernment will consider the oil industry as a driving industrial force instead of a milking cow, and politics recognize this, a number of positive factors will push industrial de
Reserves The total probable oil reserves are approx imately 34 million m3. Around 1995 the rather small fields, can be exhausted at an annual production of say 3 million m3. For the end of this decade, no plans are fore seen to take new fields into production. Something will have to be done if after 1995 production will have to be maintained at the actual level. Also the expected gas reserves offshore are gradually falling since 1978. (From approx. 350 billion m3 to 280 billion m3.) Moreover the share of the small reserves is growing, now more than 50% has an initial reserve below 2 billion m3. The Netherlands continental shelve is characterized by the smaller size of the fields and a rather swallow waterdepth. The standardization in platform design or topsides, combined with an increased effort towards more economical production sys tems, allowing for fast fabrication and in stallation might be able to reduce invest ment level and allow for early peak produc tion. Suppliers shall not sit ano wait but partici pate actively in developing low cost sys tems. Possibilities for application else where in the world, should be stimulated. Similar approaches shall be given to reduc tion of maintenance and operational cost. Designers, suppliers, fabricators and oper ators shall have to put their efforts together to ensure that experiences gained during operation and maintenance are channelled towards improved system design, and fabrication improving the overall efficiency. Also the introduction of multi-functional maintenance tools as the Smit semi-sub will prove to be an asset as the heavy lift vessels of Heerema were some years ago. New circumstances and conditions are al ways creating new incentives and opportu nities. We better be aware of this.
I IW A C O R Hatch Cover Systems Ro/Ro Equipment O ur delivery program m e:
O ur range of services:
• A variety of hatch cover systems for ships of all kinds and sizes. • All kinds of Ro/Ro equipment including side loading systems.
• Advice on all matters concerning hatch co vers and Ro/Ro equipment, whether for newbuildings, ship conversions or jumboisations. • Repair work on hatch covers and Ro/Ro equipment including seagoing repairs and maintenance, • Supply of original spare parts within shor test possible time.
MACOR Marine Systems International B.V. A m em ber of the M ACO R O rganization Formerly Deutsche MacGREGOR GmbH
Head office o f the M A C O R O rganization: Bremen (FRG) Represented in: Holland, Denm ark, Belgium , France, G reat B ri tain, USA, Far East. M ACO R M arine S ystem s International B.V. O pijnenstraat 19 3087 CE R otterdam Phone: 010-4293222, Telex: 28136 MACOR NL, Fax: 010-4281103
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
WIJ VERTEGENW OORDIGEN IN NEDERLAND EN BELGIË DE VOLGENDE NOORSE EN DEENSE FABRIEKEN:
SPERRE M EK. VERKSTED A/S - Lucht/watergekoelde kompressoren 5-495 m 3/u, - Noodhandkom pressoren met luchtfles, - Warmtewisselaars.
BRUNVOLL A.S. - Boeg/hekschroeven met verstel bare/vaste bladen, - Azimuth thrusters
KARMOY WINCHas -
Hydraulische lieren, Dekkranen, Hydr. bediende kabel/kettingstoppers (Karmfork), Hydr. bediende sleep/geleide pennen, vispompen.
fP IN G . U E R i? J E R D R U M
A .S
- PG liquid mud pom p systemen, - PG liquid mud lading/circ. pompen, • PG mud agitator systemen.
Bredr. Sunde as - regatta com bi suit; overlevings-/werkpakken met drijfverm ogen (voor de offshore, visserij, reddingswezen, etc.), - Werkpakken/werkvesten.
AABENRAA M OTORFABRIK H .lnrich C atl.a.n A/S
- 4-takt scheepsdieselmotoren, vermogens 132-795 kW bij 400-500 omw./min., leverbaar in kombinatie met verstelbare schroef.
ROBERT PIKKER TRADING S C A N D IN A V IA N MARINE EQUIPMENT POSTBUS 61 - 2200 AB NOORD WIJK - NL TELEFOON 01719-17260 - TELEX 30797
ships m ust sail
and so they can if lubrication is in order Troubles appear right there where an adequate lubrication is lacking. Ask the specialists and consultants in lubrication-systems for a sound advice. Those with the know-how since 1953
M.D.B. SMEERTECHNIEK B.V. P.O. Box 684 - 3000 AR Rotterdam (Holland) Tel. 010-436.48.77* - Telex 23424 mdb nl SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
9
10
Developm ents in the Dutch Shipbuilding Industry by Prof. Ir. S. Hengst* Abstract The Dutch shipbuilding industry represents a rather limited part of the world shipbuilding market. The shipbuilders in Holland were hit as hard as all other European shipyards by the severe Far East competition. Moreover the industry went through some very radical changes in recent years. By the end of 1986. government support will, most likely, be stopped completely and the industry will have to compete in a market which is more and more influenced by governmental subsidies and protection. Both, industry and government, are convinced that a sound industry will only emerge from the past, if every incentive is put into the capacity to compete. Particularly productivity has to be considerably increased, both from the technological and organisational point of view. Some of the possibilities and requirements for Dutch and West-European shipyards are to be discussed. 1 Introduction The shipbuilding industry in the Nether lands has been suffering severely from the world recession as all other shipbuilding countries in Western Europe. Counting in percentages of the world orderbook, the West European part dropped in the last ten years from approximately 24% to less than 10%. The Dutch shipbuilding industry took a very large part of that reduction when we compare percentages as well as absolute figures. How heavily the Dutch shipbuilding industry was reduced is shown by the following figures: - the marketshare dropped from over 2% in 1975 to less than Vz% in 1985, - the tonnage delivered went down from
slightly over 1 million tons G.R.T. to approximately 200.000, - the number of ships, decreased from around 140 ships a year to approximate ly 100 ships a year {Table I). These figures show that the building of large size vessels was stopped in the Netherlands. The Dutch shipbuilding in dustry has been trying to find a 'niche’ in the market and concentrated on the building of special purpose vessels. How is the actual position? In the total industry approximately 24.000 people are employed. They are divided over the branches as follows: (Table II) naval construction 12%
Table I
REDUCTION DUTCH SHIPBUILDING WORLD
ORDER BOOK
INDUSTRY
{% G.R.T)
w e s te rn europe
n e th e rla n d s
1975
25%
2 ,2 %
1985
9%
0 ,5 %
TONNAGE AND SHIPS NETHERLANDS
DELIVERED IN THE
tonnage
num ber
(g .r.t.x IO 3 ) 1975
1.029
143
1985
220
101
Source : Cebosine B arendrecht
sea going vessels for commercial purposes inland vessel construction repair of sea going vessels repair of inlandand coastal vessels yachtbuilding and -repair
30% 8% 32% 13% 5%
The turnover is a slightly different picture. Comparing the various branches in the in dustry, the turnover is approximately as follows: (Table II) naval construction 18% seagoing vessels for commercial purposes 39% inland vessel construction 12% repair of seagoing vessels 20% repair of inlandand coastal vessels 7% yachtbuilding and -repair 4% The highest turnover Is realized in naval construction, seagoing commercial ships and inland vessels. Material and equipment play apparently an important role in those 3 categories, com pared to e.g. repairs. This proves that from the point of view of employement, shiprepairis important. However, more than 50% of the Dutch shipbuilding industry is, when the turnover is considered, still related to new construction. That repair is an important factor, can be understood by looking at the port of Rotter dam. The crisis in the shipbuilding industry struck Rotterdam heavily. Within a 5 year period the number of personal active in shiprepairing was re duced more than 50% while the activities in shipbuilding (new construction), were re duced by nearly 70% in the Rotterdam area only. Counting with a multiplier effect for subcontracting, equipment deliveries, ser vice industries and other supplying activi ties to the shipbuilding industry, one might •Technical University Delft.
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
11
NUMBER OF PERSONS AND TURNOVER IN THE DUTCH SHIPBUILDING -INDUSTRY PERSONS TU RN OVER naval (w a rs h ip )c o n s tru c tio n
12%
18°/o
seagoing (c o m m e rc ia l) ships
30%
39%
ve sse ls
8%
12%
re p a irs
45%
27%
seagoing -(32°/o)
-(20% )
in la n d
-( 7%)
- (1 3 % )
y a c h t- b u ild in g & re p a ir
5%
4%
100%
100%
Source : Cebosine Barendrecht Table II
say that only In the Rotterdam area approx imately 17.000 jobs were lost, due to the reduction in the shipbuilding industry, over the last 5 years. 2. The remaining shipbuilding industry In the Netherlands The definite step to stop the building of large size ships was made when the Dutch government finished the support of RijnSchelde-Verolme (RSV). The three largest shipyards in the Nether lands, Verolme-Botlek, NDSM (Amster dam) and the Rotterdam Dockyard Com pany, had to stop their newbuilding activi ties. It was also the final step towards the closing of the construction of large floating offshore constructions. The latest develop ments, both in the shipbuilding industry as well as in the offshore industry proved that the Dutch government was right in not furth er supporting the industry to the extent as had been done during the seventies. The above is depicting a rather negative image of the Dutch shipbuilding industry. Howev er, in the European scenery, the image may not be that bad. Remaining are shipyards with rather good product-market combinations. First of all the naval industry. Two Dutch shipyards have been specializing on naval construction. The Royal Schelde (K.M.S.)
12
in Vlissingen has been specializing on sur face vessels. A series of frigates is under construction till the mid-nineties. The series proved to be an export product and K.M.S. is expecting to sell more in the in ternational market. The second shipyard, the Rotterdam Dock yard Company (R.D.M.) is specializing in submarines. Uptill now the program has been exclusive for the Royal Netherlands Navy, however, in view of similar market conditions applicable for the surface ves sels it might be expected that export oppor tunities will occur. Two other shipyards in the Netherlands are operating in the international naval market, selling advanced designs. The first is Van der Giessen-de Noord. Since its existance this yard has been buil ding merchant vessels. In 1985 Van der Giessen-de Noord switched from the buil ding of merchant vessels to the offshore industry and obtained a contract for 2 semisubmersibles for Smit International. The two semi-sub's are of a very innovative design and will be used for maintenance and support activities for offshore fields in the North Sea. The same shipyard de veloped in cooperation with the Royal Netherlands Navy (in the framework of so called tripartite programme), a programme for the construction of 15 minehunters. The
design has been developed in a combina tion with French and Belgian navies. For this purpose a complete new shipyard for the production of G R P . (glass rein forced polyester) vessels has been set up. The production of the G.R.P. vessels, is based on the principles of production ap plied in the aeroplane industry and can be considered as innovative in the shipbuil ding industry. The product is moved along a number of production stations. A station is identified by identical workprogrammes for the ships under construction. The second yard is Wilton Fijenoord, which is combining naval construction with repair of merchant ships. Actually Wilton Fijenoord is building two submarines. Although active on a reduced scale, a diver sified number of shipyards, more or less specialized, is still active in the Netherlands for the building of merchant ships. I.H.C. has for many years been specializing in the dredging equipment Although I.H.C, holds a very strong position in the world market for dredgers, uptill 1985 more than 50%, the effects of a (stagnating) industry has been felt here as well. In the early '80's I.H.C. designed and built a new shipyard in Sliedrecht. This shipyard is geared towards the production of standardized products for the dredging industry. At the same time, the shipyard in Kinderdijk was refurbished. A productionline for standard dredging com ponents has been set up. Medium size shipyards are Verolme Heusden, De Merwede' and 'De Hoop’ Lobith. A particular position is being held by the ship yards in the northern part of the Nether lands. The Cono Industrie Groep (C.I.G.), a combination of shipyards in Groningen and Friesland, is a particularly interesting group, because the privately owned ship yards are maintaining their indépendance, putting the forces together on strategically important issues. An example is the centralized préfabrication. Using the most up to date technologies both in fabrication and computer applications,C.I.G. is not only doing the préfabrication for the ship yards in the group, but more than 50% of the capacity is sold to other shipyards.lt is a typical example of industrialization in the Netherlands in the shipbuilding industry. Last but not least, it is worthwhile to mention a new shipyard under construction in Har lingen, Friesland. Under the prevailing market conditions the participating yards show a great deal of courage in setting up a new assembly site, able to build vessels up to 150 meter length and 30 meter width. These examples mentioned show that the Dutch shipbuilding industry, in spite of a tremendous reduction in production capac ity, is still alive and fighting for survival. Taking into consideration that the ministry of economic affairs in the Netherlands is anticipating to stop any support to the ship-
Wavistrong _
Pipe system s at sea have to w ithstand extrem e co nditions. The salty surro u nd in g is highly agressive, w hile safety regulations on sh ip s and offshore platform s require stringent quality co n tro l and test specifications.
—
corrosion free alternative for offshore É ,
W avistrong glassfibre epoxy pipe system s m ade by Wavin - one o f the largest plastic p ro du cts m anufacturers in the w orld - are the co rro sio n free better alternative fo r the a pp lica tio n on board ships and platform s. W avistrong GRE pipes are internally and externally co rro sio n resistant - no need for painting - offering a very long life expectancy. And they are very light in w eight com pared to traditional materials, saving conside ra ble costs in su p p o rt co nstru ctio ns, handling and installation. W avistrong is a com plete pipe system in diam eters from 25 throu g h 1200 mm and for pressures up to 25 bars, with all type o f fittin g s available. It even in clu de s a special cond u ctive pipe system preventing the b u ild -u p o f static electricity. Besides, we can offer spools - prefabricated custom -m ade co m p lica te d pipe se ction s - avoiding costly intallations on board. And of course, engineering and installation assistance can be part of our services. Services offered from The Netherlands, Saudi Arabia or S ingapore, for all over the world. W avistrong GRE pipe system s have been accepted and granted approval by the w o rld ’s leading cla ssifica tion societies. It is the co rrosion free practical alternative saving money initially and over the years.
telep h on e (0)5232-88911 telex 36150 wavh nl telefax (0)5232-88441
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
IQ
rrrtu
AGAM
M ercedes-B en*
Motoren und Turbinen-Union
Agam Motoren Rotterdam B.V. Service and Parts Division: Ketelweg 26 3356 LE Papendrecht (Holland) Tel. 078-15 11 22 Telex: 22647 Fax: 010-4140740
Sales Department: Goudsesingel 214 3011 KD Rotterdam (Holland) Tel. 010-4149755 Telex: 22647 Fax: 4140740
AGAM Marine diesel generator sets powered by Mercedes-Benz diesel-engines
20 kW - 366 kW 314 352 352A 366LA 421
AM AM AM AM AM
422 423 424 424A 424LA
Power Rating Gen-Sets (Approximately) Genset terminal rating Rating continuous power
1500 rpm. - 50 Hz 3 X 380 Volt
1800 rpm. - 60 Hz 3 X 440 Volt
Rating range in kW
Rating range in kW
Exceedable by 10% Ambient temp. 27°C Basic Engine model
from
to
from
to
OM OM OM OM OM OM OM OM OM OM
20 27 39 57 85 105 144 174 205 289
26 38 56 85 106 143 173 208 288 320
23 33 49 71 100 121 165 201 241 331
32 48 70 100 120 164 200 240 330 366
20 24 36 54 81 105 142 172 205 271
23,3 35 53,6 81 104 141 171 204 270 294
20 29 45 66 98 121 165 199 238 326
28,8 44 65,5 98 120 164 198 237 325 352
314 352 352 366 421 422 423 424 424 424
A LA
A LA
As above for 45°C OM OM OM OM OM OM OM OM OM OM
Determination of power rating; ISO standard power, exceedable by 10% according to DIN 6271. Reference conditions; Air pressure ; 1000 mbar Relative air humidity ; 60% Ambient temperature; 27 resp. 45°C
314 352 352 366 421 422 423 424 424 424
A LA
A LA
Specification General technical details Basic Mercedes-Benz Engine Basic Engine Model Engine design
OM314 I OM352 I OM352AI OM366LA OM421 in-line 4-stroke direct inj.
OM422 I OM423 I OM424 IOM424A bM424LA 90° V 4-stroke with direct injection
Not charged N, turbo-charged A, Turbocharging and charge air cooling (LA)
N
N
A
LA
N
N
N
N
A
LA
Number of cylinders
4
6
6
6
6
8
10
12
12
12
Bore & Stroke (mm)
97/128
97/128
97/128
97/133
128/142
128/142
128/142
128/142
128/142
128/142
3,78
5,67
5,67
5,985
10,96
14,62
18,27
21,92
21,92
21,92
Engine Power (27°C. amb. temp.) Fuelstoppower + 10% 1500 rpm 1800 rpm
31 37
46 57
62 75
94 113
116 135
157 184
190 219
225 262
316 360
354 393
Engine Power (45°C. amb. temp.) Fuelstoppower + 10% 1500 rpm (kw> 1800 rpm lKVV)
27 33
40 50
60 73
89 108
114 132
154 180
186 215
221 257
290 353
315 377
Swept volume, total (I)
EngineFuel consumption (gr/kW/h)
200-221 (type dependable)
building industry by the first of January 1987. Sofar this is the only country in the European Community who appears to have the courage to do this. The en trepreneurial esprit must be excellent and the technological support adequate. In the light of this it is regrettable that other E.E.C. member countries are still maintaining sup port programs which are influencing the market conditions whithin the European Community. The Dutch shipbuilding indus try, however, shows a competitive mental ity . Two important factors for survival of the industry are: - the entrepreneurial attitude, - a creative and innovative mentality. Under the spoiled market conditions the shipbuilding industry will need this more than ever. 3. Improving competitiveness in the Industry Improving competitiveness means in ship building in the first place improving pro ductivity. The market conditions do not allow for an increase in rate of production. Given the fact that an increase in output is not possi ble, there are no other means but to reduce the manhours in the production cost of a ship. In this context it looks against the logic that capacities are maintained at manhour level because of the reason of maintaining employment. Although it is rather difficult to compare productivity in the shipbuilding industry, some efforts have been made by the ‘Nederlands Economisch Instituut’ to compare the productivity in Compensated Gross Register Tons (C.G.R.T.) per man
COMPARING PRODUCTIVITY
E.E.G./JAPAN
la b o r c o s t / ^ c .g x t (148% ) 490
h óllan d
c .g .rt/ ^ m a n -y e a r 35.5 (8 2 % )
Sweden
34.9
(81 % )
439
(133% )
f inland
31.4
(73 % )
469
(142% )
gernnany
30.8
(71 % )
636
(1 9 3 % )
france
25.1
(5 8 % ),
669
(2 0 3 % )
ja p a n
43.3
(100%)
330
(100% )
korea
15.1
( 35% )
273
( 83% )
fig u re s : 1982
la b o r cost in us $ k
S o u rc e : N . E . I . R o tte rd a m Table III
year. A factor for comparison is the labour cost per C.G.R.T. Table III shows the pro ductivity in C.G.R.T. per man year of 5 E.E.C. countries compared to Japan and Korea. Labour costs per C.G.R.T. are also
A new shipyard under construction in Harlingen, to be completed this year. (Flying Focus Castricum).
compared in dollars. The figures are for 1982. Comparing the competitiveness on basis of C.G.R.T. per man year is a tricky business. However, since research has been based on published statistics and the cost struc ture of the supplying industries has also been taken into consideration, the figures are applicable for indicative purposes. Comparing the figures one can conclude that the productivity In Japan is still be tween 20% and 50% higher compared to European figures and that the labour cost is per C.G.R.T. significantly higher in Europe compared to Japan. The conclusion is that in the shrinking market the competition is still very strong from the very aggressive non-European shipyards. Some yards have the benefits from both low wages and high productivity. Japanese wages are comparable to Europe, but Korean wages are much lower. However, Korea has a comparitively - low productivity. Since materials and subsuppliers are forming the greatest part of the cost price of a ship, the influence of subcontractors on the vessel's price is important. 4. Factors Influencing the cost price The cost price of a ship is from the yard-
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
15
condition production point of view defined by two factors: 1. the product, which governs the quantity of work to be performed. 2. the organisation of the execution of the work. The product is mainly governed by factors as market, the possibility for the introduc tion of new products or a new type of vessel. The controlling factors for production are the methods of production, the available production equipment, the type of organisation and the performance of the workers. The combination of ‘methods' and 'organisation' is here called the ‘structure’ of the company. The quality of the product is therefore not only a matter of the design but the product has to be considered from the point of view of the structure of the company as well. In order to maintain a marketposition for the owners, the shipyard has to look into ways and means to optimize a design from the owner's point of view. At the same time risks have to be considered with regard to hydromechanics, strength, vibration and specifications. Optimizing the design as a function of production requirements should not always be in line with the quality require ments from the owner's point of view. However, looking more closely into this, one might conclude that as a result of sim plified constructions, production require ments and quality assurance can result in e.g. less maintenance. The same applies if standardized components are used in ship's systems. This could lead to simpli fied solutions with less maintenance as well. A systematic reduction of the number of parts and components to be installed in the ship can in this respect be an advantage for the owner and the yard. A well designed product is to the benefit of the owner and to the benefit of the shipyard. An illustration of optimizing the design for production requirements was presented during the symposium of the 'Institute for Research and Engineering for Automation and Productivity in Shipbuilding' by Sver drup. In spite of the increased deadweight the number of plates has been reduced with nearly 20%, the number of profiles by near ly 50% and a total number of parts has been reduced with approximately 30%. The total length of welding has been reduced with 20% and the total length of pipe with nearly 30%. Increasing standardization has the poten tial of - improving the quality of the product - reducing the maintenance - increasing the reliability of the installa tion - last but not least reducing the cost of production.
16
In this respect the term ‘design to lifecycle' reflects what the intention of this type of the process is.
- the quality requirements for production - the methods for production and assem bly, etc., etc.
5 The control of the production process The production process is controlled by two main factors: - the structure of the enterprise - the performance of the worker.
This means that the product information is decisive with regard to the operational sequence, the capacity planning, the pro duction time, the spread of the capacity over the different capacity groups, the num ber of machine hours which has te be used in a most effective and efficient way (fig. I).
There are two elements which are control ling the quality of the structure. In the first place the quality of the organisation and in the second place the quality of technology. The quality of the organisation is related to elements as engineering, purchasing, pro duction preparation, material supply, trans portation, etc. The quality of the technology is here de fined in relation to fabrication and assembly. Both activities are controlled from one cen tral point: the preparation and supply of information. The quality of the information appears to be the decisive factor to control the production process. The various ‘functions’ of information are shown in fig. f. In order to be able to supply information properly the purpose has to be clearly established. Technical information supplied by the drawing offices, passes through purchase departments, but is required for production preparation as well. On the other hand the production management needs this in formation to control the progress during production. This means that the product information serves different purposes: - information related to the quality of the product, which is mainly functional. - the quantity of work
In the process of ship production, one can recognize three main phases: - activities related to obtain a contract, (initial design, specifications, estimating and budget preparation) - production preparation (finalization of the design, purchasing, engineering) - fabrication and assembly. During each phase, the activities are being influenced by activities from other phases
(fig- 2).
The flow of information is becoming com plex, and this complexity is growing when sub-suppliers, project departments, admi nistrations and other activities are con sidered (fig. 3). Moreover during phase 1 and phase 2 the major part of the costs of the production process is fixed (fig. 4). In order to make a proper execution during phase 3 possible, it will be necessary to have the flow of materials accompanied by a flow of in formation which is related to the work to be performed. During fabrication and assembly there shall be no doubts about the work to be executed. This means that the information necessary for phase 1, phase 2 and phase 3 has different requirements.
Fig. 3 FLOWS OF INFORMATION AND MATERIALS s u p p lie rs ^
design.estim ate/prepare budget i W .... -I
suppliers
storage d is trib u tio n p re -fa b tra n s p o rt 1.2.3,e c t. production activities as: - sub-assem bly - assem bly etc. - (p re )-o u tfittin g - ♦ r flo w of inform ation ► rflo w of m a te ria l & equipment
L J t fin a l o u tfittin g
L.
te s tin g ,tria ls delivery
Het profiel van uw nieuwe bureau medewerker. Betrouwbaar. Snel. Accuraat. Precies. En toch eenvoudig. Zoekt u een medewerker met dit profiel, neem dan contact op met Sperry. En u ontdekt wat de unieke ka rakteristieken van Videotex, Mappercard,Usernet,Sperrylink, en Unix in de praktijk voor u kunnen betekenen. Met een kennismaking legt u de basis voor een jarenlange, succesvol le samenwerking. J L . < ^ p | = r e ^ Y Sperry Information Systems Group, Hoogoorddreef 11, 1101 BA Amsterdam-Zuidoost, telefoon:020-5677711.
Uw automatisering verdient het.
w
A
^
m
Helder & May bv Vliststraat 25 3004 ET Rotterdam (Spaanse Polder) Postbus 6041, 3002 AA Rotterdam Telefoon: 010-4155909 Telex: 26159
Specialisten in: • • • • • • • •
scheepsvloeren brandvertragende vloeren zwevende vloeren geluidsisolerende vloeren tegelvloeren gietasfaltvloeren PVC vloeren kunststofvloeren
IN SHIPBUILDING INFORMATION DEFINES TO A GREAT EXTENT THE QUALITY OF THE PRODUCTION -
PROJECT FASES
PROCES
inform ation
7 FASE 1
drawing offices,purchasing production preparation
production management
I
initial design and specifications
MARKET
'c o n s tru c tio n supplies production method production fa cilities changes ^quality requirements
product inform ation
t product quality (functional)
*...... form and quality of the information ways and means to transfer information (drawings, computer) etc.
FASE 2
fin a l design building specifications
FASE 3
p re -fa b sub-assembly assembly o u tfittin g
quality in production (technology) operational sequence
suppliers e g
capacity ■ planning
e.r. in sta lla tio n electr. in s ta lla tio n deck equipment insulation preservation
3 N)
production time
contract e g :
capacity-spread Computer £ided Manufacturing given a "product" the information needs to be exact. precise and suitable fo r fabrication and assembly
CONTROLLED OR INFLUENCED BY
FASE 3 effective machine hours
Fig. 1
Fig. 2
Fig. 4
Fig. 5
tests, tria ls and delivery
*
speed power fuel consumption I deadweight
DECISIVE FACTORS FOR THE QUALITY OF TECHNOLOGY
{ ) priorities for improving quality
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
19
DEVELOPMENT OF TECHNOLOGY (2)
DEVELOPMENT OF TECHNOLOGY (1) WELDING
ACCESSIBILITY
•STEELW O RK
- problem s by in tro d u ctio n of new w e ld in g te ch n olog ie s in sh ip b u ild in g
PRO BLEM S:
- a u to m a tic w elding - machines or ro b ots m ust be s u ita b le fo r operation in ships s tru c tu re
M ATERIAL
- d im e n s io n s , d e fo rm a tio n s
ENVIRONMENT
- w e a th e r
HANDLING
- large w eights & dimensions
EXACTNESS
- dim ensional control (prepare fo r w elding)
FACILITIES
- sp ecial to o ls
• MATERIAL PREPARATION - b la sting .coa tin g PROBLEMS :
CONSTRUCTION - co ntin u ou s varying w elding p o s itio n s ,c u rv e s , su rfa ce s The entire "connection" to be considered when robotizing the w elding proces (a p p ro x. 259b35% o f a ll m anhours)
WELDING
- remove p rim e rs
BURNING
- increase sp e e d ,cle a n , welding preparation
HANDLING
- identifying and so rtin g
• MATERIAL DEFORMATION - ro ll. Dress bend PROBLEMS
Fig. 6
Goldan (2) found that improvements in phase ‘3’ can most probably be realized by: - standardization of parts - better ‘design for production’ - using modern construction techniques - maximum of quality control during phase 1 and phase 2 of the work. A major area for cost reduction remains with suppliers and it might well be that the volume of orders will become a determining factor. In this respect the protection which is becoming more and more within the E.E.C. market is probably one of the greatest drawbacks to improve the competitive power of Western Europe. An other possibility to influence costs is research and development. Actually, much emphasis is given in the Netherlands to CAD/CAM systems. A well developed CAD/CAM system might be able to assist in developing low cost pro duction systems. Some programmes for further technological developments are: - improving the automation in welding - the development of robotics.
20
- see stee lw o rk
fig. 7
The development of new welding systems, such as laser welding, plasma welding or electroslag welding, may take quite some time. The message here is that it is better to join the forces in the E.E.C. rather than to develop similar individual research pro grammes in each E.E.C. country. Welding will probably be the area where robotics can be applied first. Fig. 5 through Fig. 8
PRIORITIES FOR RESEARCH
8 are indicating some areas of interest and are giving an impression of the amount of R&D still to be done. It is one of the pillars on which the survival of the European Ship building rests. Under the actual market conditions the West European shipbuilding industry is facing difficult times. One of the ways to improve the situation is cooperation within the common market, because a divided Europe will have no ways and means to properly respond to the continuing com petition from the Far East.
(sh ip ya rd production) 1 q u a lity a ssu ra n ce & c o n tro l 2 o rg a n is a tio n o f th e in fo rm a tio n 3 e v a lu a tio n o f p ro d u c tio n m ethods & fa c ilitie s t, c o m p u te r a p p lic a tio n s 5 p ro d u c t d e v e lo p m e n t 6 s ta n d a rd iz a tio n 7 le v e l o f p e rfo rm a n c e
cad 8. cam
Literature: 1. Sverdrup, IREAPS Symposium 1982. 2. M. Goldan, The application of modular ele ments in the design and construction of semisubmersible platforms, 3. N.E.I., Concurrentiepositie Nederlandse Scheepsbouw, Vol. 1,2,3. (not published).
S C H R E D D E R & CO G ild e n w e g 12 - In d u s trie te rre in ’ De G ee r’ - Z w ijn d re c h t T e le fo o n 078-100111 - T e le x 29339 P o sta d re s: P o stb u s 326 - 3330 AH Z W IJN D R E C H T
AFDELING: TECHNISCHE RUBBERARTIKELEN
Continental Chemicaliën- en oplosmiddelenbestendige slang Olie- en benzinebestendige slangen, zoals tankwagenslang en haspelslang. Bunkerslang uit voorraad leverbaar tot 0 200 mm
Avery-Hardoll D ry-B rea k ko p p e lin g e n R e fu e llin g Nozzles V lo e isto fm e te rs
UGEft. S la n g k o p p e lin g e n en v e rlo o p s tu k k e n o ok in R.V.S.
Pero/o Rubber compensatoren Vulpistolen ZV en ZVA Snelkoppelingen - type TW, ook in R.V.S.
Laadarmen voor vloeistoffen Toebehoren voor tankauto’s en tankstations
AFDELING: INTERN TRANSPORT
V o rk h e ftru c k s R e a c h tru c k s Z ijla d e rs E x p lo s ie b e v e ilig d e h e ftru c k s
Voorts: Metaalbewerkingsmachines Gereedschappen voor metaalbewerkingsmachines
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1966
E x p lo s ie b e v e ilig in g s s y s te m e n v o o r v o rk h e ftru c k s en a g g re g a te n , zoals P ow er P acks, S kid Units, C o m p re sso re n , enz. T evens m o to r in- en u itla a tb e v e ilig in g e n , vo n k e n v a n g e rs e.d. S ystem en c o n fo rm B .S ./O C M A en NEN norm e n
IB—
2
21
Goedgereedschapié hetnaloe werft! p
fl iï
B,
} ■<(
ï l r r r n ■;g f
-
3
'C 4 | :£ # a
-■.%.Jf \
MAASKANT Ir JF W 22
^ R D S
H o o fd k a n to o r sn ü e re n fe b rie k . S ch eepsbouw c o rre s p o n d e n tie adres: Havenkade 14, 4311 BA Brulnisse Postbus 12, 3250 A A Stellendam Tel. 01113-1710 Tel 01879 1477 Telex 55342 Telex 26695
IEDER Z N VAK
arm aco n
ocean transport: t> v
atlant heavy lift:
jus As general agents to Atlant Heavy Lift, Dubrovnik, we, Armacon Ocean Transport B.B., Rotterdam, can offer you an experienced and efficient team for handling all your heavy lift transports on a world-wide basis. We operate nine self-sustained hevy lift vessels, which can be used for roll on/roll off-, float in/float off- and heavy lift operations.
Armacon Ocean Transport B.V. G lashaven 56, 3011 X K Rotterdam, Tel. 010/4141011, Fax. 010/4130005 Telex 21224 aot nl.
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
23
Œ K O A t ïJ the very elegant and solid material for: ★ Vanitytops and Washbasins ★ Kitchentops and Sinks ★ Bar- and tabletops ★ WaUcladding etc. Corian adds value to accommodations on all kinds of ships and offshore platforms.
C la d d e d Show erwalls b y Van Lent Shipyards
C la d d e d Cabinw alls by Struijk en H am erslag B V.
Full Corian Bathroomcladding by Struijk en Ham erslag B V.
Kitchentops b y D e V rie s Shipyards
For more information please contact the Corian Specialist with world reputation
Facinex BV. U
v
WI MC \ /
* Du Pont’s registered trademark
P.O. Box 95 2400 AB Alphen a/d Rijn - Holland tel. 01720-43803 - telex 39718 (erbi nl)
Offshore pipelines in European m a ritim e areas ■ the years ahead
by C. J. Smith-
Abstract Oil and gas development within the European area has already moved into deep water with the Montanazo wellhead in 760 metres. Deep water activities will be common by the end of the century. Offshore exploration and production techniques have been developed for water depths in excess o f300 metres. For effective pipelaying in these depths, where diver assistance is difficult, totally integrated installation systems will be required. The paper discusses such systems and defines the deep water capabilities required for the system elements. In conclusion it is argued that no system element can operate independently without a design interface within the total deep water pipeline installation system. Introduction It now appears that there will be an ade quate supply of energy from the North Sea through the end of the 20th Century to meet a major share of the demand for energy in Western Europe. Recent projections, both by the United Kingdom Offshore Operators Association (UKOOA) and the British Gov ernment, indicate that, with the continuing Conoco’s Tension Leg Platform.
development of existing energy sources and the development of oil, new gas and gas condensate fields, sufficient produc tion capacity will exist to balance supply with demand. Part of this energy supply will come from fields in the northern areas of the North Sea. Water depths in these areas extend to greater than 300 metres and to compound
the difficulties for submarine pipeline con struction, the environmental conditions are extremely severe. Exploration and de velopment work is also planned in deep water areas between Scotland and Ireland and in the eastern part of the North Atlantic. When energy sources are established in these areas, methods and equipment will be required for deep water production and pipelines. An integral part of any offshore production is the form of transportation of product. This paper is concerned with the equipment and vessels necessary for one form of such transportation, the installation of pipelines in the European Maritime Areas. Vast sources of energy in Norway and supplies of gas from Russia and North Africa also contribute to the overall energy supply capability of Western Europe. Further potential for delivery of gas from Nigeria exists, and studies have recently been con ducted to determine the economics of the transportation method. Supply of gas from these sources should be able to meet or exceed the demand for gas in Europe. European demand for energy will continue to increase in the future. Energy in the form of oil, gas and gas condensate, extracted from deep water fields wii become impor tant in the next development phase in the North Sea. Pipelines for oil, gas and gas condensate fields will require pipelines of well over 100 nautical miles in deep water. It could be argued that the subject of what is necessary for the development of deep water pipelaying equipment is a problem not for now but for the future, and that the Mediterranean is the primary location for deep water pipelining. It can be further argued that all energy developments from existing fields in the North Sea or new gas/gas condensate fields are in water depths where conventional lay barges can install pipe. It is accepted that the majority of existing * Paper read at the Offshore Europe conference Aberdeen Sep. 1985. ** Bechtel Great Britain Limited.
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
25
and future fields are and will be in water depths between 100 and 200 metres. How ever, the area of particular interest is in deeper water. Exploration drilling has been conducted in deep water. Pipelines have been installed in water depths over 300 metres in the Norwegian Trench area and in depths over 600 metres in the Mediterra nean. Deep water pipelines are anticipated for the Troll Field and near Rockall. Deep water production platforms Several designs of deep water production platforms have now been produced and one in particular is installed in the North Sea. This is Conoco's Hutton Tension Leg Platform (TLP). The prototype is not now in deep water but is undergoing evaluation in a shallow water environment. A significant advantage of this design is the capability for removal and relocation of the floating section. Other deep water designs consist of steel or concrete structures, guyed towers and floating production systems. Floater de signs such as the TLP and other floating production systems offer mobility; and, for very deep water, these may be the only viable production systems. Production can also be achieved in deep water with the use of seabed remote well head systems with seabed flowlines to a surface production system, Pipelaylng In very deep water Studies have been conducted on extend ing standard laybarge techniques with different configurations of the suspended pipe to deep water pipeline construction. However, there are a number of other tech niques for installation of pipelines in deep water. They consist of pipeline bottom tow ing, mid-water and subsurface tow, where pipe string lengths are made up onshore and towed to the installation location. Limitations exist with these methods, and they are variously affected by weather, cur rents, seabed topography and control of buoyancy off the seabed during tow. These methods have been used on previous occasions, and in a test conducted in Nor way, a fabricated pipe string was towed through the Norwegian Trench and over various obstacles including a wreck, to a North Sea location. The towed concrete coated pipe string was undamaged. The specific areas for deep water pipelaying in the European maritime areas are in the Norwegian Sea, Northern Atlantic Ocean between Rockall, the Faeroes and Scotland, in the Norwegian Trench and crossings of the Mediterranean. Water depths descend to 1,000 metres and will pose significant problems for installation of seabed equipment and pipelines. Explora tion has also been conducted above the Arctic Circle and Sweden has considered
26
an offshore pipeline in the Gulf of Bothnia for a number of years. Deep water areas where the European Continental Shelf approaches the land mass occur in the Bay of Biscay and around the coast of Portugal. For the purpose of this assessment the few finds around the Spanish and Portugeese coastlines will not be included. The remaining area where deep water pipelines may be required in Europe is west of the Republic of Ireland. Exploration has been conducted in the offshore region of the Republic on the tapering edge of the European Continental Shelf. It is evident that deposits exist, however the location for fixed offshore structures is not ideal. The western coastline of the Republic is unique from ecological and environmental aspects. Severe North Atlantic winter storms drive directly into the western coast line. A form of subsea production with pipe lines to shore may be a suitable source development approach. A particular area in which an installed pipe line would pass through a deep water loca tion or trench is in the straits between Rock all and the Scottish Hebrides. The choice of terminal trans-shipment would be more suitable on the Hebrides rather than Rock all. This indicates that a pipeline of length 300-500 kilometres would be required in deep water. Pipelaying systems and their extension to deep water A small diameter fuel line was laid across the English Channel by the reel method during World War II, but the first major pipeline was laid in the North Sea in 1966. This followed British Petroleum’s gas finds in the southern section in the year 1965. It was a 16" gas line from BP’s West Sole Field to a plant located at Easington, Yorkshire. This line and all others laid in the North Sea until 1970 were constructed by the barge, Hugh W Gordon, brought over from the Gulf of Mexico. This is a 2nd generation barge, being larger in size and having more advanced equipment than many of the smaller barges wich had been used successfully in the calmer waters of the Gulf of Mexico. The earlier pipelines were reasonably short, about 50 to 70 kilometres from the offshore field to the plant site onshore, and they were laid in shallow waters. It was not difficult to complete a pipeline in one sea son using only one barge. During the 1970’s, longer and larger dia meter pipelines were laid in the deeper waters further north. The weather sensitiv ity and limited working capacity of 2nd generation barges became evident under these more demanding conditions, pipelay being suspended for 2 metre significant waves on the beam or 2.5 metre waves on the bow. Occurrences of these wave-
heights are rare in the areas of previous laybarge activity such as the Gulf of Mexico and the Arabian Gulf, but in the North Sea such waveheights are commonplace. Not only was pipelay slowed or disrupted by the frequent occurrence of limiting waveheights, but the severe weather caused mechanical breakdowns, especial ly in the stingers. Second generation barges were not designed for heavy weath er operations, and cases of buckled hull plates have been reportedly caused by wave pressure on the underside of anchored barges. The next, or 3rd generation of barges, was conceived in the early 1970's to provide a more stable working platform, less sensitiv ity to the sea state and greater capacity to suspend the pipe string between the sur face and the seabed. Some of these were built with semi-submersible hulls to im prove their seakeeping performance while at anchor and working, notably the Viking Piper' (now the LB 200) the Semac I' and the 'Castoro Sei’. The last vessel was not designed specifically for severe weather climates like the North Sea, but rather for very deep water pipelaying in the Strait of Sicily (up to 605 metres depths). However, its size and performance well qualify it for North Sea work. Conventional laybarges, whether of 2nd or 3rd generation, all operate on basically the same principles. Lengths o1 pipe are brought aboard the barge from a supply boat, stored on deck until needed and welded end-to-end on a longitudinal pipe way. The barge is anchored over the pipe line route while welding is being done and it is advanced in increments of one pipe length as each welding sequence is com pleted. Most barges have no means of self propulsion at all, and the advancement is achieved solely by winching in the forward anchors while releasing the stern anchor lines under constant tension. The Castoro Sei is an exception in that thrusters are used to augment the mooring lines. This is a transitional step in the progress towards very deep water pipelaying where full Dynamic Positioning (DP) will be required. These big, semi-submersible barges accomplish the purpose for which they were designed. Instead of being limited to 2-3 metres significant waveheights (Hs), they continue pipelay in seas of up to 4-5 metres (Hs). This more than triples the available working time in North Sea opera tions. Ability to work in severe seas was no longer the limitation. The limitation became instead the ability to resupply the barge with pipe during extended periods of heavy weather. This, too, was anticipated in the big barge designs. Semac I has a deck storage capacity in excess of 7,000 tonnes, and the 170 metres long LB-200 has a deck capac-
THOSE WHO HAVE TIME
Time is money, an im portant and recognizable fact especially in the shipbuilding industry. There Nieland Groningen bv developed the plate-roll process, which is a unique system for reform ing shipbuilding plates with considerable advantages. The first results after extensive practical research are now available and have surpassed even our own expectations. Here are the facts:— A Nieland plate-roll press stretches many
times faster when compared to any other press method. A dd to this the plate materials flexibility and flatness a fte r rolling and you will have a very short pay-back period. Naturally every press is manufactured according to the precise requirements of the client. You w on't believe us? There is no need to. Contact us and we w ill give you the proof. We look forward to the pleasure of hearing from you and discussing your needs.
IS M W IN G MONEY PO boxgoQ
9700 AX G roningen
The Netherlands / Tel (o )^ o -2 ^ ')b g o / Telex
(^ ) 53477 NPERS NL
Leveringsprogram m a: Ross Industrie GmbH • Simplex-Compact-afdichtingen • Simplex-roerkoningatdichtingen • Simplex-Compect-stabiiisatievinnen type SK en FK • Simplex-Compact-stuurmachlnes • Simplex-draag- en looplagers • Simplex-stuwdrukiagers • Simplex-schotdoorvoermgen • Simplex-achtersteven en baiansroeren • Simplex-roerdraaglagers • Mechanische afdichtingen systeem Huhn • Schroefaskokers en schroefaskokerloopbussen • Asleidingen met en zonder schroef • Turbuto-oiieafschetders • Turbuio-Proces-umts jCoaiescer-naschakeieenheid) • Turbulo-Kondensaat-olieafscheiders • Oiiegehaltemeters en olleaiarmgevers • Hulp- en Uitlaatgassenketels • Warmtewisselaars en Kondensatoren • Offshore-constructies en Tankbouw Stahlwerke Peine Salzgitter A G. • Gietstukken tot ciica tOO ton • Gietijzer, noduiair gietijzer • Gietstaal Neuenfelder Maschinenfabrik GmbH • Scheepskranen • Offshore kranen • Davits • Stuurmachines • Lieren Deutsche Geratebau GmbH • Salzkotten Sewage Treatment installaties J.D. Thelle GmbH & Co. KG • Anker-, Hijs- en Transportkettingen • Ankers alle typen
28
Hlnrlch Mohr * Blokken. Haken en Schakels Verhaalrollen Winel B V. • Ont- en Beluchters • Ventilatiekappen • Waterdichte deuren • Hydraulische Waterdichte Schuifdeuren • Luiken • Spuipotten. Vlamdovers en Dekdoppen J.H. Witzel B V. • Vlinderkleppen • Schuifafsluifers • Terugslagkleppen M egator Pumps & Compressors Ltd
• Pompen • Hydrophoorinstaliaties (o.a. Compak. Hypak en Tripak) • Olieskimmers LEF Bishop Ltd
• Kombuisinnchtmgen en Cateringinst. • Zoek- en Suezlichten Frank Ayles & Associates ltd
• Dispersant sproei-installaties • Otie-opveegsystemen Tanksystem A.S. • Systematic 2000 voor Crude Oil Washing • Systematic 3000 voor product chemical tankers • Hermetic Ullage. Temperatuur en Interface detectors • Hermetic dekafsluiters en ladmgbemonstenngsapparatuur • Hi-Point hoog niveau alarm Dodwell & Co. ltd
• Brandstofblenders • Viscositeitsmetars
B.V Technisch Bureau UITTEIM BOG A A R T Bierstraat 15b, 3011 XA Rotterdam. Telefoon 010-411 4614. Telex 25120 tbu nl. Telefax 0 1 0 -4 1 4 10 04.
/
The semisubmersibte LB 200 ex 'Viking Piper’ ity of 8,000 tonnes. These deck capacities exceed by a significant margin the deck capacities of semi-submersible hulls now planned for the floating production systems. Castoro Sei was designed and built to lay a particular deep water pipeline - the Trans Mediterranean gas line crossing through the Strait of Siciliy. It is believed that this barge can be extended to pipelaying in 1000 metres depths without undergoing major modifications. The other two semisubmersibles were developed for the dif ferent purpose of extending the number of available working days in a pipelaying sea son, but they incorporate the features needed for deep water pipelaying using the S-configuration. The barge’s ability to lay a particular pipe size in this configuration depends upon its ability to support the suspended weight of pipe resulting from the best compromise between stinger length and horizontal pull. Any pipelay situation in deep water will severely test the barge system s capacity. However, the big semi-submersible hulls demonstrated their performance capability in the recent Statpipe crossing of the Norwegian Trench by the LB-200.
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
However massive the laybarges may be, the combination of deep water and barge pipe weight requires the S-configuration to be abandoned in favour of the J-configuration. The J-shape simply eliminates the surface overbend and the need for moment limiting stinger. The outcome is that far less pipe is suspended in the water column for the same horizontal pull and water depth. The ordinary equations for the catenary are sufficient to describe the J-shape. More elaborate equations have been derived to include the effect of pipe stiffness; but, for practical reasons, stiffened catenary analysis is not required for J-pipelay plan ning. When the pipe behaves as a stiffened catenary, it is too close to yield in the sagbend for operational safety. The pipe angle at the sea surface varies depending on the horizontal pull applied. This angle may be accommodated in the pipe support assembly by one of three means: • Pass the pipe over a moment limiting structure beneath the vessel's hull • Connect the pipe to a slant ramp which rotates about a horizontal axis • Support the pipe in a gimballed derrick. All of these means of attachment require
the angle of the pipe assembly way to vary from nearly vertical to about 60° from the vertical. The inconvenience of pipe assem bly and inspection can be made evident, and it is generally believed that only one work station is operationally practical. The consequence of reducing the six or more stations for welding, X-ray and doping found on the standard laybarge to a single station is to greatly increase the completion time per joint of pipe. The production rate decreases from 10 joints per hour to less than 1 joint per hour. Research is presently underway in Europe to eliminate the need for multiple weld passes and so increase the single-station production rate. These investigations include friction welding, flash or induction butt welding and electron beam welding. Non-welding methods of connection include cold forging, the use of screw joints, and hydraulically expanded sleeve coupling. A second noteworthy point is that pipelaying by the J-method cannot be con tinued from deep water into shallow water. However, the shallow water continuation can be done by an S-lay barge. The need for this transition can be generally under stood from the fact that the minimum water depth for S-lay should be greater than the
29
minimum radius of curvature of the pipe. For operational reasons, it should be signi ficantly greater. For example, the change over depth from J-to S-lay is about 300 metres for deep water J-lay designed for a maximum of 2000 metres. Effective pipelaying in deep water will re quire an integrated system. An integrated system consists of the totality of surface and subsea equipment needed to lay and connect a pipeline in deep water. The pipelay method is an important part of the over all pipeline design. Elements of the system required for deep water work are: - Remotely Operated Vehicles (ROVs) for performing subsea tasks, observation and survey - Acoustic systems for positioning and in formation gathering - Remote pipeline connection systems - Remote pipeline to wellhead connection systems - Deep water trenching systems. Development is ongoing to extend these system elements to ever greater depths. System reliability becomes increasingly important as increasing water depth moves the operation further out of the range of easy intervention. An integrated pipeline installation system can be automated to a large extent, but procedures should be developed in full de tail and simulated with dynamic modelling. Such techniques have been used in the design of diverless flowline installations. The positioning, connection and achieve ment of pipeline stability can be done re motely through pre-planned procedures. All systems interface with each other. The pipeline is required to pass through specific positions on the seabed to ensure correct orientation for connection to the wellhead and subsea manifold. In deep water, there is very little opportunity for ad hoc changes to the installation procedure in the event of a failed sequence of operations. Repair of deep water pipelines It is anticipated that more deep water pipe
30
lines will be laid prior to the turn of the century. The most likely areas for these pipelines are Northern Norway, the Mediterranean, and possibly in the area of Rockall. To lay these pipelines, existing technology and vessels will probably be utilised. Most deep installations wil include subsea sys tems with flowline connections leading to templates or manifolds on the seabed. There is, however, the possibility that con struction may proceed on the Western Mediterranean gasline from Algeria to Spain in water depths of up to 2160 metres. A major obstacle to the realisation of deep water pipelines has been the lack of the necessary technology to repair them. The capability exists to lay pipe in the deep ocean, but pipeline repair systems are so far limited to depths accessible to satura tion diving. Developments have long been underway to correct this discrepancy. Hyperbaric welding systems are being extended to water depths of 500 metres. A separate program is being pursued to implement a repair system for the Trans Mediterranean pipelines, and research is proceeding for very deep repair systems capable of depths similar to those on the Western Mediterranean pipeline route. For depths greater than 600 to 700 metres, research is focusing on unmanned, framemounted equipment with mechanical couplings for joining the repair spool to the pipeline. Conclusions It is very likely that more pipelines will be laid through deep water areas in Western Europe in the immediate future. Explora tion in Northern Norway, the west coast of the UK and the Republic of Ireland is active and potential fields have been found. By the turn of the century, exploration and de velopment in deep water offshore Europe will be of considerable importance. Some of these deep water lines will be installed by adapting the big semi-sub
mersible barges while other, still deeper, lines will require the development of new systems. Concurrently, procedures for maintenance and repair will continue under accelerated development to close the ex isting technology gap. Although the UK is expected to be selfsufficient in energy through the 20th cen tury, a need to develop the capability for deep water pipelaying is necessary. This fact is realised by the major oil companies and active support for deep water pipelaying is encouraged. A number of studies by major oil companies have been con ducted for pipelay in deep water and com puter programs have been written to establish the static and dynamic char acteristics of pipelaying in deep water. De velopment will continue on these subjects to perfect fully integrated deep water pipelaying systems.
References 1. UK Department of Energy: ’Development of the Oil and Gas Resources of the United Kingdom’, Report to Parliament by the Secretary of the State for Energy. 2. S.T. Davenport; Bechtel Petroleum Inc: Ma jor International Pipeline Projects for the 1985-2000 Period', International Pipe Con tractors Association Annual Meeting, Copenhagen, Denmark, September 13-16 1983. 3. UK Offshore Operators Association: Poten tial Oil and Gas Production from the UK Offshore to the Year 2000’, Technical Paper, September, 1984. 4 Society for Underwater Technology: Laying and Connecting Pipelines in Deep Water', Seminar, London. September 29, 1983. 5. C. H. Bayly, P. P. Griggs, Gaffney Cline & Associates: Market Prospects and the UK Gas Balance', SPE13010 1984 European Petroleum Conference. London. October 22-24, 1984.
ce ra te HYDRAULIEK VOOR
K O M P L E T E , B E D R IJ F S Z E K E R E A A N D R IJ V IN G E N
Een kom pleet program m a hydrostatische aandrijvingsapparatuur, zowel in m iddel- als hogedruk, voor: • boegschroeven
• roerverstellingen
• lier- en hijsinstallaties
• laad- en lospom pen
• generator-aandrijvingen
• stabilisatie-inrichtingen
eigen projekt- en ontwikkelingsbureau *
eigen aggregatenbouxv, aangepast aan klantenspecifikatie, kompleet met besturings- en regelapparatuur (P .L .C .)
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
31
n
h a n d e lm ij
I V ROESTVRIJ B.V. UIT VOORRAAD HELMOND LEVERBAAR rvs. gelaste en naadloze buizen rvs. naadloze in stru m e nta tie en hydrauliekbuis rvs. m achinepijp rvs. gelaste en naadloze fittin g e n
-
rvs. BSP fittin g e n rvs. 3000 Lbs fittin g e n in NPT/SW rvs. Flenzen volgens DIN en ANSI a lum inium flenzen
ROESTVRIJSTALEN SNELKOPPELINGEN u itvoering volgens MIC-C-27487 BSP draad 150 Lbs draad volgens DIN 2999 afdichtingsring BUNA N k w a lite it 316 roestvrijstalen hendel, pin en ring
ROESTVRIJSTALEN SNIJRINGKOPPELINGEN w e rkd ru k to t 630 BAR uitvoering volgens DIN 2353 BSP draad k w a lite it 316 Ti (W erkstoff Nr. 1.4571) k w a lite it 254 SMO op aanvraag
Handelmij ROESTVRIJ B.V. Vossenbeemd 109 5705 CL Helmond 32
Postus 1111 5700 BC Helmond
Telefoon 04920-46555 Telex 59208 rvry Telefax 04920-33922
We’re always in the picture with our flock of five free companies Near Rotterdam, only 12 miles from the North Sea, downstream of locks and bridges Vlaardingen Oost Shiprepair Yard guaran tees instant service to vessels of any type. Unique in the Benelux, Vlaaringen Oost Anchor & Chain Factory manufactures and offers repair, reconditioning and testing services. On site the shiprepair yard, the joint venture Van Voorden-Vlaardingen Oost PropellerRepairstation repairs and reconditions for energy saving of modern vessels. Vlaardingen Oost Techno-Diagnosis is innovatory in techniques and electronics of diagnosing of enginesand installations, load surveillance and fuel control (Reveal). With strongholds on the two banks of the Rotterdam Waterway Vlaardingen Oost Maintenance & C onstruction serves both industrial and harbour clients.
Techno L»at ring system lifting capa( H e e re m a s
p
vlaardingen oost bedrijven
S chiedam sedijk2,3134 KK Vlaardingen, P.O. Box 47,3130 AA Vlaardingen, Holland Tel. (010) 434 27 44, Telex 22119 Telefax (010)434 08 87 SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
33
all-round in dieselpower
G.M. Detroit Diesel motoren staan in de wereld bekend om hun kracht, betrouwbaarheid en levensduur. Baan Hofman Diesels biedt G.M. gebruikers: Ontwerp • Samenbouw •In bedrijfstelling • Training • Garantie «Onderhoud • Reparatie en revisie • Onderdelen voorziening. SNEL - EFFICIËNT . . . EN ZEER CONCURREREND.
baan fl hofman Kdiesels distributor detroit diesel allison
Avelingen Wtest 15 - 4202 MS GORINCHEM - HOLLAND Telefoon 01830-34400* - Telex 24598 bhd
34
Fatigue Analysis - Offshore Structures* by: C. A. Bainbridge M. Sc.** SYNOPSIS Fixed steel platforms have been operational in the UK waters of the North Sea since 1966. Although there have been a few reported fatigue cracks, most of the member damage has been due to boat impact and dropped objects. The experience to date, the effect of existing design codes and the new Department of Energy guidance notes, particularly with regard to fatigue, are reviewed. Complex fatigue analyses by their nature must always be regarded as second line checks and the fundamental basis of a successful design is sound initial static 'strength' criteria, ensuring adequate fatigue life over the greater majority of the structure prior to any further analyses on selected areas. INTRODUCTION Nineteen years ago, the first steel platforms were installed in the Southern North Sea and within five years of that time oil platforms were being designed for the deeper waters and harsher environ ment of the Northern North Sea. Prior to 1970, most of these platforms were designed essentially on strength criteria only, based on existing Gulf of Mexico technology. The early discovery of cracks on some mobile drilling units and southern gas platforms led to a greater emphasis being placed on fatigue, which is nowadays recognized as being an important consideration for all offshore designs. This paper reviews the analytical design evolution that has occur red towards improving the resistance of these structures to fatigue in the light of service experience. THE STRUCTURAL PROBLEM The development of most offshore fields includes the requirement of a dry stable platform where drilling, production, flaring, storage, living quarters, personnel and material movement or combinations of all these operations can be effected. At a particular location this platform must be at a certain height above the water level, so that there is sufficient air gap to allow the free passage of the extreme storm waves without impact. The presence of the deck and equip ment gives rise to gravity and wind forces. A lattice steel structure can be designed to transfer all these forces down to the sea bed and thence into the soil by piles. This structure itself picks up wave and current loadings, which are considerable and additive. Depen dent on the water depth, several horizontal levels of framework must be provided to assist torsional rigidity and prevent warping of the external frame. Even at this stage of design several nonstructural elements must be added to protect the structure, e.g. boat landing fenders, sacrificial anodes etc., which add further loads. Except for quarters platforms, the product (oil or gas) must also be brought up to and after some processing taken from the platform. Depending on the number and size of these conductors and risers the additional lateral forces due to wave and current action can be significant (Table I). The conductors are supported at each hori zontal level by frameworks which transfer their loads into the external shell framing. These horizontal framings themselves contribute further to the overall loading. Only lateral forces are transferred from the conductors, which can slide vertically through guides at each level (Fig. 1). Generally, cylindrical members are used to keep drag forces low, but the shape of the conductor guides produces large drag coefficients especially in the vertical direction. The three-dimensional space frame described above is built onshore and will be subjected to local lifting forces at various stages during fabrication or when the completed structure is lifted or skidded onto a transportation barge. Members may be added to provide a launch frame lining up with the skid rails on the barge. On
larger jackets, which overhang the barge across the beam, additio nal members will also be provided at the levels of horizontal framework. During transportation, the structure is subjected to motions and forces dependent on its mode of support and the environmental conditions encountered during tow. This design condition can be critical for many members in the platform (Fig. 2). Near the final location the jacket is launched and subjected to dynamically induced forces, which vary throughout its trajectory to the sea bed. Lifting equipment may also be used to assist uprighting thereby imposing local hook loads. Throughout submergence, non flooded and partially flooded members will be subjected to hy drostatic pressures. Even when finally on the sea bed there is a short period of time before piling commences and local loads are imposed by the mud mats resting on the sea bed and any additional ballast provided for on-bottom stability. The structure will be subjected to about 5 x 106 waves every year Fig. 1: Horizontal levels/conductor guide framing
Elevation - 2 0 m
Paper presented to the Institute of Marine Engineers London, Oct. 8, 1985.
Elevation -6 .1 m
Senior Principal Surveyor to Lloyd's Register of Shipping London.
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
35
Table I: Percentage of total jackel wave loads on non-structural elements
Platform A B
C D E F
G
No. of conductors
No. of risers
Wave loads on conductors/ risers (%)
46 34 20 25 40 0 35
20 30 30 22 16 36 35
32.4-37.3 32.1-33.4 14 -22.6 34.4-36.9 41.5-45.2 19 -21.9 37 -38.8
for the 20-25 years lifetime of the field. During this period further additional loads will be imposed by the effect of marine fouling on the members, increases in deck weight, boat impact, dropped objects etc. The structural problem to be solved has been outlined to illustrate how the initial straightforward objective has gradually grown in complexity to cover a range of different requirements, in many of which fatigue plays little or no part. STATIC STRENGTH Applied loadings The basis of the engineering design of an offshore structure starts with effective static strength criteria. The principal factors affecting the loading on the structure on location are those due to environ mental phenomena (wind, waves, current, earthquakes, snow, ice and earth movement), 'dead loads' (the weight of permanent structures and equipment and hydrostatic pressures), 'live loads’ (the weight of non-permanent structures and equipment) and other operations imparting loads of a temporary nature (crane usage, derrick loads etc.). Environmental factors contain the most indi vidual variations, e.g. waves, extreme storm heights and most probable periods, steepness, directional spectra and wave height exceedence probabilities; current, extreme velocities, directional occurrences and profile with depth; marine growth, accumulation and depth variation; water depth, astronomical tides and storm surges. To these variations must be added the probabilities of the combined occurrences of these phenomena.
Fig. 3: Member local wave loadings Wave forces are the most significant because of their magnitude and their cyclic nature. These oscillatory forces induce vibration of the structure and when the frequency of excitation is close to the natural frequency of the structure large dynamic amplifications are possible. However, for platforms with natural periods less than three seconds the wave and current loads are represented staticalHeight above m udline (m ) 200
Level 1
I 6.35!
Still w ater level 175
34.355
Level 2
150
20.955
Level 3 125 13.85!
Level * 100 8.65!
7 5 - Level 5
8 .05!
50 Level 6 25 -
8.155
0
Level 7 5000
10000
15000
200 0 0
25000
H orizo nta l Shear (kN)
Fig. 4: Jacket wave horizontal shear distribution
36
300 0 0
OFFICE ROTTERDAM: Van der Takstraat 72 3071 LM Rotterdam Tel. (010) 4125439/4125451 Since 1965 THE BEST FIRM TO SOLVE ALL YOUR FILTER PROBLEMS LUBRAFIL FILTERTECHNIEK ROTTERDAM 24 hours service 7 days a week.
Correspondence P.O. Box 174 3200 AO SPIJKENISSE
Schreven wij in het vorig ’Speciaal’ van dit tijdschrift uitvoerig over de filters aan boord van het ms. ’Koningin Beatrix’ met name BOLL & KIRCH-filters, thans willen wij wat meer aandacht aan ons zelf besteden. LUBRAFIL BV in 1965 gestart, kan zich na ruim 20 jaar wel tot de leveranciers rekenen met een ruime ervaring. Daar vanaf het begin ons doel is geweest een zo groot mogelijk assortiment van mer ken te voeren mogen wij nu wel zeggen hierin te zijn geslaagd, zonder een enkel ander merk te benadelen. Steeds stond voorop dat alleen met kwaliteit-produkten resultaten kunnen worden bereikt en dit is tot heden nog steeds ons doel. In het filterprogram van LUBRAFIL zijn diverse mogelijkheden aanwezig b.v. voor waterproblemen in de brandstof bij kleinere motoren. Hiervoor bieden wij de oplossing die men wenst: plaatsing in de zuigleiding of in de persleiding. LUBRAFIL kan hiervoor de juiste filterhuizen en/of elementen leveren, ook voor hoogtoerige motoren als G.M., CATERPILLAR, MERCEDES, SCANIA, SAAB etc. Voor alle motoren leveren wij alleen gerenommeerde merken van naam met lang jarige ervaringen. Voor minder hoogtoerige motoren aan boord van zeeschepen, zowel hoofd- als hulpmotoren welke gebruik maken van zware brandstoffen hebbben wij de juiste filters in ons program, eveneens voor het smeerolie-systeem. De door ons te leveren merken vindt U onder aan deze bladzijde vermeld. Tevens, zijn wij verkoop- en service-depöt van BOLL & KIRCH-filters. Hiervan hebben wij een grote hoeveelheid van onderdelen in voorraad. Voor de (AUTOMAAT) filters van dit merk is een ervaren monteur aanwezig. In de grote zeehavens is het immers van groot belang dat, indien nodig, snel kan wor den geleverd of een storing kan worden verholpen. Tenslotte ons advies: Beter goede produkten kopen dan goedkope namaak welke alleen extra kosten aan pompen, verstuivers etc. veroorzaken. Ons telefoonnummer is: 0 1 0 - 4 1 2 5 4 3 9 - 4 1 2 5 4 5 1
C A T E R P IL L A R ORIGINAL ENGINES PARTS
ORIGINAL BOLL & KIRCH SPAREPARTS REPAIR SERVICE
VOKES ORIGINAL FILTER ELEMENTS
AC/Delco - Arlon - Bosch - CJC- Crosland - Cuno -Donaldson -Facet - Fairy - Fleetguard Fluidtech - Fram - Hengst - Knecht - Luberfiner - Mann - Pall -Purolator - Racor - UCC - Viledon - Winslow/Nelson
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
37
VERIO STAALKABELS EN tro s s e n ; MISSCHIEN WEL________ DE BESTE TER WERELD...
VERTO ST A A LK A B E L BV V erto Staalkabel b.v.
Postbus 4090, 2980 GB Ridderkerk Holland Telefoon 01804-19944 - Telex 28741
38
ly. Local member loads are a function of the member position and orientation, non-dimensional drag and inertia coefficients, dia meter, wave height/period and water depth. From these parameters the wavelength and the local water particle velocities and accelerations may be calculated by several avail able wave theories, the most common of which is the Stokes fifthorder gravity wave theory [1], Loads are evaluated using the Morison equation [2] with drag coefficients (0.6-1.0) and inertia coefficients (1.5-2.0). The variation of maximum local wave load ing with water depth for a single typical member (Fig. 3) clearly shows the exponential decay from the surface to the sea bed. When considering an actual North Sea jacket, 55% of the total wave horizontal shear (Fig. 4) and 90% of the vertical force (Fig. 5) comes from the upper third of the subsea structure. In other words, the majority of the cyclic forces are applied to the members in this local area, the lower bracings and legs transferring these global loads down to the sea bed. Internal loads and stresses are com puted using advanced finite element analysis techniques [3], and the availability of large-core computers has made the modelling of steel jackets relatively straightforward, each phsysical member being represented by one or more finite elements (Fig. 6). This view shows the vertical and horizontal framings and idealized deck. The additional launch truss members can also be seen in frames (a) and (b). Allowable stresses The most widely used publication for the strength allowables of tubular members in offshore jackets is the American Petroleum Institute Recommended Practice for Planning, Designing and Constructing Fixed Offshore Platforms (API). First issued in Octo ber 1969, the fifteenth edition was published in October 1984 [4]. Three separate strength criteria are set for tubular members: 1. Allowable stresses must not be exceeded at the ends and at all intermediate positions. These stresses arise from bending, beam shear, combined bending and axial load and hydrostatic pressure, and are limited if overall or local buckling tendencies prevail. In H e ig h t
obove m udline (m ) 200-
3 7 .9 K I
Level 1 Still w ater level
175-
33.0%
Level 2
150
17.7% Level 3
general, two levels of allowable stress are imposed, a basic allowable for operational conditions and an increase of one-third above this value for extreme design storm conditions. 2. Member end connections 'should develop strength required by design loads but not less than 50% of the effective strength of the member. The effective strength is defined as the buckling load for members loaded in either tension or compression, and as the yield load for members loaded primarily in tension’ (API). 3. Joint strength. Before addressing this last point it should be emphasized that the approach is based on the design philosophy
125 7.2%
Level 4
100 3.9% 75
50
Level 5
1.5% Level 6
25
(->1.2* Level 7 1000
2 00 0
3000
4 000
5 00 0
6 000
V ertical Wave Force (kN )
Fig. 5: Jacket wave vertical force distribution
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
r = t/T, ß = d/D, y = 0/2T, a = 1UD, £ = g/D
39
that the joint, being more critical, should be of greater strength than all the individual members (chords and bracings) comprising it. Tubular joint strength Tubular joint strengths are based on test data and are dependent on the geometrical parameters (Fig. 7) and method of loading (Fig. 8). Several methods of failure have been observed: local postbuckling plastic failure of the chord, gross separation of the brace from the chord, brace buckling and global bending with shear failure in the chord. For most joints, complex interactions of these failure modes occur and empirical strength formulae have been developed to cover the large range of geometrical parameters, as shown in the histogram for 19 494 brace/chord intersections on 36 North Sea platforms (Fig. 9). Naturally, the test data base is small compared with the variations shown above and this has led to a large number of different interpretations, most of which involve slight modifications to earlier editions of API. As indicated previously, the strength of tubular members is gen erally dictated by allowable stresses, but joint strength is defined by and limited to allowable brace load. There is nevertheless and interdependence between joint strength and chord strength, be cause the chord allowable stresses appear in the calculation of allowable brace loads. For simplicity all the formulae (API) are expressed in terms of effective allowable brace stresses, the joint classification and the geometrical parameters (see Appendix). Even for simple joints the internal distribution of stresses is com plex. Considering the basic T joint, at low ratios of the brace-tochord- diameter, the axial load and in-plane and out-of-plane moments (Fig. 10) are all initially accommodated by local bending jackets of the chord. However, as the brace-to-chord diameter ratio (5 approaches unity, the chord local bending reduces and all load exceeds the nominal stress in the brace member. Once yield stress transfer is principally by shear. For intermediate values of ft there is at a point is reached, load shedding occurs to non-yielded areas. The connection begins to deform plastically but still continues to both shear and bending of the chord. For Y joints, since only loads normal to the chord axis are consi sustain increasing brace loads. Finally, at a load several times (2.5dered, joints increase in strength as the angle decreases. A further 8.0) that at first yield [5], the joint fails. Thus, a well detailed joint will increase in joint strength occurs as two Y brases form a K joint. In a possess, as far as static strength is concerned, sufficient post K joint the loads in the braces balance in the same plane on the elastic capacity to permit the redistribution of internal stresses same side of the chord and the net loads normal to the chord are regardless of the local elastic hot-spot stress. However, it is this zero. Local load transfer is by shear and local bending in the chord local hot-spot stress that is critical from the fatigue aspect. In a dependent on the gap between the braces. Further joint strength is linearly elastic system, failure would precipitate from this point and achieved for axial loads in the braces as the gap is reduced and the strength and fatigue would depend on the same parameter. With braces overlap. It must be emphasized here that even though the an elastic/plastic material such as steel, once yield is reached, effective joint strength improves, the member allowable stresses strain rates accelerate and the subsequent chord ovalization and at the ends for all classifications of joints remain the same, and bending deflections radically change the initial linear internal additionally the presence of any stress within the chord itself (chord stress distributions, utilization factor A) will reduce the overall joint strength (see also A major difficulty has always been the representation of strength variation with joint type and the whole range of possible geometri Appendix). Examination of each of the failure modes shows that tubular joints cal parameters. To ovefcome this, the joint strength for an axial have a large reserve capacity beyond the point of first yield, and the brace load for all simple joints according to API has been plotted in maximum stress over a local area at the intersection greatly Saddle
IPB - In-plane bending OP8 - Out—of—plane bending
Fig. 10: Simple T joint loading
40
Axial
AA de hoop groenpol AA marine and offshore engineers
for electrical, instrumentation and HVAC services you can ring the bell night and day
ACTIVITIES: New-building, manufacturing and repairs. New-building divisio n : Design and execution of complete electrical-, instrumentation- and automation systems on board of all kinds of sea-going vessels and offshore units. M anufacturing divisio n : Design and production of all kinds of switch boards, motor control centres, automation- and monitoring plants. Repair divisio n : Repair maintenance, renovation, conversion and modernizing of complete electrical-, instrumentation- en automation plants on board of all kinds of sea-going vessels and offshore-units.
De Hoop Groenpol Rotterdam bv 3087 AN Rotterdam 2-8 Willingestraat Telephone: (010) 429 52 00 Telex: 28220
poI?2iiT 5005 ISES member
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
Shop repair divisio n : Mechanical- and electrical repair facilities for switchboards, motor control centres, automationand monitoring panels incl. electronic- and pneumatic components etc. Facilities are available for overhaul, rewinding, impregnating, balancing and testing on all kinds of motors/generators, D.C. and A.C. Impregnating is done by means of the modern ’Ayrodev’ process. The company offers 24 hrs. services, the field repair division operates world-wide. The main office is located in Rotterdam, the repair shops are located in both Rotterdam and Amsterdam. Branch offices and repair shops are stationed in the major Dutch ports and repair yards.
Oo d© ^ ^ p d
ol5*<4Y\°*e.! a sV*
zVa'*'a
Netherlands
When full control is vital only the best will do. Regulateurs Europa Regulateurs Europa supply a unique control system package that will not let you dow n when the going gets rough.
project from design, through quality controlled production and testing to installation and com m issioning.
Regulateurs Europa o ffe r a com plete service fo r y 0 p u t y o u jn control and keep you in control, we naval and com m ercial vessels. W e supply provide a com prehensive field service back-up, governing system s or individual governors for the spares supply, custom er training facilities and world's leading diesel engine and steam turbine continuous operational support, builders, as well as control system s for propulsion or generating plant on vessels worldwide. O ur W hen full control is vital you will be pleased you expertise enables us to m anage the com plete chose Regulateurs Europa. Send now for full details o f the products and services available.
REGULATEURS EUROPA LIMITED
St Leonards Works COLCHESTER ESSEX ENGLAND C01 2NX Telephone 0206 579556-8 Telex 98438 RELTD.G. Fax No. 0206 577869 REGULATEURS EUROPA B V.
Energieweg 8 RODEN HOLLAND Telephone Roden 05908 19888 Telex 53672
42
T-Jolnt
(90Deg)
In
-
PI«no
Loading
T—J o i n t
4
^3.5 2
3
\2.5 v oMS 2 31.5
o
z
» .5
PIane
0 K-Jolnt
(45Deg)
Qg
■
Load Ing
T -Joint
1.8
Fig. 11: Equivalent brace stress, axial loads (API) 0.1 « ƒ? « 1.0, 10 « y *= 40 terms of all the effective geometric parameters (p, y, t) for different values of the chord utilization factor A on a consistent horizontal sliding scale to allow interpolation between all intermediate values (Fig. 11). The values in the plot relate to the extreme storm condition and thus embody an increase in allowable stress; in other words, the axial brace nominal stress is limited to 0.8 times the yield stress. The increase in effective strength from a T joint to a 45°Y joint and then a 45°K joint is clearly shown. Note also that for certain geometric parameters and low chord nominal stresses, the joint can absorb several times the yield load in the brace. In the same mannertheT joint strengths under in-plane and out-ofplane bending moments (Fig. 12) show joint strengths well in excess of equivalent yield stress in the brace. For Y and K joints the effective allowable is increased by 1/sinB. For bending the max imum extreme stress allowable in the brace is 0.88 times the yield stress. It is significant that even with the chord working up to its own maximum stress allowable, e.g. with A = 1, many joint strength allowables, especially for the K joints, were effectively well above yield in the brace. On the other hand, when chord and brace thicknesses are equal, the joint strength tends to be the critical feature. Comparison of strength requirements Even though based on essentially the same test data base, the recently published ’Design of Tubular Joints for Offshore Struc tures’ (hereafter referred to as UEG) [6] tends to downgrade joint strength particularly because of the presence of nominal longitudi nal stress in the chord. Blanket plots for the ratios of the strength of simple tubular joints required by the two publications (API and UEG) are presented (Fig. 13) using the strength equations in parametric form (see Appendix). Chord utilization factors greater than 0.5 could not be plotted on the same scale as ratios of 25 and
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
Fig. 12: Equivalent brace stress, bending loads (API) 0.1 =sr 0 s? 1.0, 10 ^ y « 40 above resulted. In fact, for combinations of increasing A and y, the UEG formulae became invalid, followed closely by the API for mulae. At a conservative estimate there must be well over one million joints in offshore platforms worldwide designed to API criteria, and although there have been several member failures attributable to other causes [7], there is little overall offshore service experience to substantiate the degree of down-rating recommended. In the Southern North Sea fields individual waves have been measured with heights up to 75% of the maximum design value, and it is more likely that platforms have actually experienced waves of greater height than this. FATIGUE Background The sizing of members and joints for a single extreme event will provide some fatigue life. However it is necessary in design to ensure adequate life against fatigue failure. Initially the static and cyclic conditions can be narrowed by adopting the additional requirements of API for typical shallow-water structures. These impose a further limitation on peak nominal stress due to design environmental loadings. This approach can also be a useful first step for structures in deeper waters or frontier areas. Nevertheless it will be appreciated that the development of the design of a structure from the initial concept can be protracted and is governed by the knowledge and experience of the designer. An example which illustrates the problem facing the designer is the Shell Cognac platform in 300 m of water in the Gulf of Mexico. Simplified fatigue analyses and contingency provisions were
43
Fig 13: Allowable joint strengths (API/UEG)
0.1 <s/3« 1.0, f 0 « y « 4 O made during the initial sizing of the members of this enormous and complex structure. It was anticipated that the final detailed fatigue analysis would not be completed before commencement of the fabrication of the structure [8]. The spectral fatigue analysis of a North Sea platform with 500 primary members involves the evaluations of the endurances at some 16000 locations requiring over 400 million calculations within the program [9], The accuracy of any single calculation of fatigue life is dependent on a number of parameters including the description of the wave climate, the directional spectra, the com plexity of the structural model, the selected drag and inertia force coefficients, the pile spring stiffness, the dynamic response, the hot-spot stress concentration factor (hot-spot SCF) and the re levant S-/V curve. The published literature on each of these para meters is vast. It is proposed therefore to concentrate on the last two, i.e. hot-spot SCF and appropriate S-N curve. Considering the allowable S-N curve, in some Codes reference is made to a factor of safety on the required life of a structure (e.g. factor of two on sen/ice life). This factor is arbitrary because the true relationship between the calculated life of a joint and the actual fatigue endurance in service is controlled by probable variations in the estimation of each of the parameters governing the cyclic loadings on the members, the peak strain ranges at critical loca tions and the interpretation of resulting cumulative damage. For the first gas platforms installed in the Southern sector of the North Sea in the 1960s, fatigue was not specifically considered and jackets were generally designed to API static strength criteria. However, some operators restricted maximum stresses to op erational levels and did not encroach on the additional one-third
44
increase allowed in the code for storm conditions. Subsequently some fatigue cracking on conductor frame levels occurred just below the mean water line and replacement conductor frames were fitted with local reinforcement. Gulf of Mexico experience is not readily available, although a recent publication [10] shows that this problem has not been confined to the North Sea ... at the-7.3 m level. The entire conductor bay support structure had broken loose from the main legs of the platform and their horizontal bracing.’ For the first Northern North Sea platforms designed in the early 1970s, fatigue analyses were carried out. The following significant steps in evaluation of fatigue lives for fixed steel jackets were taken within the Society in 1971: 1. The wave height exceedence curve for this sector of the North Sea was based on data published by British Petroleum [11]. 2. The procedure for assessing the life on the brace side of a tubular joint was based on early fatigue tests such as those per formed on tubular joints at Sheffield University. Use was also made of British Standard 153 curve F and a geometrical stress con centration factor of 2.8-3.0. 3. A table was drawn up of all factors affecting fatigue life at that time [12]. In addition a correlation study was made on known fatigue cracking on a semi-submersible. 4. A careful engineering assessment was made of each factor to ensure that the design would include assumptions which were neither totally conservative nor unconservative. Computer programs were formulated so that the lives of all relevant joints in a platform structure were appraised. Soon after assess ments had been made of a number of structures using the prog rams, the Society was criticized publicly for pessimistic' reports on new designs of structures. It was alleged that the Society estimated the fatigue lives of some joints as an order of magnitude below those of the designers. It was clear that the principal causes for the differences lay in the treatments of the hot-spot SCFs of tubular joints and the associated allowable S-N curves. Immediately afterwards the Society held meetings in London with Mr. P. W. Marshall from Shell Houston. All available data on the fatigue of tubular and other types of welded joints were analysed to prod uce a hot-spot strain range against number of cycles allowable design curve. Marshall reffered to this as the Lloyd’s allowable design curve and it formed the basis of the AWS and the Department of Energy requirements. It was also agreed at the meetings that when appropriate the 'punching shear' S-N curves developed by Mar shall could be accepted as an alternative. Thus the first actions were taken to standardize the procedure for the calculation of the acceptable fatigue life of a joint in a real structure. Lloyd's Register implemented forthwith the agreements and instituted a research project to quantify the hot-spot SCFs for ranges of different types of tubular joints. At the same time the Department of Energy was informed that fatigue tests should be made on the larger sizes of welded tubular joints, more representative of actual constructions, to establish fully the validity of the S-N curve. A hot-spot strain range against number of cycles allowable curve should be used in conjunction with specified hot-spot SCFs cover ing the different geometries of the tubular joints used in design. Unfortunately there are no agreed standard factors. Lloyd's Regis ter prefers those attributable to Wordsworth and Smedley. The implications of this decision will now be considered. Stress concentration factors The stress concentration factor at any point on a tubular joint will be dependent not only on its loading and geometrical configuration but the position of all bracings forming the joint, irrespective of whether they are loaded. The finite element model (Fig. 14) was developed for a particular North Sea joint which had suffered fatigue damage. The mesh consisted of 4500 elements and an equivalent number of nodes. Processing time on an IBM 3081 KX
Levering van: A chte rste ven sekties. C o m p le e t b e w e rkte hennekoker sekties. A lle typen roeren. Licentie v o o r het oplassen van Roerkoningen m et R oestvrij stalen slijtlaag. Draaicapaciteit t o t 6000 mm lengte en 0 1000 diam eter. S ektiebouw - co nstru ctie w e rke n. Mangatringen - Straalbuizen t o t 0 I 500 inwendig.
t
<>
v
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
45
Niestern Sander bv
SCHEEPSREPARATIE- EN NIEUWBOUWWERF
Scheepsnleuwbouw AMe soorten zee- en binnenschepen, sleepbo ten, suppliers, speciaalschepen etc.
Scheepsreparatie Onderhoud en reparatie van zee- en binnen vaartuigen, motoren reparaties etc.
Nieuwbouw Know-how, reparatie-aanpak en toepassing van meer dan 100 jaar ervaring garandeert de realisatie van de meest ingewikkelde verbouwingen, verlengingen, grote reparaties enz. binnen de kortst mogelijke tijd en tot volle tevredenheid van de opdrachtgever. Tim m erwerk alle reparaties, in- en verbouw, complete betimmeringen.
Niestern Sander bv
Ook voor industrie- en particuliere opdrachten.
DELFZIJL E em skanaal NZ 8 P.O. B o x 108 9930 A C -D e lfzijl 46
Tel. 059 6 0-17 9 79 * T e le x 53932 N isa n n l * *(A II d iv is io n s )
In-Pi in* Loading Fig. 14: Com plex joint, finite elem ent m odel
computer for this single analysis was over two and a half hours, so this approach cannot be realistically applied to every joint in a jacket. As with static strength, parametric formulae are therefore used to calculate stress concentration factors (SCF) for the range of geometrical parameters and joint types. Even though the fatigue life varies inversely with the SCF to the power of at least 3, the Department of Energy Guidance Notes [13] do not specify the parametric equations to be used with their published joint S-N curve, and so a study was conducted to quantify the fatigue lives calculated both from the Wordsworth/Smedley [14] and Kuang [15] formulae. The former are based on acrylic model tests while the latter are computed from finite element analyses and are the most widely used for platforms in the UK North Sea. The Kuang equations relating to the brace SCFs have been modified for outer surface stresses rather than mid-plane stresses [16]. Both sets of formulae are valid over different ranges of geometric parameters so the blanket plots shown in Figs 15, 16
*
Fig. 16. T joint fatigue life factor
In-Clinf Loadin§ t'D “ I
O u t - o f - P i ana Load
Fig. 15: K T jo in t fatigue life factor
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
Fig. 17. K joint fatigue life factor
47
Table II. Range of validity for geometric parameters Parameter |1“ Y T
e a g/D
Words worth/ Smedley
Kuang
Common
0 .1 3 s (i£ l.0 12svs32 0 .25sts1 .0 3O“:s0:s9(r 8sors40 0sg/D <2
0.3sfls0.8 8 s y s 33 0.2s t s 0.8 3Or's0s9O ' 7sas40 0.01sg/Ds1.0
0.3sf}s0.8 12sys32 0.25, 05. 0.75 45° and 90° 20 and 40 0.01 and 1.0
For out-of-plane bending, 0.75 is the maximum value for [1 . Therefore, 0.3 « p « 0.7 was run for common range.
and 17 have been restricted to the common range (Table II). The SCFs for both the chord and brace sides were computed and the maximum values for both compared to produce a fatigue life factor, i.e. (Wordsworth/Smedley SCF)/(Kuang SCF) to the power 3. For axial loading Wordsworth/Smedley quote SCFs not only for chord and brace sides but also for crown and saddle points for each side. Therefore all four SCFs were calculated and the maximum value taken. Note that for the majority of configurations the Kuang formulae produce lower SCFs or higher calculated fatigue lives, the most significant difference being for multiple braces with out-of-plane bending moments, consistent with some of the fatigue failures reported in the North Sea [12], It must be emphasized that Kuang does not give specific formulae for K and KT joints under out-of plane bending. It is the use of V formulae for this type of loading that is referred to here. In general, for all types of loading the highest SCF occurs in the brace side when the chord is four times the brace thickness and in the chord sides as the brace thickness increases in relation to the chord. However, for T joints, and Y joints subject to axial loading, Wordsworth/Smedley predict the highest SCF in the chord side even when the brace thicknesses are small. Of particular interest is out-of-plane bending. Both API and UEG strength formula and Kuang SCF treat Y and K joints [17] as equal, yet for equal sign moments on both braces of a K joint the Wordsworth/Smedley SCF is increased and the fatigue life re duced, particularly for low gaps and KT joint braces (Fig. 15). It can be argued that a well designed joint with good strength characteristics will also have low stress concentration factors and that parameters effecting joint strength, such as the presence of chord stress, will also effect the fatigue life. Even though the trends are obviously present (Fig. 18) these are distorted by the plastic yielding at the joint. It is evident that more attention must be paid to the influence of loadings on chord members on the hot-spot SCFs at brace connections.
Fig. 18. T joint strength and SCF. axial toads
48
S-N curves The 1972 edition of the American Welding Society AWS Code D [18] was the first recognized standard to quote requirements incorporating allowable endurance curves (hot-spot strain range against N curves) for the design of tubular joints against fatigue failure. As shown in Fig. 19, the later allowable endurance XX curve of API for example was similar to the Q curve in the 1977 edition of the Guidance provided by UK Department of Energy. Application of the XX curve to the design of tubular joints necessitated the use of reliable hot-spot SCF’s and a cumulative damage ratio [19] not exceeding 0.5 (ie a factor of safety of 2 on the service life). These allowable curves (XX and Q) were derived from fatigue tests to failure on relatively small specimens and were lower bound values. The 1984 amendment to the UK Guidance contained the modified T (basic) allowable S-N relationship (Fig. 19). The following changes had been effected: 1. Between 40 000 and 10 million cycles, the inverse slope (log N against log S) was reduced to 3.0. 2. From the fatigue test data on small and large welded tubular joints, the failure condition was now a crack which penetrated the relevant member. 3. The allowable endurance was the mean minus two standard deviations of the selected test results; the resulting allowable S-N curve was used in conjunction with a cumulative damage ratio equal to unity. 4. A correction for thickness was quantified. 5. While the application of the T cun/e to the design of an actual tubular joint demanded the use of an appropriate hot-spot SCF, the Guidance Notes did not specify any preferred and consistent series of SCF's. As shown later in this paper, the omission is a serious weakness in the application of the Guidance. Figure 19 shows that the T curve crosses the earlier Q curve (the exact cross-over is dependent on the thickness of a member of the tubular joint). The effects of the change of slope are a relaxation in the allowable at lower endurances and an increasing penalty at higher endurances. Service experience indicates that fatigue frac tures of structural members have had serious consequences to mobile offshore units. Peak fatigue damage in members (connec tions and attachments) of such units is in the lower cycle range. Preference therefore is for a specified factor of safety on endur ance for the original Q curve. This alternative would have retained a higher factor on life for a member of a mobile unit and cover at the same time for the higher endurance appropriate to a fixed tubular structure of a platform that has in any case inherent redundancy. The T (basic) curve relates to a chord thickness of 32 mm. Neglecting the change of slope of the T curve above 10 million cycles, a reduction in chord thickness to 22 mm will increase the
PINTSCH BAMAG VERKEERSTECHNIEK Kust- en kanaalbebakening; schijnwerpers, bakens, boeien, solar lichtboeien, betonningsystemen
AM
K o » * ' Y , k-
STROMAG AANDRIJFTECHNIEK Elastische koppelingen, mechanische kopelingen, elektromagnetische veerdrukremmen, eindschakelaars. Transmission Engineering
PINTSCH BAMAG AANDRIJFTECHNIEK elektromagnetische koppelingen en remmen, elektromagnetische zeewaterbestendige veerdrukremmen.
Vraag uitvoerige documentatie of informatie bij: Double-Disc Safety Brakes
Koppelingen voor elke aandrijving - uitgekien de navigatiesystemen SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
Stromag Lageweg 10, Postbus 524, 2220 AM Katwijk Z.H. Tel. 01718-2.37.11, telex 39304
49
FRiïililCO3V
Postbus 65, 9250 AB Bergum. Telefoon (05116) 1524 / 3839 Telex 46634 K.v.K. Leeuwarden 29365 Bank: NMB Leeuwarden rek.no.: 67.81.12.843 Giro v.d. bank: 82.45.66
• SCH EEPSBETIM M ERIN GEN FR ITIM C O
een d yna m isch b e d rijf, w aar in z e t en vakm anschap va n z e lfs p re k e n d z ijn .
FR ITIM C O
le ve rt u its lu ite n d va kw e rk w at aan de laatste w e tte lijk e eisen v o ld o e t.
FR ITIM C O
le ve rt v a kw e rk aan de scheepvaart, z o w e l riv ie r- en p le zie rva a rt, als zeevaart en o ffs h o re .
FR ITIM C O
m aakt m e t z ijn m o d e rn e m a ch in e p a rk c o m p le te s c h e e p s b e tim m e rin g e n in c l. m e u be ls.
FR ITIM C O
v e rz o rg t o o k de m ontages van to e g e le v e rd e b e tim m e rin g e n aan b o o rd van schepen e .d .
• SCH EEPS EN JA C H T B O U W FR ITIM C O
b o u w e r van h et s p ie g e lk o tte rja c h t (zie a fb e e ld in g ) m e t een le n gte van 14,5 m e ter.
FR ITIM C O
gesp e cia lise erd in het b o u w e n van scheepscasco's to t een le n gte van 30 m e te r, z o w e l in staal als in a lu m in iu m .
FR ITIM C O
gesp e cia lise erd in h et b o u w e n van scheepssecties, d e k h u iz e n en a nd e re o n d e rd e le n t.b .v . de sch ee p s b o u w en o ffs h o re -in d u s trie .
Voor nadere informatie of advies kunt u kontakt opnemen met bovenstaand adres. Onze adviseurs staan u gaarne te woord.
50
Tabel IV. Flat plate, slopes of S-N curves
Thickness (mm) 16 25 38 50 75 100
Fig. 20. Tubular joint fatigue test results design life of a joint by 32%; an increase in thickness of 100 mm will reduce the life by 57%. The questions of importance are: 1. For tubular joints is there a true thickness effect on fatigue endurance? 2. Is the thickness effect governed solely by the thickness of the chord member? Thickness effect in fatigue Much of the test data relating to thick sections is of a confidential nature and therefore only published data can be referenced here. The most up-to-date document is the background report by a specialist Drafting Panel appointed by the Department of Energy [20], The data base comprises only 64 specimens with chord wall thicknesses varying from 16 to 75 mm. Fifty four of these speci mens were for 16 and 32 mm chord thicknesses. These data show a reduction in fatigue life with thickness, which is more significant if test results of earlier 6.3 mm specimens are included (Fig. 20). A marked feature of these curves is a clockwise rotation of the S-N curve as the thickness is increased (Table III). It can be seen that the average slope for the 16 mm data is approximately 3.3. If analysed as a single block of 38 specimens a slope of 2.9 would be obtained. On analysis of the data with specimens separated by loading conditions (axial, in-plane and out-of-plane), the three individual slopes are alle greater than 3.0. Tests have also been carried out in Japan [21] on 59 T joints quoting fatigue lives for initial and final joint failure. The results have been presented for two sets of chord wall thicknesses: T < 12.4 mm and 12.7 s T(mm) < 25. Regression lines on these two sets of data do not show a decrease in fatigue life with increasing thick ness. In fact the mean line for T < 12.4 mm lies below the mean line
UKOSRP
German
Norwegian
Average
3.75
387
3.8
3.6 3.1 3.95(PWHT) 3.2 2.9 3.03
3.1 3.2 2.9 3.03
for thicker joints for endurances below 1 x 105. Again as in the European data there exists a distinctive slope change from m= 4 .1 for T < 12.4 mm to m = 3.2 for 12.7 < T (mm) s 25.0, which is consistent with the order of slope change found in the European data. Therefore in trying to deduce a scale effect in the Japanese data, it is highly dependent on the exact number of endurances one samples. This relative slope change and reduction in fatigue life found in the tubulars has also been seen in cruciform and T butt connections. Data has been presented showing how S-N curves can change with specimen geometry [22]. For example, a plane plate where the thickness is not specified shows quite obviously improved fatigue performance over that seen in welded joints. The plane plate generally exhibits a slope component well in excess of 3 depending on the method of surface preparation. When a weld or welded attachment is introduced the fatigue life will reduce in a manner dependent on the type of connection. For example a transverse butt weld will exhibit appreciably improved fatigue performance than a longitudinally loaded fillet weld. The longitudinal fillet welded geometry will exhibit a slope of approximately 3 whereas the transverse weld, apart from showing improved fatigue perform ance, will exhibit a steeper slope. The factors likely to cause this reduction in latigue life when moving from plane plates to welded connections are an increase in the specimen's SCF accompanied by an increase in the tensile re sidual stress field at the weld toe. In effect they increase the rate of fatigue crack propagation. Once the residual stress field has reached the material yield stress one might expect the slope change to saturate itself and the subsequent reduction in life to be caused by an increase in the SCF. Similar trends have been experienced in T butt connections when a reduction in fatigue life occurs accompanied by a rotation of the SN curve to a slope of 3.0 (Table IV). If residual stresses are accentuating the observed size effects, then any process that can help reduce the level of these stresses will produce an improved fatigue life. The benefit one obtains from
Table III: Tubular joints, slopes of S-N curves
Thickness (mm) Japanese 6i 12; 16
25 32
UKOSRP
Dutch
3.2 Initiation 4.89 Axial 4.1Axial 3.7 IPB 3.6 IPB 4.1 Failure 4.1 3.7 6 « 1 .0 3.35 ; 3.206 = 1.0 3.74 311 4.1 Initiation 3.2 Failure 3.3
J
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
API 4.5
Average 4.1
5.4
3.3
Fig. 21. Stress range exceedence. North Sea joint
51
post-weld heat treatment (PWHT) is dependent on the level of mean stress. In general, the change due to PWHT produces an apparent negative thickness effect. For fixed steel offshore plat forms, the fatigue damage is more likely to take place at the highcycle/low-stress regime. The stress range exceedence curve for a typical joint in a North Sea platform (Fig. 21) shows that maximum damage for a 100 year spectrum occurs for wave heights between 1.5 and 3 m with peak damage (Fig. 22) at 55 N/mm2 at 2 x 107 cycles. Thus PWHT is likely to produce a significant improvement in life. The benefit is at least of the same order as that imposed by the thickness correction. An example of this is provided in Ref. [20], where results for 13 mm thick non-load-carrying fillet weld speci mens are presented. Clearly PWHT can enhance the fatigue
Stress Range N / m m 2
Fig. 22. Fatigue damage distribution, North Sea joint
endurance as well as the resistance to brittle fracture. In the USA it has also been appreciated that a decrease in fatigue life will occur if a welded connection is simply scaled up. In order to offset any reduction in fatigue strength API have set standards for control of the weld profile. For instance the API X'X' curve can be used on standard weld profiles and the XX curve applied to joints with improved profile (Fig. 19). As the thickness of a joint increases so does the degree of weld profiling, i .e. to shape the weld to blend gently into the chord and brace members will give increased fatigue life. It has also been shown by fracture mechanics [23], [24] that if a joint is scaled up with the weld angle remaining constant then a distinct reduction in fatigue is observed (Fig. 23). If, however, the weld toe angle is reduced with increasing plate thickness then this reduction in fatigue life can be halted, as indicated by the dashed line. Since fatigue cracks in welded structures tend to initiate at the weld toe it seems sensible to reduce the SCF at this location or to increase the leg length of the weld (i.e. provide compensation). Recent tests on non-load-carrying plate connections have not produced significant increases. In the Department of Energy's recent background document [20], the fatigue lives of tubular joints having acceptable profiles are compared with those having un acceptable profiles. There do not appear to be any discernible trends. This is probably a result of the insufficient difference between the profiles of the welds for the two groups of joints. An important result is from the 76 mm joint tested by the French which has a distinctive steep weld profile. Ratio of attachment size to main plate dimensions Investigations are being carried out into determining the effect of the brace attachment thickness on the 'thickness effect', but
ness
Fig. 23. Fatigue life variation with weld profile and thickness
52
unfortunately some of the latest results remain confidential. However, fatigue strength test results for fillet welded cruciform specimens varying both main plate and attachment plate thickness were first published in 1978 [25]. The reduction in fatigue strength (Fig. 24) for a 25 mm main plate with a 25 mm attachment to an 80 mm main plate with an 80 mm attachment is between 12 and 14%, whereas if only the main plate is increased with a constant 25 mm attachment the fatigue strength varies between - 4% and + 3%, dependent on weld length. In fatigue terms there is no change. It can also be seen that as the ratio of attachment plate thickness (t) to main plate thickness increases, the fatigue strength decreases. Yet most researchers persist with fatigue tests on cruciform and other types of welded joints with member thickness ratios approaching unity. Figure 24 also shows that for a cruciform specimen the size of the weld has a significant influence on fatigue strength irrespective of the ratio.
AIMSUL Levering van: handbrandblusapparatuur en verrijd bare eenheden: poeder- C02, BCF- en schuimblusapparatuur; brandslanghaspels en brandslanghaspelkasten; brandweermaterialen brandblusmiddelen: poeder, C02, BCF en schuimvormende concentraten; controle, onderhoud en reparatie van handbrandblusapparatuur en van brandmeld- en blussystemen.
WORMRLD FIRE SY ST E M S
T r a fn in g s ln s r itu u t
Ontwerp, fabricage, montage en testen van: automatische sprinkler-, deluge-, protectospray- en mulsifyre-instajlaties; pompsets en complete watervoorzie ningen voor brandblussystemen; grondleidingen met hydranten en af sluiters; schuimblusinstallaties; HALON 1301 -installaties, brandmeldinstallaties en complete brandbeveiliging, aange legd volgens de geldende voorschriften.
Ook het Trainingsinstituut Brandbestrij ding in Lelystad maakt deel uit van de Wormald Groep in Nederland, Hier wor den bedrijfsgerichte trainingen in brandbestrijding gegeven door een team van ervaren beroepsinstructeurs. Wormald Securffy (Nederland) BV stelt ervaren en gekwalificeerde brand wachten - on- en offshore - ter beschik king.
AIMSUL INTERNATIONAL NEDERLAND B.V. PLATINASTRAAT 14/POSTBUS 209/8200 AE LELYSTAD/TEL. 03200 - 40864
WORMRLD FIRE SYSTEMS (NEDERLAND) B.V. JUPITERKADE 1-2/2516 BS DEN H AAG /TEL. 070 - 474201
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
53
als u geen enkel risico mag lopen
...moet u contact opnemen met een produktspecialist Econosto heeft van die specialisten. Gespecialiseerd op uw terrein. Zodat ze u een juist en verantwoord advies kunnen geven, Onze produktspecialisten kunnen u alles vertellen over klep- en schuifafsluiters, kogelkranen of vlinderkleppen, verdeel kasten of S.O.S.-afsluiters, Maar Econosto heeft bijvoorbeeld ook specialisten op het terrein van de stoomtechniek, deskundigen die thuis zijn in de scheepsbouw en specialisten met tientallen jaren ervaring in de verwarmings- en luchtbehandelmgstechniek. Essentieel bij advisering is objectiviteit. Tenminste dat is de mening van onze produktspecialisten. Daarom heeft Econosto een breed en veelzijdig programma. Opdat wij kunnen kiezen uit verschillende alternatieven om in iedere situatie de beste aanbieding te maken.
!e c o n o-___________ sTO j V_________ het beste produkt op de juiste plaats
Zo ook voor wat betreft de appendages voor de scheepsbouw. Econosto levert het breedste programma dat beantwoordt aan de eisen die de markt - dus u (en de verschillende keunngsinstanties) - stelt. Een programma van wereldklasse. Direct uit voorraad. Econosto NV., Rotterdam, Tel. 010-4245600 Rotterdam, Amsterdam, Groningen, Enschede, Eindhoven.
<0.4 to
Chord Thicknoas (mm)
20 30 40
50 60 70 80 90
100 110 120
Tau/Chord Thickness 194 9 4 Jo in ts (N o rth Sea)
Fig. 25. Brace thickness/chord thickness range, North Sea platforms
From the above it is desirable that fatigue test data and code requirements relate to the parameters of joints of actual structures. A survey of 19 494 tubular brace/chord intersections in North Sea structures is summarized in Fig. 25. The trend is for the brace-tochord thickness ratio to decrease with increasing chord thickness. Since chord thickness alone does not control the ‘thickness effect' in fatigue, the Guidance of the Department of Energy does not present a true picture for the designer. At present, Lloyd’s Register is investigating by finite element techniques (Fig. 26) the effects of the thicknesses of members forming a welded joint, the size and angle of the weld etc. Results will be checked by tests on steel models and by photoelastic determinations. The objective of the research is to rationalize the criteria for design against fatigue failure. Other considerations in the fatigue of tubular joints The data base of fatigue tests on welded tubular joints is small and covers few of the configurations found in even a single structure in the North Sea. These limitations as well as the constraints imposed by the fatigue testing facilities demand that the result of each test must be rigorously investigated before reliable interpretations can be made. The following two cases are cited as examples. Example 1 For T joints with out-of-plane bending and p = 1.0, the data base for the Department of Energy drafting panel [20] excludes specimens below 6.3 mm thick while these are included by UEG. The results for the six specimens with (chord diameter)/(brace diameter) = 1, together with the Wordsworth/Smedley SCF and the proposed modification by UEG, are shown in Table V. Several points are worth noting: 1. The experimental nominal stress range is based on the mea sured nominal strain on the brace at points extrapolated to the
Fig. 26. FE model of bending test specimen
chord upper surface (crown). The hot-spot stress is taken as 1.1 (Department of Energy) or 1.2 (UEG) times the extrapolated measured hot-spot strain. From these two extrapolations the hot spot stress concentration factor is derived. 2. The Smedley/Wordsworth SCF's are critical for the chords on all specimens and for every case are higher than the experimental ly measured chord SCF’s. 3. All specimens failed in the chord. 4. In five out of the six specimens the maximum experimentally measured SCF was in the brace, which did not fail. The inclusion of the 6.3 mm thick specimens and the analysis of the 12 specimens prompted modifications to the Wordsworth/Smed ley formula giving an increased SCF for 3 = 1,0 and a reduction in life of nearly eight compared with the test results. Note that all codes allow an increase in joint strength for out-of-plane bending at the higher values of p. Example 2 The axial and in-plane bending FE series [26] contains the largest steel specimens with chord diameters of 1276 mm and chord thicknesses of 75 mm. In addition to poor weld profiles in the Table VI. SCF finite element and test results, 75 mm chord specimen
Table V: T joint, ß = 1 test results and calculated SCFs*
Measured SCF Specimen number
Free chord ends
Words worth/Smedley SCF
Chord Brace Chord Brace
Chord
Brace
Chord
Brace
Failure
Finite element French FE test French FE test Parametric equations
21/1 21/1 21/3
1.0 1.0 1.0
4.8 6.0 5.7
6.4 5.7 6.7
7.8(10.5) 7.8(10.5) 7.9(10.5)
5.9(7.9) 5.9(7.9) 5.9(7.9)
Chord Chord Chord
22/1 22/2 22/3
1.0 1.0 1.0
3.6 3.1 3.1
4.6
4.3(5.8) 4.3(58) 4.3(5.8)
3.7(5.0) 3.7(5.0) 3.7(5.0)
Chord Chord Chord
3.9 3.9
aBold denotes the maximum value and the values in parentheses are those recommended by UEG.
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
Fixed chord ends
Axial Inplane Axial
6.9 2.57
6.1 3.0
3.15 2.85 3.7 3.6
2.1 2.2 1.88 2.0
Inplane Wordsworth Axial Kuang Wordsworth Inplane Kuang
3.7 2.15 3.1 4.5
7.15 5.5 6.3 1.85 2.16 2.4
55
experimental set-up of the test models two 70 mm thick plates were welded to the chord ends and the ratio of chord length to chord diameter was only 1.567. Two boundary conditions were simu lated in finite element models (Fig. 27), one allowing the chord ends to ovalize and the other keeping them circular, representing the constraint of the end plates. The resukts are presented in Table VI and clearly demonstrate the effect of these end plates on the measured stress concentration factors and explain the large differ ence between the Wordsworth/Smedley calculated SCF’s and test results. THE FUTURE It is emphasized that in appraising the design of an offshore platform structure, the fatigue life of each joint is calculated by Lloyd’s Register using the latest available data and techniques. In service neither these structures nor any other of similar type has been a total loss as a consequence of fatigue failures. However, a few fatigue cracks have been detected in the conductor frame areas of a number of the large production platforms. These fatigue failures were similar to those in the earlier platforms installed in the Southern North Sea gas fields. The positions of the fatigue cracks in the conductor frame areas indicated failure by cyclic out-of plane bending and axial loads arising from vertical and horizontal wave loadings. The cracks were in T and KT joints and joints with overlapping braces. Isolated fatigue cracks are now being found in other areas. During 1984 three local fatigue cracks in main structural locations were found on three platforms. It is significant that only one of these defects was at a brace/chord intersection. The other two were in butt welds in horizontal brace members, one of which was at a position where the brace was blended to a thicker end stub (about 52% change of thickness). However, it is probable that both cracks were associated with initial faults during the fabrication is of the single-sided butt welds [27]. In all of the few fatigue cracks that have been found in structures, only one was in a thick chord member (50 mm), the remainder being in chords of lesser thicknesses. The only other damage, again in the upper third of the jacket, has been due to boat impact or dropped objects with no incident of static strength failure. The above must be viewed in the context of the many miles of welding at circumferential and longitudinal butt joints and brace/chord in tersections. It is apparent that substantial advances have been made in the design of welded tubular structures. The problems which have to be tackled urgently are the unification of Code requirements,
"r'f r-i®l ! mm }IH§1$ "■ t •; • ' r j A \ r J,. , f . vvv ^ -f » —r~ fi-j-I
s
-I >^7
* t t t
Fig. 27. FE models of French joint tests. Upper, free ends; lower, fixed end. Left-hand side, axial tension; right-hand side, in-plane bending
56
Fig. 28. Chord thickness histogram for 19 494joints on North Sea platforms
regulations and guidance, on a rational basis. Such action is vital not only to initial design but also to requirements for the periodic inspection of offshore structures. A further consequence of the new regulations concerns the inservice underwater inspection, which is expensive, hazardous and cannot be performed on all joints in every structure. For practical reasons, therefore, an order of priority is generally established, which includes those joints with minimum calculated fatigue lives. In a recent re-analysis of an existing North Sea platform for both the Q curve and the T curve with ‘thickness effect’, the three most critical joints for the former were all under 50 mm thick while for the latter these were replaced by other joints thicker than 50 mm [12]. Significantly, for this platform, joints with chord thicknesses above 70 mm were not among the most critical 12 joints for either fatigue curve. Of the 19 494 brace/chord intersections on 36 North Sea platforms previously considered, 10 845 have chord thicknesses greater than 32 mm (Fig. 28). Notwithstanding the above, the fatigue performance of North Sea platforms is continuously corre lated against the current Guidance Notes within the Society, in conjunction with and supported by the Department of Energy. CONCLUSIONS Since the early 1970s major advances have been made in techniques for the design of welded tubular structures. Yet to some extent the designer has been hampered in recent years by interpretations of research that have failed to provide answers to pertinent problems, and in some cases have departed from reality. There is a need in engineering to bridge the gap between research and practice. The designer should not be placed in a position of having to choose between different require ments of Codes and different interpretations of the same research data. Inevitably the result will not be in the best interests of safety and reliability in service. Design codes evolve by industrial practice and are gradually modified by the success or otherwise of service experience. This applies equally well to offshore structures. Extrapolation of code requirements to account for different environmental or operational conditions requires careful engineering judgement otherwise the delicate balance between the provisions for static strength and those for valid fatigue life will be upset. The former determine the basic scantlings of the structure while the latter impose modifica tions of varying degrees. If the balance is upset, the preliminary fatigue assessment during initial design will become more critical and tax the ingenuity of the designer. Much recent research on tubular joints has been confined to fatigue tests of simple forms (e.g. T, X and Y joints). Different interpretations of the results must be resolved by thorough and careful re-analysis of the data. More guidance must also be given to techniques and procedures which enhance the endurances of the joints. Such information must quantify the improvement in life. Although there is a need, based on service experience, to reassess the allowable static strength of some tubular joints, the main effort of future research must continue to concentrate on extending the
A well-run ship is an Electrolux ship. E le c tro lu x G a lle y
Our international experience and know-how is always available through our worldwide sales and service organisation.
A dependable galley is essential for smooth sailing. Electrolux hand les superior standards in designing and building kitchens that guarantee an efficient operation.
E le c tro lu x L a u n d ry Electrolux Laundries are planned, manufacturied and installed w ith the in terests of the crew and passengers in mind. Clean is clean, fast is fast and of course a ship's laundry should be reliable and economical.
Electrolux Industrie B.V. Weesperstraat 118, 1112AP Diemen Postbus 188, 1110BD Diemen Telefoon 020 - 5692911 /220, Telex 14489
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
57
Put your fleet on your d e sk. . . with the Sperry S atellite Communicator. Reroute that ship bound for Hong Kong to pick up cargo in Singapore. Check on the position of the vessel heading for LeHavre. And while you're at it, check the fuel consumption on the new tanker. In fleet management, costeffective decisions depend on fast, reliable communication. The Sperry Satellite Communi cator puts you in touch with every ship in your fleet in sec onds, anytime, day or night. With voice clarity that’s as good as your local telephone connection. Sperry’s Satellite Communi cator is a compact, light-weight, 58
communications system that can be readily installed on any ship. Passive antenna stabilization guarantees high quality commu nication in any weather and on highly maneuverable vessels. You can interface the Satellite Communicator with our ruggedized Sperry personal computer, or with any on-board computer, for cost-effective message and data transmission over satellite voice channels. Add a fax machine for high quality facsim ile traffic. Plug-in circuit boards in the electronics unit make it easy to expand your system.
The Sperry Satellite Communicator. . .whenyou need reliable, instantaneous, and secure communications between ship and shore. Between you and your fleet. Co ahead. Put your fleet on your desk_______________________ Contact: Sperry N.V. James Wattweg 22 3133 KK VLAARDINCEN Tel. 010 - 4354144
SPERRY t S P E R R Y C O R P O R A T IO N 1985
requirements for the avoidance of fatigue failure to multi-brace configurations including load interactions between the different braces. ACKNOWLEDGEMENTS The author is indebted to the Society for permission to publish this paper and to his colleagues, in particular Dr Mike Light, Mary Bradley, George Henderson, G.B. Singh and Lindsey Dvorkin for their help and forbearance during its preparation. APPENDIX Strength parametric equations Allowable joint capacities in terms of nominal brace loads, accor ding to Ref. [4], are: Pa =
where Qg is the coefficient for various joint design classifications, Q is a design factor for the presence of loads in the chord and is equal to 1-0.05yLF. For chord axial stress only l/ = Pit ,9D7"Fyand is the equivalent of 0.992A (Ref. [4]) and for chord bending stress only U= 4.8A4'1.9D?TFy and is the equivalent of 1 19A (Ref. [4]), where P and M are the nominal axial and bending loads in the chord. The value of Fy is assumed to be the same as defined in Ref. [4], The meaning of other parameters is the same as given above. In order to derive the above equations in the format of Ref. [4], the characteristic strength formulae from Section A.5.4.1.2. of the UEG Report [6] have been multiplied with the Q factor (see Section A.5.4.1.5 of Ref. [6]) and divided by a global safety factor of 1.78. Allowable joint capacities in terms of nominal brace stresses, based on the above equations of Ref. [6], are:
QuQFyT* 1.7sin0
, ■, , , (3 + 15(f) QgQFy (axial smss) -
„ QuQFyT* (0.8d) M a= 1.7 sin#------
oa (in-plane bending stress) = 9 2y
where Pa is the allowable capacity for brace axial load, Ma is the allowable capacity for brace in-plane and out-of-plane bending moment, Qu is the ultimate strength factor which varies with the joint and the load type, O, is a factor to account for the presence of nominal longitudinal stress in the chord and is equal to 1.0 - AyA2, where A = 0.030 for brace axial stress, 0.045 for brace in-plane bending stress and 0.021 for brace out-of-plane bending stress A = (f2ax
+
ffpB +
?opb) ?
, . , , . .. . 2(1 + 7.50)QaQF, (ja (out-of-plane bending stress) = -----1 8 T/fyrsinri— Values of Ogare given in Table All, where Q'0 = 1,Ofor0sO.6, Q'p = [0.3/0(1 - 0.8330)] for 0 > 0.6, and the meaning of different parameters is the same as defined above.
Table Al: Values for Ou
0.6FV
(the denominator is increased by one-third for extreme storm conditions), ?AX, ?i p b and ?0 p b are the nominal axial, in-plane bending and out-of-plane bending stresses, respectively, in the chord, Or = 1.0 when all extreme fibre stresses in the chord are tensile, Fy is the yield strength of the chord member at the joint (or 2/3 the tensile strength if less), T is the chord thickness, d is the diameter of the brace member and <9is the angle between the brace and chord. Allowable joint capacities in terms of nominal brace stresses, based on the above equations of Ref. [4], are:
oa (axial stress) =
QUQ 0.6Fy 2;r0yreinfl
3.2QUQ Q.6Fy oa (in-plane bending stress) = 2;r0yisin0 oa (out-of-plane bending stress) =
3.2 QuQ 0.6Fy 2;r0yrsin0
where oa is the allowable capacity for brace stress, /f = d/D, y = D/2T, x = t/T and D is the diameter of the chord. The meaning of other parameters is the same as above. Values of Ou are given in Table Al, where Q\3 = 1 .0 for 0 < 0.6, Qp = O.3/0(1 - 0.833P) for p >0.6, Og = 1.8-0.1g/Tfor y s 2 0 , Qg = 1,8-4g/D for y > 20, and Og must be > 1.0 in all cases. Allowable joint capacities in terms of nominal brace loads, accor ding to Ref. [6], using the API RP 2A notations [4] shown above are:
a Ma (in-plane bending) Ma (out-of-plane bending) =
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
Fy
Fv7*(3+ 15/f)Q0Qi 1.78sin0 Fv7*d(4.60) 1.78 + 7;5^ QaP f 1 78sinfl
Type of loading
Type of joint
Axial
K
(3.4 + 19/J)Og
T and Y
3.4 + 190
In-plane bending
Out-of-plane bending
3.4 + 19/f
(3.4 + 7/f)O0
Table All: Values for Qg Type of loading Type of joint
Axial compression
K T and Y
(1 .9 -6 g/D)Q'ß'* Q 'fi
Axial tension
In- Out-of plane plane
1.6(1.9-6 g/D)Q 'ß* 1.0 1.0 1.6 Q 'fi*
Q'P Q'p
References
1. Skjelbreia and J. Hendrickson, Fifth-order gravity wave theory’. Pro ceedings of the Seventh Conference on Coastal Engineering, Vol. 1, Chap. 10 (1961). 2. J. R. Morison et al., The force exerted by surface waves on piles'. Pet. Trans. Am. Inst. Mech. Eng., 189 (TP2846)(1950). 3. Nastran User Manual, MacNeal-Schwendler Corporation, Los Angeles, California (1980). 4. Planning, Designing and Constructing Fixed Offshore Platforms, 15th edn, American Petroleum Institute API.RP.2A (Oct. 1985). 5. P. W. Marshall et at., 'Limit state design of tubular connections'. ASCE National Structural Engineering Conference (Aug, 1976). 6. Design of Tubular Joints for Offshore Structures, UEG Publication UR 33 (1985). 7. P. W. Marshall, 'Design strategies for monitoring, inspection and repair of fixed offshore platforms'. ASCE Workshop on Reliability of Offshore Structures, San Francisco, California (Oct. 1977).
59
8. R. L Kinza and P. W. Marshall, ‘Fatigue analysis of the Cognac platform'. Offshore Technology Conference, OTC 3378 (1979). 9. C. A. Sainbridge and R. Nataraja, 'Dynamic analysis of fixed plat forms'. Offshore China (1983). 10. Offshore Engineer, pp. 56-57 (March 1985). 11. A. D, Bell and R. C. Walker ‘Stresses experienced by an offshore mobile unit'. Offshore Technology Conference. OTC 1440, Houston, Texas (1971). 12. P. Fisher, 'Summary of current design and fatigue correlation'. Confer ence on Fatigue in Offshore Structural Steels, ICE, London (1981). 13. Offshore installations: Guidance on Design and Construction, Depart ment of Energy, HMSO, London (April 1984). 14. A, C. Wordsworth, 'Stress concentration factors at K and KT joints’. Conference on Fatigue in offshore Structural Steels, ICE, London (1981). 15. A. B. Potvin et al., ‘Stress concentrations in tubular joints'. Soc Pet. Eng. J „ pp. 287-299 (Aug. 1977). 16. P. W, Marshall, 'A review of stress concentration factors in tubular connections’. Shell Oil CE-32 Report (April 1978). 17. M. Efthymiou and S. Durkin, 'Stress concentrations in T/Y and gap overlap K Joints'. Behaviour of Offshore Structures (1985). 18. American Welding Society Structural Welding Codes, Steel AWS D1 1-80.
19. M. A. Miner, ‘Cumulative damage in fatigue’. Trans. ASCE, 67A159A164 (1945). 20. Background to New Fatigue Design Guidance for Steel Welded Joints in Offshore Structures, Department of Energy Revision Drafting Panel, HMSO, London (1984). 21. I. Iwaski and J. G. Wykfe, 'Recent research on the fatigue performance of welded tubular joints' Paper 44, Second International Conference on Offshore Welded Structures, London (Nov. 1982). 22. S. J. Maddox, ‘Fracture mechanics applied to fatigue in welded structures’. Paper 6, Conference on Fatigue of Welded Structures, The Welding Institute (July 1970). 23. P. W Marshall, 'Size effect in tubular welded joints’. ASCE Structures Congress, Houston, Texas (Oct. 1983). 24. E. Berge ‘Effect of plate thickness in fatigue design of welded struc tures'. Offshore Technology Conference, OTC 4829, Houston, Texas (1984). 25. T. R. Gurney, ‘The influence of thickness on the fatigue strength of welded joints'. Paper 41, Conference on Behaviour of Offshore Struc tures (Nov, 1978). 26. H. P. Lieusade, 'Fatigue life prediction of tubular nodes'. Offshore Technology Conference, OTC 3699, Houston, Texas (1980). 27. P. Fisher, 'Fatigue life on fixed steel platforms'. Seminar, London Press Centre (April 1985).
The Petroland offshore production platform near Vlieland. The platform is unmanned and remote-controlled from Harlingen. (Foto Flying Focus Castricum)
60
Long-term service experience confirms that W art si 15 Diesel engines are capable of burning the low fuel qualities of the future. F o r example, the recommended time between overhauls for the V a sa 3 2 engine on heavy fuel is today 1 2 000 hours.
PREPARED FOR THE FUTURE WITH WARTSILA DIESEL Which fuel quality will your ship be running on in the future? Whatever the answer, the Real Heavy Fuel Engines from Wartsila Diesel offer you a way to be prepared. A way already in service worldwide. A way already proven in the toughest operating conditions. And what’s more, a way that will start paying for itself immediately. Safety, Reliability and Total Economy — for whichever fuel
THE REAL HEAVY FUEL ENGINES VASA22 HF and VASA32. FROM560 to 7380 kW. THE ENTIRE RANGE FOR 700 cSt.
WARTSILA 0Y WARTSILA AB. VASA FACTORY
WARTSILA DIESEL AB
WARTSILA DIESEL SINGAPORE (PTE) LTD
PO Box 244. SF-65101 Vaasa. Finland Tel - 358-61-111433 Telex74250wvasf
PO Box920.S-461 29Trollhattan.Sweden Tel. -46-520-38200. Telex 42141 diesel s
P0.8ox6l9.TebanGarden Singapore9160 Tel. -65-2659122. Telex 36636 warlte rs
Warisila Diesel B V P O Box 19066 3501 DB Utrechl. Tel - 31-30-332 144 Telex 47577 wart d Telecopier • 31-30-340 870
vestPanr**-
Robertson Autopilots
Bepaal uw eigen koers met een ROBERTSON AUTOPILOOT
geschikt voor elk type schip. Vraag informatie bij: Bennex Holland B.V. Wiltonstraat 1 2722 NG Zoetermeer Tel.: 079-416021
Robertson T R iT E C H
ng 4 0 «tymg 4.2?0
ni nu W ESTHAL
INGANG
Tl
dooggangshal
I
HOLLAND
OFFSHORE
#EU R O P AH A L
Holland Offshore ^eerders Standnummers van adve/ / /
AEG Nederland N.V. AGAM Motoren Rotterdam B.V. Baan Hofman Diesels B.V. Bennex Holland B.V. Boele's Scheepswerven en Machinefabriek B.V. Croon Elektrotechniek B.V. Econosto N.V. Geveke Motoren B.V. Machinefabriek en reparatiebedrijf D.E. Gorter Gusto Engineering C.V. De Hoop Groenpol Rotterdam BV HW Technics B.V. IHC Holland NV International Engineering Serv. B.V. Kopeke Agenturen B.V. Koning en Brevini Aandrijvingen B.V. Laan en Kooij Techn. Handelmij. B.V. P. van Leeuwen jr.’s Buizenhandel B.V. Maas Lastechniek B.V. BV Materiaal Metingen WWI NDT Inspection Services Noorder Haaks Training Centre Okay B.V./Giesselbach Electro engineering Pattje Shipyards Promac Nederland B.V. Ridderinkhoff B.V. Handelmij Roestvrij B.V. Schottel - Lips B.V. J. Schreuder & Co. B.V. Seastate Offshore B.V. Verto Verenigde Staal- en Kabelfabrieken Vlaardingen Oost Bedrijven De Vlamboog B.V. Wartsila Wavin Repox B.V.
W 500 E 238 Z 569 E 145 E 287 E 285/286 E 186 E 213 E 405 E 211 Z 517 Z 505 E 284/295 Z 515 Z 523 E 142 W 499 E 344 E 385 Z 549 E 106 E 259 E 384 Z 555 r~ o o c 183 W 478 E 212 E 364 E 237 E 345 E 290 Z 537 W 449/451 E 130 h
Vlamboog veiligheid verzekerd Nieuwe ontwikkelingen op het gebied van lastechniek en persoonlijke bescher ming komen van De Vlamboog. Al 40 jaar toonaangevend, voorhoge kwaliteit van eigen Pro dukten en gerenommeerde wereldmerken. HET JONGSTE BEWIJS Tijdens lassen is persoonlijke beveiliging noodzaak. In sommige situaties is een permanente be scherming gewenst. In andere een tijdelijke. Voor elke situatie bieden wij sinds jaar en dag pasklare op lossingen. Het jongste bewijs: lasoveralls van het merk plonér. De optimale kwaliteit biedt afdoen de bescherming en voldoende be wegingsvrijheid. Denken over persoonlijke be scherming tijdens werk is typerend voor De Vlamboog. Vandaar dat een van de grootste producenten van lasgereedschappen ook be schikt over een verregaande col lectie persoonlijke beschermings middelen en veiligheidsartikelen.
U/UfU/WU/
Lasgereedschappen (Optimus)
Lasgereedschappen (Binzel)
Kabels
Bikhamers, borstels en slljpgereedschap
Veiligheidshelmen
Veiligheidsbrillen
Atzuig/tiltersystemen
Getaatsbescherming
ding/handschoenen
De Vlamboog B.V. Postbus 298 2130 AG Hoofddorp Holland Tel. 02503-33344 Telex: 74544 Vlamb NL Valbeveiliging
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
v la m
^ ^
boog^f
Doorwerkkleding regenkleding
65
Op zee zijn elektrische installaties van levensbelang. Daarom kiezen scheepsbouwers en reders al m eer dan 100 jaa r voor AEG.
Of hij zich nu op een schip, of een offshore platform bevindt, op zee is de mens volkomen afhankelijk van de installaties die door elek triciteit gevoed worden. Want het uitvallen, midden op zee, van vitale funkties kan nu eenmaal verstrekkende gevolgen hebben. Dus moeten verlichting, aan drijving, besturing, navigatie, communicatie en alle andere moderne elektronische appara tuur en systemen aan de hoogst mogelijke eisen voldoen. AEG houdt zich al ruim een eeuw met dit specialisme bezig. En DEBEG ('n AEG-dochter) met zijn communicatiesystemen al meer dan 75 jaar. De in die jaren opgebouwde know-how en
66
ervaring garanderen dan ook de hoogst mogelijke betrouwbaar heid en veiligheid. Ook stond -en staat- AEG know how aan de basis van innovaties in de scheepvaart, de scheeps bouw en de offshore industrie. Kortom, in 'n scheepvaart- en offshorewereld die wordt beheerst door steeds geavanceerdere electronica en waarbij de ene technische ontwikkeling op de andere volgt, voelt AEG zich als een vis in het water. De formidabele hoeveelheid ken nis en ervaring van AEG, die zich op alle wereldzeeën in de praktijk bewijst, is wat betreft ons land geconcenteerd in Rotterdam. En wel in Marine & Offshore Service en de DEBEG Division, die deel uitmaken van het wereld wijd gespreide AEG service-net. De service die wij bieden is kompleet. AEG begeleidt het hele proces. Vanaf tekentafelconcept tot proef
vaarten en oplevering. De technische documentatie wordt door ons samengesteld, operators en technische crew door ons getraind. Waarna ons service-apparaat dag en nacht voor u klaar staat. Of het nu gaat om systemen en apparatuur voor energie-opwekking, voortstuwing, besturing, regeling, positionering, communicatie-uitrusting of data processing, in de internationale wereld van de scheepvaart en offshore luidt het gezegde: "AEG never Iets you down”. AEG Nederland N.V. Marine & Offshore Service DEBEG-Division Wilhelminakade, postbus 5115, 3008 AC Rotterdam, tel. 010 - 485 5644.
AEG
PRODUKT-INFORMATIE VERZORGD D O O R AEG NEDERLAND N.V.
A utom atiseren, regelen, bewaken en beveiligen van generator-aggregaten Hoe een generator-aggregaat aangedreven wordt, door een diesel of op een andere manier, het speelt geen rol. Ook niet in welke opstelling, als noodaggregaat - alleen - gezamenlijk met andere aggregaten of in combinatie met het net. Zelfs waar hij opgesteld staat, in een schip - op het land of in een offshore unit, het maakt niets uit. AEG heeft voor alle denkbare combinaties een perfecte oplossing voor het beveiligen bewaken - regelen of zelfs compleet automati seren van uw stroomverzorging. Moeizaam samenstellen en inbouwen van meerdere losse componenten is nu niet meer nodig. AEG levert een compleet geheel, een unit waar alle functies - bedieningen en alarmen opzitten. Een periferie aansluitplaat met stekeraansluitingen staat borg voor een simpele snelle montage De opbouw en de verschillende mogelijkheden worden onderstaand nader uit eengezet. Automatische stroom verzorgingssysteem GEAPAS. Een volautomatisch bedrijf met vèrschillende generatoren kan worden gereali seerd met het automatische stroomverzorgingssysteem dat door AEG in Hamburg is ontwikkeld. Afhankelijk van het gekozen installatieontwerp kan het systeem opgebouwd 'worden uit de vol gende componenten: * DSG 822: Dieselgenerator controle- en bewakingsunit * WSG 822: Asgenerator controle- en bewakingsunit * TSG 822: Turbogeneratorcontrole- en bewakingsunit » LSG 821/822: Belastingbewakingsunit. (De generatoren worden belastingsafhankelijk bij- of afgeschakeld.) Bij veranderingen van de belasting kan het sys teem automatisch generatoren bij- of afschaketen. Tevens worden zowel generatoren als het net bewaakt tegen storingen en in overeenstem ming daarmee maatregelen getroffen om de stroomvoorziening zeker te stellen. Hoofdfuncties zijn: * start en stop van de aggregaten en hun bewa king. * synchronisatie en bijschakelen van de aggre gaten * belastingverdeling » generatorbewaking De 'hardware' van de WSG 822 en TSG 822 is identiek met die van de DSG 822. De verschillen zitten in het programma en de aanduidingen op het tront. De software is telkens aangepast aan de specifieke aggregaat-eigenschappen, met individueel instelbare parameters. Nadere informatie: Voor scheeps- en offshore-installafies: (010) 4855644, tst. 13.
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
i i
. cm op ; ' n : ::
!
i
B
3
i 1
1 - cp , e c tü o ! a c nn 1
S ch eepsm anage m en t systeem
.
CD i C LLU C I r c co 1 ccaco
CD
!_ TTI Q nr
r □
□ODCÓ
ï ! *
□ L U CD
T :
IV •I- 1 L.
i
j
1
' '
a
d
% L. .J <-
□
□
Voorkeuze grole verbruikers
« « / re .nnruifi s C SES
-J-
/ Vinnmia: (
r o m c x iflL - J
3^X£USï D ie s e lg e n e ra to r 1
D ieselgenerator 2
La
a a
lp
A sg enerato r
Geapas systeem met 2 DSG 822 dieselbewakings- en besturingsunit, 1 WSG 822asgeneratorbewakings- en besturingsunit en 1 LSG 821 belastingbewakingsunit
DSG 822 controle unit: diesel start/stop, generatorbeveiliging, synchronisatie en lastverdeling.
67
P
71^en verantw oorde
motoren
investering
W a a ro m
m o to ren ?
Konkurrerende prijzen m Prompte onderdelenleverantie m Laag specifiek brandstofverbruik ■ Goed toegankeliik, lange standtijden m SKL: (Schwermaschinenbau KarI Liebknecht) met een laarhjkse produktie van meer dan 1.000.000 pk. m Solide en stijve konstruktie ■ Lage onderhoudskosten.
SERVICE DOOR G EHEEL EUROPA DIESELGEN ERATORSETS VAN 110 -1100 kVA
PJ.BRRnDbv
SKL-IMPORTEUR VOOR DE BENELUX EN SPANJE Postbus 275, 3300 AG Dordrecht, Tel. 078-148522
68
Telegramadres: brandmotoren, Telex 29375 brand nl
PRODUKT-INFORMATIE VERZORGD D O O R P.j. BRAND B.V.
SKL Dieselm otoren altijd toepasbaar In de jaren 60 hadden de SKL dieselm otoren in Nederland nog weinig bekendheid. Hierna is daar echter snel verandering in gekomen en daar mee ook de w aardering voor deze motoren die nu een vaste plaats hebben veroverd op de dieselm otorenm arkt. Ruim 25 jaar geleden ging de firma P. J. Brand bv zich bezig houden met de repara tie aan alle typen en merken motoren. Door deze specialisatie kreeg men een duidelijk beeld van de toenmalige motorenmarkt. In die dagen kwam men in kontakt met SKLmotoren. Al snel volgde hierop het importeurschap voor dit merk in de gehele Bene lux. Tevens kreeg men het importeurschap van Spanje en de Canarische Eilanden. Speciaal hiervoor werd er op Las Palmas een eigen vestiging opgericht onder de naam P. J. Brand (Espada) S.A. Deze ves tiging bestaat uit een kantoorpand en een groot onderdelen magazijn. In het magazijn te Dordrecht, met een op pervlakte van 1.050 m2, staan duizenden onderdelen overzichtëlijk opgeslagen. Kompiete motoren in diverse typen met de daarbij behorende onderdelen. Koelwater en brandstofpompen, turboblowers, vele soorten zuigers en lagers in alle meest gangbare maten. Door de unieke ligging van beide bedrijven vormt de distributie naar en de service in bijna alle landen van de wereld geen pro bleem. De vergaande service aan onze klanten - waar ook ter wereld - is door de jaren heen uitgegeroeid tot een begrip.
Alle werkzaamheden waar dan ook, wor den door eigen vakbekwame mensen uit gevoerd.
Nieuwe generatie dieselmotoren. Op basis van ver doorgevoerde research, hoge investeringen, nieuwe ontwerpen ge toetst aan de huidige toepassingen en trends voorzien van het nieuwste op het gebied van de electronika ontwikkelde men bij SKL motoren, de nieuwe serie dieselmo toren VDS 24/24. Als eerste in deze range is de 8 cilinder V dieselmotor geprodu ceerd. Deze nieuwe dieselmotor heeft als
type aanduiding - 8 VDS 24/24 AL-1 gekregen. Men hoopt met deze dieselmotoren een goede aanvulling te geven op de al reeds bestaande typen SKL dieselmotoren. Bij de ontwikkeling van de 8 VDS 24/24 heeft men speciale aandacht geschonken aan een laag brandstofverbruik, gunstige gebruikstoepassingen, betrouwbaarheid, vereenvoudiging van de onderhoudswerk zaamheden en een lange levensduur. Hierdoor ontstond een met turbo-druk voortbewegende motor met een groot ver-
Technische gegevens 24/24 Type of Diesel engine Number ot cylinders Continuous output Nominal speed Cylinder bore Piston stroke Effective medium pressure Medium piston speed Starting system Consumption of lubricating oil Net Weight
8 VDS 24/24 AL-1
8 1,200 kW (1,630 hp) 16,6r.p.s. (1,000 r.p.m.) 240 mm 240 mm 1.66MPa(16.92kgf/cm2} 8 m/s. compressed air I.65 g/kWh (1,2 g/hph) II.5 0 0 kg
mogen samengebundeld in een kompakte konstruktie. Voorts heeft deze motor een karakteristiek van een laag verbruik van brandstof en smeerolie. De 8 VDS 24/24 AL-1 verbruikt gewone marine-diesel of zware olie tot 180mmz/S van 50°C (1500 S., R1). Deze dieselmotor is als voortstuwingsmotor ontworpen voor het gebruik in alle tak ken van de scheepvaart. Door een eenvou dige toevoeging van een generator is de motor ook zeer goed toepasbaar als generator-set voor industriële toepassingen aan land. SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
69
(advertentie)
een Teken- en A dviesgroep als ’Projectondersteuner’ in sch eep sb o u w ECCE b.v. is een duidelijk voorbeeld van een 'organisatie van mensen’ werkzaam binnen het verband van een teken- en adviesgroep. De ECCE specialisatie kan men het best typeren als: HET SAM EN SPEL VAN MENSEN, MIDDELEN EN METHODEN. De krachtigste 'plus' van dit bedrijf, is de motivatie van haar personeel. ECCE is werkzaam binnen een omvangrijk scala van technische vakgebieden: know how speelt een grote rol. ECCE stelt zich echter niet op het standpunt, dat het ’wiel' of zwarte garen' best nog een keer uitgevonden kan worden. Er bestaat al veel kennis en vaardigheid. De taak is juist deze te bundelen en in een effectieve vorm aan te bieden aan bedrijven en instellingen die er operationeel of structureel behoefte aan hebben. De afkorting ECCE staat voor: EM PLOYMENT CH A RTERS & CONSULTING ENGINEERS. Hiermee wordt al een groot deel van de zakelijke kant prijsgegeven. Immers, traditioneel ontstond een inge nieurs- of teken- en adviesbureau door een bundeling van technische know-how en daarmee had men zich al snel het etiket opgeplakt van 'gespecialiseerd' in een of ander-duidelijk of minder d u id elijk-vakge bied of technische discipline.
DE ENGINEERINGS MARKT Op dat punt moet je tegendraads durven denken en vooral doen. vinden de beide directeuren Opdam en Maitimo. Het is be slist niet zo, dat zij in 1982 het gat in de markt hebben ontdekt. Zij spreken liever over het 'vergiet' in de engineeringsmarkt. De engineeringsmarkt (zakelijke dienstverlening) richt zich met ad viezen en het maken van plannen op de realisatie van uiteenlopende technische en bouwkundige projecten, Hoofdactiviteiten zijn dan het verrichten van studies, het ontwerpen en uitdetailleren, specificeren en kiezen van materiaal/onder delen en producten (vaak ook het inkopen).
M. B. Opdam
70
Tevens kan het toezicht houden op de bouw, resp. constructiewerkzaamheden tot de ta ken behoren. Wat betreft deze mix aan activiteiten is de markt voor ingenieursbureaus en teken- ad viesbureaus nogal in beweging. Vroeger stelde men zich louter en alleen op als adviseur en ontwerper, vandaag de dag neemt men als 'engineering constructor’ (hoofd aannemer) zelf complete fabrieksinstallaties aan, dus met de volledige realisatiezorg, met onderaannemers en toeleve ringsbedrijven.
ECONOMISCHE GRAADMETER Er wordt dan ook stellig beweerd, dat deze advies- engineeringsmarkt de economische graadmeter is voor de te verwachten bedrij vigheid in bouw en industrie. Hiermee primair bedoeld: de bouw/realisatie inspanning van dit soort projecten; secun dair: het effect van investeringen. Volgens Opdam en Maitimo - die beslist geen nieuwkomers zijn binnen de wereld van tekenen en adviseren - zal door een belang rijk herstel van de Nederlandse economie, met name de industrie, de engineeringsactiviteiten sterk gaan toenemen. De investerin gen zullen flink aantrekken en dit heeft ook voor ECCE een direct gunstig gevolg. Zij merken nu al, dat opdrachtgevers een sterke behoefte voelen zich te laten advise ren op technologisch gebied. Technische ontwikkelingen zijn stormachtig en niemand wil daarbij achterblijven. Zo zal een redelijk olieprijspeil resulteren in een acceptabel investeringsniveau in de pe trochemie en chemie in de combinatie van on- en offshore projecten. Voorbeelden van omvangrijke investeringen zijn: de gerealiseerde 'Hydrocracker' van Total Vlissingen, de 'Flexicoker' van Esso en de binnenkort te verwachten constructiefase van het Shell (Hycon) project. Op deze pro jecten zijn medewerkers van ECCE ingezet, zowel direct ats indirect betrokken bij ont werp en detaillering en inspectie. Begrijpelijkerwijs gaat de voorkeur op dit moment nog uit naar meer kleinschalige projecten en installatievernieuwingen, als mede het efficiënter maken van de produc tiefaciliteiten etc. Hierop wordt door ECCE goed ingespeeld; ook kleine of ogenschijnlijk minder interes sante opdrachten, worden met veel enthou siasme aangepakt en tot volle tevredenheid van de klant uitgevoerd. Een zo gunstig mogelijke (risico) spreiding, juist als het gaat om de bezettingsgraad en de
planning, is typerend voor de ECCE organi satie met als gevolg de gewenste flexibiliteit voor haar opdrachtgevers. Er wordt tijdig gestreefd naar nieuwe opdrachten en daarin scoort ECCE ruimschoots.
SCHEEPSBOUW Een andere voor ECCE zeer belangrijke markt is de scheepsbouw. April 1986 is het nieuwe veerschip de 'Koningin Beatrix' in gebruik genomen bij de Stoomvaart Maatschappij Zeeland (SM Z). Het schip werd gebouwd bij een van de modernste werven van Europa, Van der Giessen-de Noord n.v. in Krimpen a/d IJssel. Zowel opdrachtgever als opdrachtnemer kunnen terecht trots zijn op het behaalde resultaat. In een vroeg stadium werd ECCE betrokken bij de detail-engineering voor o.a. het 'staal', werktuigbouwkundige installaties, het tekenen van de accommodaties, funda ties, pijpleidingsystemen, alsmede het interieurgedeelte. Het optisch tekenen/1:10, zo ook het code ren in 'Nals', werd in het kader van productievoorbereidende werkzaamheden voor een aanzienlijk deel aan ECCE uitbesteed. Andere taken waarbij ECCE z ’n capaciteit kon inzetten, zijn het pijpschetsen en dichtme ten, electrical & instrumentatie engineering, testwerkzaamheden en het 'inbedrijfstellen’. Alle werkzaamheden werden in nauwe sa menwerking met de opdrachtgever uitge voerd op de vloer van Van der Giessen-de Noord respectievelijk aan boord van het schip.
employment charters & consulting engineers Deze werkwijze is kenmerkend voor ECCE, die hiermee nog eens aantoont dat er afge weken kan worden van de traditionele ma nier van uitbesteden. Vele ECCE medewerkers hebben met plezier gewerkt aan deze boeiende en veel omvat tende opdracht en zijn momenteel intensief betrokken bij nieuwe scheepsbouw- en off shore projecten. Ook in engineeringswerk voor kleinere vaar tuigen o.a. sleepboten, brandblusboten, pa trouillevaartuigen e.d. is de nodige know how verkregen en staat ECCE zijn ’man netje'.
UITBREIDING VAN DE ACTIVITEITEN Momenteel zijn 90 medewerers in dienst bij ECCE, ook werkt ECC met engineeringspersoneel op zogenoemde 'job-contracting’ ba sis, oftewel voor de duur van een bepaald project. In totaal een respectabel aantal, beweert de heer Maitimo Opdam vervolgens: de groei zit er goed in. ECCE is voortdurend op zoek naar ervaren engineeringspersoneei. Voor deze nieuw aan te trekken employees zoals: tekenaars, constructeur-tekenaars, designers, expeditors, inkopers en inspectors etc, ligt er voldoende werk klaar om op te pakken. Al is het, meteen duidelijken volgens Opdam en Maitimo ook eerlijk verwachtingsbeeld, voorlopig eerst voor de duur van de onder handen zijnde en nieuw te starten projecten, op zogenoemde 'job-contracting' basis. Het ligt nl. niet in de bedoeling er in een kort tijdsbestek een te groot of massaal (minder flexibel) bureau van te maken. Ook ontwikkeld zich binnen het bureau het CAD gebeuren. Binnen deze afkorting van Computer Aided Design, staat de D voorlopig voor Drafting; productie in deze zin is voor ons het eerst noodzakelijke en haalbare.
VISIE De twee directeuren herinneren elkaar aan de begintijd in het jaar 1982 toen zij met vier man personeel startten. Veel hadden zij die tijd niet te bieden of misschien toch wel, n.l. een grote dosis energie en de wil om je als 'dienstverlener’ te onderscheiden. Natuurlijk speelt daarbij een heldere visie een voorname rol, alsmede de promotie van die visie bij elke mogelijke opdrachtgever.
Opdrachtgevers die durven te breken met bepaalde tradities en die zichzelf de vraag stellen: welke taken en werkzaamheden kun nen wij overlaten aan een organisatie die het wellicht beter, goedkoper, sneller, kortom efficiënter voor ons kan uitvoeren. Daarmee ben je er natuurlijk nog niet: ECCE maakt zijn opdrachtgevers inzichtelijk wat de ECCE dienstverlening inhoudt, en wat deze dus betekent voor hun bedrijf en voor hun medewerkers.
CONTROLEERBARE KWALITEIT Over kwaliteit binnen de dienstverlening kan je eindeloos praten, beter is het deze m .b.v. normen en voorwaarden vast te leggen. Het overleg tussen opdrachtgever en op drachtnemer bepaalt in deze zin tevens wan neer en hoe het begrip goed is goed genoeg' in relatie staat met de prijs, die voor uitvoe ring betaald wordt. ECCE zorgt dan, dat het ook goed is en completeert haar dienstverlening met 'bor ging’ en garanties, alsmede met correcte nazorg
PRIVATISERING Het is niet zo verwonderlijk dat Opdam en Maitimo zulke grote voorstanders zijn van 'privatisering'. Zij worden regelmatig benaderd van overheidszijde om hun visie en vooral ook hun aanpak eens te komen toelichten. En zowaar, het is niet alleen mogelijk hier voor enthousiasme op te wekken, maar het ook te gaan toepassen. Kijk, zegt Opdam, het is feitelijk een kwestie van goede voorlichting. Je eerste en voor naamste doel is het acceptatieproces bij de toekomstige opdrachtgever, respectievlijk de beslissers op het juiste niveau te brengen, dan pas ben je er aan toe de juiste dienstver lening aan te bieden. Dat wij daar zoveel aandacht aan besteden ligt voor de hand, ECCE wil een groter aan deel verwerven in bouw- en weg & water bouwkundige projecten. En vooral voor het laatste is de overheid, zowel landelijk als op gemeentelijk niveau de belangrijkste opdrachtgever. De 'NO NONSENSE AANAK' speelt een voor name rol bij ECCE en deze komt prettig over bij de vele opdrachtgevers. Klanten met een reputatie, die ECCE ruimte bieden te anticiperen in hun projecten. Het is bewust gekozen dat ECCE zich opstelt als 'project ondersteuner' i.p.v. het geves tigde teken- en adviesbureau.
De hoofddisciplines waarin ECCE werkzaam is, zijn: WERKTUIGBOUWKUNDE en SCHEEPSBOUW machine-/apparatenbouw, piping en ac/cvinstallatietechniek ELEKTRO TECHNIEK licht- en krachtstroominstallaties, M & R en besturingstechniek BOUWKUNDE woning & utiliteitsbouw CIVIELE TECHNIEK weg & waterbouwkunde, beton- staal constructies. Er bestaan vele afgeleide specialisaties en toepassingsgebieden. Organisatorisch ge zien biedt ECCE u projectondersteuning via weloverwogen gekozen dienstengroepen, t.w.: * Projectmanagement * Constructiohmanagement * Basic & detailengineering * CAD, Computer Aided Drafting * Procurement * Projectservices * Tekengroep voor Revisies, Modificaties en Updating * Leidingregistratie en Cartografie Binnen deze dienstengroepen wordt de klant/opdrachtgever zo optimaal mogelijk ondersteund. Desgewenst kan, volgens het principe van capaciteitsaanvulling, volkomen geïnte greerd , dus tezamen met uw team, tot effec tieve en efficiënte taakverdeling worden overgegaan, ECCE biedt u deze dienstverle ning, zodat u capaciteitsmaatregelen kunt treffen, zonder structurele problemen op de hals te halen. Voor nadere inform atie of een vrijblijvend onderhoud: ECCE b.v. Jan van N assaustraat 23, 2596 BM 's-G ravenhage. Telefoon 0 7 0 -2 4 4 3 7 3 *
J. F. M Maitimo
71
GEVEKE,’N NAAM IN DIESEL MOTOREN OM TE ONTHOUDEN. Geveke Motoren heeft zich in de loop der jaren een rotsvaste reputatie op haar gebied verworven. Daarom is zij bij uitstek de geschikte gesprekspartner en leverancier als het gaat om motoren voor de binnenvaart en de visserij. Voor coasters en werkschepen. Voor de aannemerij en de offshore. Voor warmte/kracht- en noodstroominstallaties. Geveke Motoren voelt zich thuis op praktisch elke markt. En op al die markten kunnen haar afnemers rekenen op haar ongeëvenaarde service. Een onthoudertje.
geveke
G
motoren Geveke Motoren en Grondverzet B.V., Verkoop: Kabelweg 21 Postbus 1225, 1000 BE AMSTERDAM, TEL.: 020 - 582 91 11. Telex: 15516. Verkoop Scheepvaart, Service en Onderdelen: Ketelweg 20. Postbus 61, 3350 AB PAPENDRECHT, Tel.: 078 - 150555, Telex: 29401.
CATERPILLAR Caterpillar. Cat en
ïijn handelsmerken van Caterpillar Tractor Co.
PRODUKT-INFORMATIE VERZORGD D O O R GEVEKE M OTOREN
Geveke M otoren, het uitgekiende pakket dieselmotoren Geveke is een technische handelsonder neming waar ca. 900 mensen werken, ver deeld over vijf gespecialiseerde werkmaat schappijen. Eén van deze werkmaatschappijen is Ge veke Motoren, al meer dan 60 jaar hoofdde aler voor Caterpillar in Nederland. Caterpillar motoren staan bekend om hun compromisloze kracht, hun bed rijf szekere werking en de lange levenduur in de klasse van 56 tot 4500 kW. De jongste serie Caterpillar motoren werd geïntroduceerd in 1985. Deze 3600-serie biedt motoren met een continuvermogen van 1270 tot 3360 kW bij 700 omw./min, en 1680 tot 4500 kW bij 1000 omw./min. De 3600 serie is geschikt voor de scheep vaart, natte aannemerij, offshore en generatorsetbedrijf. Jarenlange research heeft ertoe bijgedragen dat deze nieuwe serie Caterpillar motoren standaards gaat zetten voor deze klasse. Standaards met betrek king op duurzaamheid, betrouwbaarheid en brandstofverbruik. Door toepassing van efficiënte brandstofinspuit- en verbrandingssystemen wordt een groot vermogen bereikt tegen een relatief laag verbruik. Het speciale ontwerp verkort service tijd en verlaagt de onderhoudskosten. De strakke kompakte bouw en de af fabriek gemon teerde extra komponenten zorgen voor een eenvoudige installatie en een beperkte inbouwruimte. De 3600 serie bestaat uit vier typen moto ren; de 3606 en 3608 zijn allebei lijnmoto ren met respektievelijk 6- en 8-cilinders. De 3612 en 3616 zijn kompakte 50°V moto ren en ook bij deze motoren geven de laatste twee cijfers het aantal cilinders aan. De inhoud per cilinder is 18,6 liter, dit bij een boring x slag van 280 x 300 mm. De 3600 serie wordt in de nieuwste fabriek van Caterpillar te Lafayette (USA) gepro duceerd. De modernste fabrikagetechnieken wor den toegepast, zodat kwaliteit gegaran deerd is en de 3600 serie één van de beste dieselmotoren wordt in de grote vermogensrange. De Caterpillar 3500 serie, die ongeveer 4 jaar geleden werd geïntroduceerd staat al gemeen bekend om zijn zuinigheid. Deze serie dieselmotoren heeft in een korte periode en met een grote variatie in toepas sing een goede reputatie opgebouwd. Elke keer weer bewijst de praktijk dat Caterpillar motoren gemaakt zijn om onder de meest SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
Het interieur van de service werkplaats in Papendrecht
zware omstandigheden te werken. Cater pillars zijn niet alleen betrouwbaar, kom pakt en zuinig, maar zijn ook zeer eenvou dig in onderhoud en hebben - ook interna tionaal - een hoge inruilwaarde. Bovendien heeft Caterpillar in alle bekende havens in binnen- en buitenland een servi ce- en onderdelen-steunpunt. Geveke 'verkoopt’ niet alleen de Caterpillar serie, maar adviseert ook bij de keuze van het juiste type motor, bij financiering, de ombouw, de inbouw en het onderhoud. Door kontrole op slijtage en door onder houdsbeurten regelmatig door Geveke uit te laten voeren, kunnen de exploitatiekos ten van een Caterpillar tot een minimum worden beperkt. Bij Geveke noemen ze dat: het 'Geveke Plus-Pakket'. Het Geveke Plus-Pakket omvat een aantal diensten die uiteenlopen van assistentie bij de financiering tot en met de periodieke motorinspekties. Dat begint al lang voor de aanschaf van een
De nieuwe Caterpillar 3600 dieselmotor serie met vermogens tot 4500 kW. De 3600 serie is geschikt voor de scheepvaart, natte aannemerij, offshore en generatorsetbedrijf.
Caterpillar. Technische specialisten van Geveke bestuderen nauwkeurig de speci fieke eisen die aan ieder schip gesteld wor den. Aan de hand daarvan adviseren zij een bepaald type motor. En omdat rende ment van zo'n motor valt of staat met de juiste uitlijning, koeling en belasting, wordt ook de inbouw of ombouw met de grootst mogelijke zorg begeleid. Is de motor eenmaal in bedrijf dan kunt u altijd rekenen op de speciale S.O.S.-service van Geveke S.O.S. staat voor Slijtage Onderzoek Systeem. Dit systeem signaleert abnormale slijtage en andere afwijkingen aan de motor lang voordat dit met de normale onderzoekme thoden aan het licht zou komen. De S.O.S. service maakt het daarom mogelijk in te grijpen voordat er grote schade aan de motor ontstaat. Verder kan Geveke periodieke T.A.-motorinspecties uitvoeren, zodat de kans op on verwachte stilstand (en kosten) vrijwel is uitgesloten. Voor de inspectie zelf rekent Geveke Motoren een vast bedrag. Zodat u tevoren weet waar u aan toe bent. Dit basiszekerheidspakket wordt natuurlijk steeds verder aangevuld met nieuwe soor ten inspecties en vormen van onderhoud. Ook hiervoor gelden vaste prijzen en tijden. Dat maakt plannen makkelijk! Met het zekerheidspakket bent u altijd ze ker van uw motor. Maar er is méér; - gepland onderhoud op een gunstig moment; - behoud van motorprestaties; - gunstig brandstofverbruik; - lagere onderhoudskosten; - vermindering van olieverbruik; - langere levensduur door tijdig onder houd. Daarbij heeft Geveke Motoren een aantal kostensparende maatregelen genomen. Zo worden onderdelen in heel Europa bin nen 24 uur geleverd. Dal beperkt stilligtijd. Onderhouds- en filterpakketten hebben een speciale, gunstige prijsstelling. Boven dien onderhoudt Geveke Motoren een spe ciale ruildelenservice. Ook hierdoor wor den de kosten gedrukt en de reparatietijd sterk verkort. Geveke Motoren verricht de service met regionaal werkende monteurs en een bui tendienst. Deskundige hulp is dus altijd dichtbij. De service dienst wordt vanuit Papendrecht geleid en is dag en nacht bereik baar.
G
geveke m o to re n 73
Jack-up platforms:
-
MAERSK ENDEAVOUR MAERSK EXPLORER KOLSKAJA 1 SAHAIINSKAJA I Arctic conditions AMAZONE TOURMALINES CHAZAR SEDNETH II ILE DE FRANCE COWRIE ONE SEASHELL A.R.B. °2 ARABIYAH-1, -2 and -3 27 units lor civil engineering
G U STO ENGINEERING Designers for the Offshore Industry
Offshore cranes:
-
HERMOD (5000 + 4000 t.) BALDER (4000 + 3300 t.) DB 101 (3500 t.) SRIKANDI PERDANA (350/600 t.) THOR (2000/3000 t.) CHAMPION (800/1200 t.) ORCA (800 t.) CHALLENGER (800 t.) TITAN 1, 2, 3, and 4 (each 600 t.) STANISLAV YUDIN (1600 t.) ISPOLIN (1200 I.) KUROSHIO (2500 t.) CONSAFE (800/1200 t.)
Conventional Drlllships:
- SAGAR VIJAY - SAGAR BHUSHAN
D P. Drlllships:
-
PELICAN I CANMAR EXPLORER III PETREL PELERIN KCA KINGFISHER BEN OCEAN LANCER PACNORSE VALENTIN SHASHIN VIKTOR MURAVLENKO MIHAIL MIRCHINK PELICAN II
Semi-submersibles:
-
LB 200 (ex-VIKING PIPER) BALDER HERMOD DB 101 (ex-NARWHAL) SSCV lor MICOPERI NEDDRILL 6
Mechanical constructions:
-
Gantries for CARDIUM Pier-lifting gear for OSTREA Access tower/gangway MSV STADIVE Cantilever SEDNETH II Cantilever ILE DE FRANCE Leg handling systems for 4 backhoe dredgers for USSR
Gusto Engineering c.v.
For detailed information on Gusto products: please apply for our brochures
74
P.O. Box 11 , 3100 AA Schiedam-Holiand. 557 's-Gravelandseweg, Telephone (+ 3110) 4260420, Telex 23 159 GUST, NL. Telefax (GII/GIII): (+3110) 4731407
DESIGNERS FOR THE OFFSHORE IN D U ST R Y
PRODUKT-INFORMATIE VERZORGD D O O R GUSTO ENGINEERING
Scope of activities - Turnkey execution - Complete, class approved designs and building specifications - Consultancy services - Feasibility studies and preliminary designs - Studies on the hydro-dynamic behaviour of structures in seaway and management of model tests - Workshop drawings - Construction supervision
Related to: - Dynamically-positioned drillships - Conventional drillships - Jack-up drilling barges - Jack-up maintenance-/ accommodation platforms - Large capacity offshore cranes - Pipelaying- and crane vessels - Semi-submersible vessels - Mechanical constructions - Custom-built, special purpose vessels and equipment - Positive engagement and rack and pinion type jacking systems
For detailed information on Gusto products: please apply for our brochures
Gusto Engineering c.v. P.O. Box 11, 3100 AA Schiedam-Holland, 557 ’s-Gravelandseweg, Telephone (+31 10) 4260420, Telex 23159 GUST, NL. Telefax (GII/GIII): (+31 10) 4731407.
75 SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
A. JOHNSON 8 X 0 'f e
GESPECIALISEERD IN VEELZIJDIGHEID KaMeW a verstelbare scheeps schroeven. Tunnel en Rotatable thrusters, KaMeWa Waterjets. KaMeWa/Seffle verstelbare scheepsschroeven, schroefas sen. Cederfall asafdichtingen. Valmet tandwielkasten, stuurmachines, Mitsubishi dekkranen. Dienstverlening bij reparatie en onderhoud. Axel Johnson & Co. N.V. Marine Division Oudaan 22-24 - Box 1. 21XX) Antwerpen Telefoon 03-2321522/2320589 Telex 31445 ajcobn b Telefax 03-2333082 J
76
A XEL JOHNSON GROEP
Avesta roestvrijstalen platen, eventueel plasma gesneden of geknipt. Speciale Avesta kwaliteiten voor chemicaliëntankers en offshore konstrukties. Avesta beitspasta. giet- en smeedstukken. Adviezen t.a.v. korrosie vraagstukken.
A. Johnson & Co. B .V . Postbus 51, 3330 A B Zwijndrecht Kantoor: H.A. Lorentzstraat 10 Telefoon 078-127200 Telex 29095 ajcon ril Telefax 078-120945
PRODUKT-INFORMATIE VERZORGD D O O R A. JOHNSON & CO.
D e A xel Johnson Groep in de Benelux Sinds haar ontstaan in 1873 is de Axel Johnson Groep sterk betrokken geweest bij de internationale scheepvaart met een eigen rederij. Deze scheepvaartlijn bestaat noq steeds onder de naam Johnson Line A/B.
van projecten, waaronder verstaan wordt een combinatie van: - voorlichting inzake corrosie vraag stukken - adviezen ten aanzien van de toepassing van de meest geëigende speciale staal soorten - las- en andere verwerkingsadviezen - levering van de benodigde materialen
Een van de eerste schepen van de huidige Johnson Line A/B, 'S/SAnnie Therese’, dat in 1873 werd gebouwd. De Axel Johnson Groep is één van de grootste Zweedse industriële en handels concerns. De totale omzet bedraagt ca. 12 miljard gulden terwijl er zo'n 32.000 werk nemers in dienst zijn in meer dan 30 landen. Een derde deel van de eerder genoemde omzet wordt behaald door de handelsacti viteiten die wereldwijd plaatsvinden. De belangrijkste andere sectoren zijn de fa bricage van speciale staalsoorten, waar onder met name roestvrij staal, voorts engineering, energie (olie en kolen, raffina ge), scheepvaart en civiele bouw. In de Benelux ligt het zwaartepunt van de activiteiten op de levering van roestvrij staal, roestvrij stalen produkten en duurza me apparatuur ten behoeve van de indus trie in het algemeen en de scheepsbouw in het bijzonder. De belangen van de Axel Johnson Groep worden in de Benelux be hartigd door onder meer A. Johnson & Co. B.V. te Zwijndrecht en S. A. Axel Johnson & Co. N.V. te Antwerpen.
Voorraad plaatmateriaal in het magazijn te Zwijndrecht De voorraad plaatmateriaal, zowel warm als koud gewalst, wordt voornamelijk be trokken van Avesta. De platen kunnen tot een lengte van 6 meter bij een dikte van 10 mm op maat worden geknipt. Voor het nauwkeurig en braamvrij onder water snij den van materiaal tot een dikte van 65 mm staat een copieer-plasma apparaat ter be schikking. 's Werelds breedste koudgewalste plaat komt van Avesta en is leverbaar tot 2 meter. Deze zogenaamde KBR-platen geven een belangrijke besparing op laswerk bij tankof silobouw.
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
S. A. Axel Johnson & Co. N.V. te Antwerpen Dit bedrijf is geheel gespecialiseerd op het maritieme gebied. Van oudsher behartigt deze vestiging de belangen in de Benelux van KaMeWa, de fabriek van scheeps schroeven, ook behorend tot de Axel John son Groep. De specialiteit van KaMeWa is het vervaardigen van grote scheeps schroeven met hydraulisch verstelbare spoed, compleet met het daarbij behoren de regelsysteem. Voorts heeft KaMeWa een uitstekende reputatie opgebouwd met de 360° verdraaibare thrusters en thans bevat het leveringsprogramma ook waterjets voor voortstuwing.
KaMeWa verstelbare scheepsschroeven Voor chemicaliën tankers zijn er in warmgewalste plaat o.a. drie speciale legerin gen van Avesta beschikbaar, te weten de kwaliteiten 832 SKR-4, 832 SNR-4 en 832 SLR-4. Deze kwaliteiten hebben hogere mechanische sterkte-eigenschappen en hogere molybdeen gehalten dan gebruike
A. Johnson & Co. B.V. te Zwijndrecht Deze vestiging is gespecialiseerd in de levering van roestvrij staal op basis van de staalproduktie door Avesta in Zweden, ook behorend tot de Axel Johnson Groep. Met name op het gebied van de speciale roest vrij staal soorten heeft Avesta een bijzon der goede reputatie opgebouwd. Voor beelden hiervan zijn het hittebestendige 253 MA en 832 MVMA, het zeewaterbestendige 254 SMO en het spanningscorrosiebestendige AVESTA 2205. In Zwijndrecht is het magazijn voor roestvrij staal gevestigd. Het is ook het centrum voor de begeleiding
lijk. Sinds 1962 heeft Avesta voor meer dan 150 chemicaliën tankers, waarvan er 18 in Nederland zijn gebouwd, de benodigde materialen, te weten (voorgevouwen) pla ten, buizen, fittingen en laselektroden gele verd. In de speciale kwaliteiten van het Avesta roestvrij staal zijn, evenals in de stan daardkwaliteiten, langsnaad gelaste bui zen en fittingen leverbaar. Deze produkten vta SVENSKA STAAL B.V. te Amsterdam, eveneens tot de groep behorend. Ter completering van het gehele pakket, bijvoorbeeld voor chemicaliën tankers, kan A. Johnson & Co. B.V. ook de daarbij beho rende afsluiters en cargopumps leveren.
Een chemicaliën tanker in aanbouw
Op basis van deze scheepsschroeven heeft Axel Johnson & Co. zich gespeciali seerd in de levering van complete voortstu wingssystemen bestaande uit KaMeWa of Seffle scheepsschroeven, schroefassen gesmeed door Björneberg in Zweden (ook lid van de Groep), Cederfall asafdichtingen en Valmet tandwielkasten. Het leveringsprogramma is de laatste jaren aanzienlijk uitgebreid en bevat nu ook bij voorbeeld hydraulische stuurmachines en Mitsubishi dekkranen. Belangrijk aspect van de vestiging in Ant werpen is de dienstverlening. Een team van ervaren service-engineers staat dag en nacht klaar om, waar ter wereld ook, ingezet te worden om bij storingen of on derhoud aan KaMeWa scheepsschroeven hulp te bieden. Concluderend kan gesteld worden dat de Axel Johnson Groep zowel voor de scheepsbouw als voor de scheepvaart een vooraanstaand leverancier is geworden.
77
Our draftsmen and engineers provide Drafting Design Supervision Project management Survey
What? Shipbuilding Steel Construction O ffshore Construction Load-out and Seafastenmg Process piping
Where? O u r offices Shipyards Building sites O ffshore Y our office
Who for? Shipbuilders / ow ners Construction companies O il and Gas Industry Engineering companies Trading companies
WNHWMMK WmUK
vin)i ~
78
MEMARCO MECHANICAL AND M ARINE CONSULTANTS B V Van Malsenstraat 66 3074 PX Rotterdam Tel. ( 4 ) 1 0 - 4 3 2 6 7 8 9
Telex 20010 pms ni
Veerallee 7 8 0 1 1 A A Z w o lle Tel. (4 )3 8 - 22S358
I l
79
Managing projects? Don’t leave it to chance... hlufAprinit
■■■■ ■ ■MPcompleted
•»pin '
FE3
•»hod
fo rw a rd r
K/OtiJuv.iifi
I>f•
i^ hkow-acmin.I
>rcn-ffva«.
tnnspon.
,rm .-xjfjf -^3d<*n umh non-turuljrd [rtponfrig, ; V' Iw:k 2. %
1
g
,* mm,hrr,4^^ M‘fiiAMihir ■-*"! »niy|»u% nJ I.
9l>liw>prinis he nnlrau’H.
ovt-min on COfYractora,. BACK 4. J
HKOWAOAIM
Ruin <4 ||f
»delayed by m i tafx_
an easier wav... seeinside!
turn 1„ JJrTi
■ *™»w,Ww. I <»>h IIknrt hi,
IContract
rhcreu
fl *^ r’ Jl-Jlf l'x du«- m
H MChp^,
H"t"
protect COM M F-TED.
BACK 2.1
I
Contract
,|kwn
extension
H7' * ‘‘*-r _ I [I 'hr i(Htr*k,hin, I, Jo.w,lwkpiJn, J » j l
J■iii*hrliiw wuif, mrr»yuW f )I I c > ,m |4 iir th e H I|*n.jr»i fjunc.9 r ricks . ÀSPf It'll Vf(u| I wick IiHil j
in liint'Î ''« ill very nl.u,
A fJ ^ G o rx J I ™ » scheiit ilirii/
proWerru.
MISSATURN
I TIIRCW _ ACIATN.
J'O KW ARP
[smoothslalxxirfood,j
Obun^oi discount
r
|pnpiping.
FORWARD,
^ C T smiï
■miAtlrndii twterihjn «poaod.
I.«t ■•ptiTiitm,
FORWARD,
problems
Riif ncathcr Uclav,buihiin
W'piysoff.
r
VjjGenerator Vm.iinieiiiUicv
FORWARD,
miss a t u r n
VTJ-Xva ■^txjuipment^ -W? increases
■ MISSATURN
i productivity. i=£FORWARD4
Play it safe with ARTEMIS. W hether it’s developing a new product, main taining a factory o r installing hi-tech equip ment, every project depends on hundreds of different factors. The key to a successful project is planning - work out in advance what could go wrong, and how best to cope with it. Then when something does go wrong, you can take the right action - and fast. T h at’s where A RTEM IS com es in. ARTEM IS is the world’s leading project management system. Built by project managers for project managers. So it’s a system that works the way you do. A R TEM IS covers ever)' aspect of the job: from initial estimate to after-completion analysis. Keeps you informed and in control. Lets you simulate the effect of problems before they
arise, so you can try different strategies to see which is best. Before you com m it any money o r manpower. Metier, the com pany behind A RTEM IS, provides complete training, consultancy, support and service, from over 50 offices worldwide - including 3 Custom er Support offices in the Benelux. So wherever you are, whatever you do, you can rely on A R TEM IS to manage your project. A R TEM IS will help you to stay in control of your project. So if you’re in charge of a project, don’t leave anything to chance Play it safe with ARTEM IS.
METIER
A R T E M IS for IBM mainframe, IBM -PC or dedicated minicomputer.
□ Contact me to arrange a personal meeting. □ Send me a cop y o f the project management game
Metier Management Systems Benelux B V Doesburgweg 7 280 3 P L G ouda N E T H E R L A N D S Tel.: 0 18 20 -30 14 4, Telex: 20360 M E N N L
N a m e :...............................................................................
Function:
Com pany:
Industry: ..............................
□ Plaise send me information on A R T E M IS .
i
A ddress:........................................................................................................
Telephone:
PRODUKT-INFORMATIE VERZORGD DOOR METIER
M E T IE R M e tie r Managem ent Systems SPECIALISTS IN PROJECT M A N A G E M E N T When Metier Management Systems was founded in 1977, project management was a relatively unknown discipline, practised mainly in the engineering and construction industries. Since that time, however, an increasingly wide range of industries have come to realize that they too are engaged in project-like tasks. After all, what is a project? A set of tasks which must be completed on time, within a certain budget to a pre-defined standard. Look at it tike that, and it’s no surprise that Metier now has an increasing number of clients in shipbuilding, ship repair, module and platform construction and associated activities. The first project management system Metier’s founders set out to produce a com puter system to manage projects in the then new offshore oil industry. The system had to meet three major criteria: • it must be usable by the project team themselves, that is, by non-computer specialists. • it must produce its results on the spot, rather than with the delays which were then usual with other computer systems, • it must be reliable, to be used on the project sites themselves, where repair and maintenace are expensive. The result was ARTEMIS, an unique sys tem providing the project manager with the information he needs, quickly and on-thespot.
Metier devotes a high percentage of its turnover to research and development, all of which is done in Europe. Metier has also introduced versions of ARTEMIS for large mainframe computers, and for the personal computer. This allows companies to choose the size of ARTEMIS system that meets their needs, with the option to expand or upgrade at a later date. Planning and scheduling All three ARTEMIS systems - minicompu ter, mainframe and PC - are based on the same simple command language. This allows the user to describe his project: the various tasks involved, the estimated time each will take, the resources required (equipment, materials, money and man power), and so on, in his own terms. The information is stored in a so-called relatio nal database, allowing in to be reviewed and changed at any time. Once the project is defined in this way, ARTEMIS uses the well-known critical path method to calculate the earliest and latest start and finish dates for each task. It also indicates which activities have float - that is, can be delayed without affecting the overall project length. Timescales can be in anything from minutes to years. In the next phase, scheduling, the system compares the resources required at each stage, against those which are available; it will delay an activity with float to try to smooth out under- and over-loads. The results of planning and scheduling can be
clearly seen with ARTEMIS' graphical out put: graphs, histograms, barcharts, piecharts, s-curves and network drawings. Planning for change Few projects ever go exactly as planned. Rising costs, under-estimates, bad weath er... all can cause changes. The user up dates ARTEMIS with the details of prog ress and delays, and the system im mediately recalculates the plan, keeping the manager up-to-date. A further advantage is the ability to simulate the effects of delays and other problems - in this way, alternative courses of action can be experimented with before decisions are made. The next step For further information about how ARTEMIS could help you, contact Metier Management Systems: Doesburgweg 7 2803 PL Gouda Tel: 01820-30144 Telex: 20360 MEN NL Nieuwe Emmasingel 17a 5611 AM EINDHOVEN Tel: 040-456755 Telex: 59591 MEBEN NL Chaussée de la Hulpe 130 1050 BRUSSELS Tel: 02/673 9933 Telex: 25616 MMS BR B
Expansion That was just the beginning. ARTEMIS proved to be so successful that, in order to meet demand, and to provide the level of customer support and service on which Metier has always prided itself, the com pany has now grown to employ over 800 staff in more than 56 offices round the world, with a turnover last year of over US$ 87 million. With offices in Gouda, Eindhoven and Brussels, Metier is ideally suited to serve clients throughout the Benelux. Developments: mainframe and PC ARTEMIS hasn't stood still either. As pro jects have changed, so have the needs of project managers. To ensure that ARTE MIS continues to meet these demands, SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
81
DUTCH OFFSHORE TRAINING CENTRE
’’NOORDER HAAKS”
c/o Nautisch Technisch College
Ankerpark 27
1781 AG Den Helder
Tel. (02230) 14880
Tlx 57072
NEW COURSES Refresher Life saving Appliances
I I I I
II
1 ••
I —
,
Casualty Management (GO.R) Leiro Courses
III I Itllll J n i
il
Recognised by authorities
m u i t '
Courses in: INFLATABLE LIFERAFTS. WHITTAKER CAPSULE. FIRST AID BASIC AND REFRESHER COURSES. BREATHING APPARATUS AND REFRESHER COURSES. FIRE FIGHTING. PORTABLE FIRE EXTINGUISHERS. HELICOPTER DECK CREW TRAINING. WELL CONTROL. OFFSHORE CRANE OPERATOR. RADIOTELEPHONY. Further information at the college.
82
PRODUKT-INFORMATIE VERZORGD DOOR NAUTISCH TECHN. COLLEGE 'NOORDER HAAKS’
Nautisch Technisch College ’N oorder Haaks’ te Den H elder heeft zijn bakens verzet De laatste 5 a 6 maanden hebben voor het Nautisch Technisch College Noorder Haaks' nogal wat veranderingen gebracht. In 1854 opgericht als instituut dat slechts opleidt voor stuurman ter Koopvaardij is het nu uitgegroeid tot een instelling die zich op een veel breder terrein beweegt. Een abso lute noodzaak in de huidige maatschappij, wil men zich handhaven. Werd in het verle den de opleiding voor stuurman met die voor scheepswerktuigkundige en Zeevis vaart uitgebreid - dus alleen nog maar natte-opleidingen - de laatste jaren is dat een heel andere kant uitgegaan. De DOTC 'Noorder Haaks' In 1978 werd op verzoek van de 'Werk groep Safety’ van de Nederlandse Olie en Gas Exploiterende en Producerende As sociates (NOGEPA) een begin gemaakt met de korte trainingen ten behoeve van het oftshore personeel. Aanvankelijk slechts voor een capsule en vlotten trai ning, alras breidde dit zich uit tot cursussen voor brandblussen en adembescherming. Hiervoor werden uitstekende oefengele
genheden gebouwd waardoor een goed produkt geleverd kon worden. Het aantal cursussen breidde zich al gauw verder uit, waarbij die voor Well Control en Fast Rescue het vermelden waard zijn. Zeer recent kregen wij vanuit Noorwe gen toestemming om met de Leiro cur sussen te starten. Voor de naaste toe komst verwachten wij het aantal cursussen t.b.v. de Petroleum en Gasindustrie nog verder uit te breiden. Eind 1984 zijn al deze cursussen - die van Staatswege erkend zijn - ondergebracht in een stichting van het Nautisch Technisch College genaamd: Dutch Offshore Training Centre 'Noorder Haaks’ (DOTC) kortweg Training Centre ‘Noorder Haaks’. Het Nautisch Technisch College ‘Noorder Haaks’ De school zelf startte in 1982 met een HTOopleiding voor Petroleum en Gas boor- en produktie techniek (P & G). De belangstel ling voor deze afdeling was en is erg groot. In verband met de terugloop van de Koop vaardij, is er een soort sanering geweest
t.a.v. de opleidingen voor stuurman en scheepswerktuigkundige. Wij hebben na 131 jaar afstand gedaan van deze afdelin gen althans voor wat betreft het HBO-gedeelte van de school; op middelbaar en lager niveau is de opleiding nog steeds aan het college verbonden. Daarvoor in de plaats mochten wij de P & Gafdeiing uitbreiden met 2 ditterantiaties. Daardoor werd het mogelijk m.i.v. het cur susjaar 1985/86 te beginnen met een afde ling 'Maintenance' en 'Marlen Milieu' Twee opleidingen die inspelen op nieuwe ontwikkelingen binnen het P & G bedrijf en waarmee wij hopen in een behoefte te kun nen voorzien. Zal de 'Maintenance' voor de offshore we reld iets zijn, dat voor zich zelf spreekt, met de Marien Milieu ligt dat mogelijk iets an ders. Het is duidelijk dat het 'Milieu' niet meer uit de huidige maatschappij is weg te denken. Men kan zich alleen de vraag stellen in hoeverre de benadering ervan emotioneel of rationeel is. Als men bruin vocht van een eiland ziet stromen, waarvan de kenner weet dat het milieu technisch absoluut geen probleem is, zal dat toch heel anders over kunnen komen bij een toevallig passe rend jacht. De persoon die opgeleid zal worden via de afdeling Marien Milieu zal de moeilijke taak krijgen met al deze gevoelens rekening te houden om daarna tot een gefundeerd oor deel te komen. Mogelijk dat deze nieuwe afdeling nog eens een onderwerp mag zijn voor een extra bericht of interview.
NAUTISCH COLLEGE DEN HELDER TRAINING PLATFORM SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
83
OKAY B.V. P.0 Box 27250 1002 AE AMSTERDAM HOLLAND
OKAY
E N G IN E E R IN G . M A N A G E M E N T & C O N S U LT A N TS R EP R E S E N TA TIV E O F :
PHONE 31-(0)20-34 76 11 FAX 31-(0)20-37 02 76 TELEX 15224 gibagnl
Giesselbach
E B e tro E n g re e n n g
De naam OKAY/CEE staat vooreen team enthousiaste mede werkers, die gezamenlijk voor de innovatie hebben gezorgd. Daarom haalt u voor uw elektro-technische installatie altijd een expert in huis. Meer dan 60 specialisten staan voor u klaar waarbij hard werken ook buiten de kantooruren, be trouwbaarheid en service tot de meest ouderwetse zaken behoren.
Ons bureau moest veelal bewijzen, dat de theoretische know-how in de praktijk moest worden gerealiseerd. Speci fiek toen de activiteiten van het speuren naar olie op het continentale platen de exploitatie hiervan om meer geavan ceerde technieken vroegen. Hiermee onderstrepen wij dat voor Uw probleem, waarvoor theoretische oplossingen zijn bedacht, onze engineers de praktische toepasbaarheid ef fectueren.
LEVERINGSPROGRAMMA:
- PLC besturingen, - Statische W-L regelingen, - Complete elektrische installaties voor: kranen, schepen, lieren, transportinstallaties, platforms etc., - Automatisering en beveiligingssystemen voor: kranen, transportinstallaties etc., - SERVICE ALL OVER THE WORLD
84
PRODUKT-INFORMATIE VERZORGD DOOR OKAY B.V.
O kay Giesselbach Electro Engineering innovatie in electro engineering
De geschiedenis van Giesselbach beslaat een tijdperk van 30 jaar. Door alle ontwikke lingen, welke wij in die drie decennia be leefden, loopt een rode draad: het benutten en het gebruiken van elektrische kracht. Te land en ter zee. Vanuit ons installatiebedrijf groeiden wij rond 1970 automatisch naar ontwerpbureau. De activiteiten van het speuren naar olie en gas op het continenta le plat en de exploitatie van gevonden Noordzee-energie versnelden de groei van deze afdeling. Enkele van de speciale produkten, welke wij in de afgelopen jaren in nauwe samen werking met onze opdrachtgevers, ontwik kelden, zijn thans rijp voor ruimere toepas sing. Deze produkten hebben wij onderge bracht in een standaardprogramma. Hier door zijn wij in staat efficiënt te fabriceren met een constante kwaliteit tegen accepta bele prijzen. Giesselbach levert u niet alleen de oplos sing voor uw elektrotechnisch vraagstuk van vandaag maar ook van morgen. Door de toepassing van nieuwe technieken is er al ervaring voorhanden op het gebied van micro-processing. Geprogrammeerde c.q. gestuurde elektrische installaties werden met volledig aangepaste systemen door ons geplaatst in de recycling- en bio-industrie, Doordat wij doorgaans z.g. maatpak ken moeten leveren is ons werkterrein zeer veelzijdig. De off-shore branche biedt in deze overzichtsbrochure mogelijk de meest spectaculaire beelden, maar ook rekenen wij af met storingen in de meest eenvoudige installaties. Omdat wij geen vast leveringsprogramma hebben, kunnen wij u objectief adviseren welk produkt ons inziens de voorkeur geniet voor installatie. Dit kan van project tot project variëren.
Grenzeloze service Hoewel het hoofdkantoor van OKAY bv Giesselbach Electro Engineering in Am sterdam is gevestigd, kent het werkterrein geen grens. Juist omdat veel opdrachtge SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
vers uit de scheepvaart en offshore komen, gelden voor het OKAY/G.E.E.-team geen grenzen.
85
PHILIPS USFA
HAS MANY FACETS Yes, Philips Usfa has m any facets. M any unique skills. M any products. All reflecting Usfa's nigh tech n olog y expertise in electronics, physics, electro chemistry, opto-electronics and cryogenics. Expertise n ot o nly in these technologies, but also in systems application and design, and in manufacture. M anufacture under a regime that ensures unparalleled reliability in the Usfa's p ro du ct range includes: -T h e rm a l im a g in g systems Vision, by therm al contrast, penetrating mist, fo g smoke, camouflage, by day and night.
For aim ing and observation systems, therm al cameras fo r naval applications, surveillance sensors. - N ig h t visio n e q u ip m e n t High perform ance multi-use night sights, w eapon sights, driver's periscopes, observation and gunnery periscopes. -S e c u re C o m m u n ica tion s H ighly specialised cryp to graphic e qu ipm ent including teleprinter terminal, voice encryption systems, bulk encryption equipm ent, rugged portable short burst terminals. -P ro x im ity fuzes Fuzes fo r use w ith the new generation o f naval arm am ent
and field artillery, especially against incom ing lo w level, sea-skimming targets. -S tirlin g -c y c le cryo g en ic coolers M odular, highly reliable m iniature coolers, to suit any Dewar/detector, also available in split-configuration. -S p e c ia l reserve batteries Extraordinarily long storage life, instant activation, w ith stable output, over a very w id e tem perature range. Philips Usfa B.V., Meerenakkerweg 1, Postbus 218, 56(H) M D Eindhoven. The Netherlands Tel.: (0)40 722600 Telex: 51732 USFAE NL
Philips Usfa, a com p an y o f m any facets.
PHILIPS
PRODUKT-INFORMATIE VERZORGD DOOR PHILIPS USFA B.V.
PHILIPS USFA B.V. INTRODUCTION Philips Usfa B.V. is a subsidary of the Phi lips Concern. It is also a legally indepen dant company. This relation has enabled Usfa to create the ideal conditions for inno vative technology-an independant team of creative specialists with access to the most advanced technical and industrial research in the world. Philips Usfa has more than 35 years expe rience in research development and manu facture of electronica and electro-optical equipment. PHILIPS USFA’S PRODUCT RANGE IN CLUDES: 1) Thermal Imaging system 2) Passive night-vision equipment 3) Secure communications equipment 4) Closed cycle cryogenic coolers 5) Special energy-storage devices 6) Licensed products ' Ad 1) THERMAL IMAGING EQUIPMENT All objects emit thermal radiation. Thermal imaging equipment detects this radiation and processes the information to form a high-defenition image of the scene on a video monitor. It can penetrate fog, smoke and camouflage, and is effective at long and short ranges, in daylight and in total darkness. Philips Usfa’s current programme in cludes: - thermal aiming and observation systems for armoured vehicles - high-performance thermal cameras for shipborne fire-control systems - panoramic surveillance sensors - submarine search periscope.
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
Ad 2) PASSIVE NIGHT-VISION EQUIPMENT Philips Usfa manufactures a complete ran ge of passive night-vision equipment de signed for high performance, ease of ope ration and minimal maintenance. The range includes: - individual weapon sights - hand held surveillance viewers - driving periscopes for armoured vehic les - observation and gunnery periscopes with optional laser rangefinders. Ad 3) SECURE COMMUNICATIONS EQUIPMENT Philips Usfa's current range of secure com munications equipment is the outcome of 30 years of experience in this highly specia lised field. It includes: - sophisticated teleprinter terminals - voice - encryption systems - bulk encryption equipment - rugged, portable high-grade terminals.
6) Philips Usfa B.V. supplies: intergrated, modular systems and guaran tees their proper functioning. 7) Philips Usfa B.V. provides: - system management - system engineering - programming - training - maintenance and updating. 8) Philips Usfa's support service con sists of a complete life-cycle support such as: - consultancy - system management - integrated logistic support - spare parts - documentation - training - computer programming.
Ad 4) CLOSED CYCLE GRYOGENIC COOLER The unique Stirling-gryogenic cooler used in Philips Usfa thermal imaging systems is available on an OEM basis. This ultra-relia ble unit, which contains no rotating parts can be supplied in 'monoblock' or 'split' configuration to match any dewar/detector. Ad 5) SPECIAL ENERGY-STORAGE DEVICES The company also designs and manufactu res special reserve batteries for applicati ons requiring long storage life, instant acti vation and stable output over wide tempe rature ranges. These batteries are costumdesigned to match the power-supply requi rements of specific devices and have a guaranteed storage life of at least ten years.
Philips Usfa B.V. PHILIPS
87
Bescherming van heel Uw hebben en houden of het nu gaat om schepen, bruggen, raffinaderijen, opslagtanks, sluizen, boorinstallaties etc.
Ons straalponton ,, Cornell's T" langszij de Maassluis” in aanbouw bij Van der Giessen de Noord te Krimpen.
RZB: grote capaciteit in alles en een grote nauwkeurigheid voor ieder detail.
RZB'
stralend de beste 88
B.V. ROTTERDAMSCH ZANDSTRAALEN SCHILDERSBEDRIJF. Hoofdkantoor: E e m h a v e n w e g 26, 3 0 89 K G Rotterdam . Telefoon : (010) 4 2 9 .1 2 .8 8 (6 lijnen) T e le x : 28271. V estig in g e n te D intelm ond en V lissin g e n .
PRODUKT-INFORMATIE VERZORGD DOOR RZB
Bescherming van heel uw hebben en houden!
Als één van Nederlands grootste specialis ten op het gebied van staalkonservering is natuurlijk ook het scheepsschilderen en behandelen van offshorekonstrukties geen vreemde markt voor RZB. Dit blijkt wel uit onze referentielijst waarop we sche pen en booreilanden tegenkomen die va riëren van kleine demontabele cutterzui gers tot zeer grote sleephoppers, van binnenvaarttankers tot zeegaande chemica liën carriers, van vrachtschepen tot marine-fregatten, van modules tot volledige platforms.
Zowel overheidsdiensten als partikuliere ondernemingen behoren tot onze tevreden klantenkring, die zelfs niet aarzelen om te bellen om alleen maar een advies of om hun applikatieprobleem te bespreken. Wat kan en doet RZB nog meer? Naast pneumatisch stralen, vacuumstralen, werpstralen, betonstralen en shotpeenen, is zij gespecialiseerd in solvent free pro dukten, splashzone coatings, brandvertra gende systemen, duplex systemen, hygië nische afwerkingen, slijtlagen en dit alles door middel van metaliseren, airless spui
ten, elektrostatisch spuiten, kwastapplikatie of hot spray technieken en niet alleen ten behoeve van schepen en offshorekon strukties, maar ook van opslagtanks, brug gen, kranen, petrochemische installaties, hoogspanningsmasten, utiliteitsbouw, pij pen, platen en profielen. En dat alles zowel voor de nieuwbouw als ook voor de onderhoudsmarkt!
stralend de beste
Ook op dit gebied bestrijkt RZB dus de gehele markt of het nu gaat om de modern ste onderwatersystemen, de SPC’s, om tankcoatings, zinksilicaatsystemen of de meest eenvoudige verfsystemen. Belangrijk bij dit alles is dat RZB zich ervan bewust is, dat een goed verfsysteem staat of valt met de juiste bewerking van de on dergrond . Daarom ook is geen straalkarwei te groot voor RZB. Niet voor niets luidt één van onze motto’s 'Stralend de beste'. U hebt dus niet alleen te doen met een aannemer, die alles aan kan maar u koopt ook zekerheid en kwaliteit. Zekerheid dat wat aangevangen wordt ook afgemaakt wordt, eventueel ontvangt u een garantie voor het uitgevoerde werk en ons lidmaat schap van de VRO of het waarborgfonds schildersbedrijven betekent voor u minder risiko's voor aanspraken via de Wet Keten aansprakelijkheid. SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
Inderdaad:
Bescherming voor heel uw hebben en houden!
SCHOTTEL fo r progressive propulsion
SCHOTTEL System for Main Propulsion and as Manoeuvring Aids For more than 30 years the SCHOTTELSystem has proved itself throughout the world. More than 20 different types of SCHOTTELRudderpropellers are now being offered, covering a power range from 15 to 4,500 kW (20 to 6,150 hp). SCHOTTEL-NAVIGATORS, SCHOTTEL Transverse Tunnel Thrusters, SCHOTTEL-Bow-Jets, SCHOTTEL-ConeJets, and SCHOTTEL-Pump-Jets round off the versatile palette of SCHOTTEL propul
sion and steering units for main propulsion and as manoeuvring aids. The SCHOTTEL System requires a minimum of mainte nance. It is economical and space-saving. To date over 16,000 SCHOTTEL units with more than 5 million hp propulsion capacity have been delivered all over the world. If you plan a newbuilding or conversion - get in touch with one of the world-wide SCHOTTEL com panies or representatives.
SCHOTTEL-WERFT, D-5401 Spay/W est Germany, Telephone (02628) 610, Telex 8 62 867 SC H O TTE L-N E D E R LA N D B .V ., S a tu rn u s s tra a t 89, T h e H ague, Tel. (070) 814731 The SCHOTTEL-Group o ffe rs w orld-w ide sales and service throu g h SCHOTTEL com panies located in Ham burg, The Hague, London, Paris, Genoa. Basle, Vienna, Miami, Buenos Aires, Porto Alegre, Singapore, Sydney, and representatives th ro u g h o u t the w orld.
90
PRODUKT-INFORMATIE VERZORGD DOOR SCHOTTEL
SCHOTTEL Progressive propulsion for any kind of vessel Notable economy and outstanding op erational safety improvements in the va rious kinds of shipping have been achieved by use of SCHOTTEL propulsion units, that have proved themselves for more than 30 years. The SCHOTTEL system is supplied in numerous variants of combined steering and propulsion units for a large power range. SCHOTTEL-Rudderpropellers (SRP) with fixed or c.p. propellers rotable through a full 360°, SCHOTTEL-Navigators, SCHOTTEL-Transverse Thrusters and SCHOTTEL-Jet-systems for main propulsion and as manoeuvring aids, meet the multiple requirements of inland and sea navigation and in the offshore-industry. Maximum manoeuvrability and optimum efficiency, operating economy and easy maintenance are the attributes of the prop ulsion units designed and constructed under the quality mark SCHOTTEL. SCHOTTEL-Rudderpropellers The SCHOTTEL-Rudderpropeller (SRP) is a combined propulsion and steering unit. The engine power is transmitted through bevel gears to the propeller. In addition the propeller can be rotated through 360° to provide steering, so that full thrust is avail able in any direction. This system has been used worldwide for some 30 years, provid ing maximum manoeuvrability with full power for ahead and astern. The units cur rently available range from 15 kW - 4500 kW (20 HP - 6150 HP). SCHOTTEL-Rudderpropellers are in ser vice for main propulsion, propulsion assist ance and dynamic positioning in all fields of shipping, including the offshore industry. SCHOTTEL-Navigators The SCHOTTEL-Navigator is a complete propulsion package. The chassis, which can also be constructed to serve as a daily fueltank, carries the totally enclosed prop ulsion system. A dieselengine, electric or hydraulic motor are suitable for use as prime movers. The clutch between the en gine and the rudderpropeller transmits the power through an elastic coupling and a universal shaft to the SRP. Installation time for SCHOTTEL-Navigators is kept to a minimum because it is essentially self-con tained. The term ’SCHOTTEL-Navigator’ has for more than 30 years been the synonym for a reliable compact heavy duty SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
marine propulsion unit for the propulsion of almost any type of vessel. To fill the gap between the large SCHOT TEL-Navigator units transmitting powers up to 1,000 HP (750 kW) and the common outboard motors equiped with gasoline en gines, the SCHOTTEL-Mine-Navigator is designed and constructed to the same prin ciple. SCHOTTEL-Thruster units For the marketing of large thrusters for ocean-going vessels, a joint venture of SCHOTTEL and LIPS United B.V. was founded 1981. This company in The Hague is named SCHOTTEL-LIPS B.V. SCHOTTEL-LIPS-Thrusters are constructed of standard components, such as upper and lower gearbox, stemsection and steering gear, to suit customer s specific require ments. The heart of the system - the SCHOTTELLIPS right-angle drive - may be fitted steerable or non-steerable, retractable or nonretractable, for vertical or horizontal drive, with fixed or controllable pitch propeller. Units are presently available for up to 4500 kW. SCHOTTEL-Jet propulsion In the growing field of steerable right-angle
drives SCHOTTEL-Rudderpropellers have become a leading position. Units have not only been installed in vessels of normal draft, but also in shallow draft vessels. Their only drawback when installed in shal low draft vessels is that they have to be installed in so-called wells', which some times causes a considerable loss of displacement which in many cases is not always available in the forebody of the ship or boat, and careful weight distribution has to be made to put the vessel on an even trim. To overcome this drawback SCHOTTEL developed and manufactured - on the basis of its comprehensive experience withtn the propulsion field - the SCHOTTEL-Jet-systems. The operating principle is that a propeller rotates in a horizontal plane and forces water into an elbow guid ing the jet stream into a horizontal thrust direction. The elbow can be rotated about its vertical axis by means of the steering gear, and the direction of the jet stream can thus be horizontally controlled through 360°. The SCHOTTEL-Jet-units can be driven by any available power system. SCHOTTEL-Pump-Jets (360° steerable), SCHOTTEL-Bow-Jets (two directions of thrust), and SCHOTTEL-Cone-Jets (360° steerable) become more and more impor tant for main propulsion and as manoeuv ring aids. Steering systems and Standard boats complete the Production Programme of the International SCHOTTEL Group with its headquarters in Spay/Rhein (F.R.G.) and subsidiaries and agencies at all important shipping centres in the world.
The world's most powerful Rudderpropellers, built by SCHOTTEL have been sent recently to Trieste (Italy). They are to be installed in the world’s largest crane vessel which is under construction at the yard of Fincantieri Cantieri Navali Italiani S.p.A. The power input of the drive giants’ with the type designation S 4500 ZSU is up to 7000 hp at 720r.p.m. The crane vessel s.s.c.v. MICOPERI will be equipped with four of these propellers.
91
the marine flooring specialist Smits Neuchâtel is dè erkende specialist op het gebied van maritieme vloeren. Levert accommodatievloeren, buitendekbedekkingen, ruimvloeren en conserveringen.
scheepsaccommodatievloeren DURAC ondervloeren op latexbasis THEINA thermisch isolerende ondervloeren FIPRA brandveilige ondervloeren SOPRA geluidwerende ondervloeren FASPRA EN brandveilige geluidwerende SOLASDEK-R.W. klasse A-60 ondervloeren Tevens Linoleum - PVC. - Rubber en/of Tapijtvloerbedekkingen CERAMIC D.G.H. tegelvloeren op zandcement en latex-cement ondervloeren VESPA kunststofvloeren in natte ruimten HYPOX gietvloeren op epoxybasis SOLVOLAN gietvloeren op polyurethaanbasis
scheepsbuitenbedeken
tankconserveringen
DURAS HYPOX POLYDEK SOLVOLAN-S
PERMANENT RS
asfaltcovering covering op epoxybasis covering op polyurethaanbasis covering met rubbergranulaat en kunst stot afwerklaag,
BITUFILM AB
HULLFAIRING
warme bitumen voor ballast en drinkwatertanks koude bitumen voor droge tanks en achter beschieting compound voor roeren, uithouders, beunwanden, enz.
scheepsruimvloeren
Vertegenwoordigingen
SERDAT SERDAC
In Nederland vertegenwoordigen wij: DURASTIC LTD, Burdett Road, Londen E14
asfalt met roosterwapening op tanktop koelruimvloeren
Wilt u meer weten over het leveringsprogramma? Graag zenden wij u uitvoerige documentatie plus certifi caten, die stuk voor stuk een aanbeveling zijn. Of wilt u meteen een gedegen advies voor een bepaald project? Wij zijn niet verder weg dan uw telefoon.
smits neuchatel bv
,
marconibaan 36, postbus 30, 3430 aa nieuwegein
92
telex 47615
telefoon: 03402 - 3 20 04
PRODUKT-INFORMATIE VERZORGD DOOR SMITS NEUCHÂTEL B V.
scheepsvloeren
een vak apart
scheepsdekken Scheepsdekken stellen zeer specifieke eisen aan de afwerking, zowel in de ac commodatie als daarbuiten. Smits Neuchatel heeft hiervoor een breed scala van produkten en diensten. Accommodatievloeren: van latex-ce ment vloeren tot hoog gekwalificeerde vloerafwerkingen, brand- en geluidwerend, decoratief afgewerkt met p.v.c., li noleum, tapijt, rubber of naadloze kunst stof vloeren, dan wel met keramische of marmer tegels. Speciale afwerkingen worden daarbij niet uit de weg gegaan, zoals blijkt uit de interieurfoto's van de ferry 'Koningin Beatrix',
Scheepvaartinspectie, en zijn goedge keurd door vooraanstaande classificatiebureau's. Smits Neuchatel heeft een jarenlange ervaring in de nieuwbouw- en renovatiesector, ter land en ter zee. En: Smits Neuchâtel is nooit verder weg dan de dichtsbijzijnde telefoon! Buitendekken: hiervoor beschikt Smits Neuchâtel over kwalitatief hoogwaardige
kunststofbedekking op basis van rubber, polyurethaan en epoxy. Zo werd onder andere voor de Koninklij ke Nederlandse Marine het Hypox Dekbedekkingssysteem ontwikkeld: een se rie van op elkaar afgestemde produkten, waardoor dekken onder alle klimatologi sche omstandigheden een sterke, corrosiebestendige, brandwerende en antislip bescherming krijgen.
Alles wat op maritiem gebied gebouwd wordt kan door Smits Neuchatel voor zien worden van dek- en vloerbedekkin gen: booreilanden en andere offshoreconstructies, supply-vessels, sche pen voor de grote vaart, sleepboten, hektrawlers, binnenvaart-, kustvaart- en passagiersschepen, fregatten, onderzee boten. De afwerkingen zijn grotendeels ontwik keld in eigen laboratorium, in nauw overleg met TNO en de Nederlandse
smits neuchatel bv postbus 30 - 3430 aa nieuwegein marconibaan 36 - 3439 ms nieuwegein telefoon 03402 - 3 20 04 - telex 47615 SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
93
PROBLEEMLOOS LASSENSmitweld heeft precies die elektroden en toevoegmaterialen die het meest geschikt zijn voor üw werk. Ga maar na: w e maken bij voorbeeld meer dan 80 verschil lende elektroden, poeders en gevulde draden. Allemaal grondig getest en zeer constant in gedrag. En mocht u toch een keer voor een probleem staan, dan adviseren wij u graag. Want dank zij gedegen research en rijke ervaring blijken w e steeds weer in staat een oplos sing te vinden. Smitweld dus. Niet alleen als het gaat om de juiste elektroden, gevulde draden o f poeders. Ook op het gebied van apparatuur kunnen wij u uitstekend van dienst zijn.
SMITWELD Member of the NORWELD Group Smitweld bv. Postbus 255,650 0 A G Nijmegen. Tel. 080 - 522911.
PRODUKT-INFORMATIE VERZORGD DOOR SMITWELD B.V.
SMITWELD Bij na 60 jaar laservaring
De naam SMITWELD klinkt velen die werk zaam zijn in de lasindustrie, vertrouwd in de oren. Dat is niet zo verwonderlijk, want dit Nijmeegse bedrijf is de grootste producent van laselektroden en -poeders in Neder land. En SMITWELD draait al zo’n kleine zestig jaar mee. In West-Europa bezit het bedrijf een sterke positie op het gebied van lastoevoegmaterialen voor speciale toe passingen ; denk daarbij aan roest- en hittevast staal, duplex staal en cryogene instal laties. In het begin van de jaren ’80 ontwik kelde SMITWELD het EMR-Sahara con cept: lasmateriaal met een bijzondere on gevoeligheid voor vocht. Het leveringsprogramma omvat verder een breed scala aan stroombronnen en randapparatuur voor handlassen, MIG-, TIG-, plasma- en OP-lassen. Een belang rijk aandeel van de bedrijfsactiviteiten speelt zich af rondom de innovatie van Produkten en processen, en het begelei den van afnemers die zich willen richten op mechanisering en automatisering van de produktie, bijvoorbeeld met sensortechniek. De computergestuurde lassimulator die SMITWELD geheel in eigen beheer heeft ontwikkeld, wordt door instituten en bedrijven over de gehele wereld gekocht. SMITWELD levert ook een compleet as sortiment MIG- en TIG-draad, apparatuur voor het positioneren en manipuleren van werkstukken, flexibele systemen voor het afzuigen van lasrook, en allerhande hulp middelen. Een aparte afdeling houdt zich
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
bezig met ontwikkelen van externe cursus sen op lastechnisch gebied, waarbij het accent op de praktische toepassing ligt. Lastoevoegmaterialen en -machines van SMITWELD vinden hun weg naar uiteenlo pende takken van industrie. Een greep uit het afzetgebied: de bouw van chemicaliëntankers, de schuiven van de Oosterscheldedam, dikwandige pijpsystemen van du plex staal, een twintig meter hoge roestvaststaal plastiek, boorplatform in de Noordzee. Het in 1927 opgerichte bedrijf telt nu rond de vierhonderd medewerkers. Twintig pro cent daarvan is werkzaam in de sfeer van research & development. Dat percentage illustreert het grote belang dat SMITWELD hecht aan het vooruitlopen op nieuwe ontwikkelingen in de verbin dingstechniek. Zo wordt de know how, op gebouwd in meer dan een halve eeuw, geconsolideerd en verder versterkt. De recente geschiedenis van het bedrijf kenmerkt zich door modernisering, de ont plooiing van nieuwe activiteiten en een toe nemende oriëntatie op de internationale markt. In 1981 werd een nieuw fabrieks complex geopend dat een van Europa's modernste laslaboratoria huisvest. Voor grondstoffenanalyse is onder andere een uiterst nauwkeurige emissiespectrometer beschikbaar. In hetzelfde jaar nam de produktie-afdeling een automatische menginstallatie in gebruik voor de aanmaak van de bekleding der laselektroden. De computer-
besturing daarvan garandeert een con stante en precieze reproduceerbaarheid. Behalve de fabrieken bevinden zich in Nij megen ook de verkooporganisaties voor binnen- en buitenland; regionale kantoren zijn gevestigd in Amsterdam, Groningen en Barendrecht. In Duitsland en België opere ren zelfstandige verkooporganisaties. In 1981 trad SMITWELD toe tot Norgas AS, een internationaal opererend lasconcern waarvan het hoofdkantoor in Oslo is geves tigd. Dit concern maakt thans onder de naam NORWELD deel uit van de Noorse Hafslund-groep. In 1986 werd de groep verder versterkt met het Britse WELDING RODS LTD. In 1983 maakte SMITWELD in samenwer king met het Amerikaanse ALLOY RODS een begin met de produktie van gevulde draad voor de Europese markt. Voor dit betrekkelijk nieuwe MIG-toevoegmateriaal openen zich veelbelovende perspectie ven, onder andere in Oost-Europa. De markt voor lasmaterialen en -machines is tot op zekere hoogte speelbal van con juncturele en structurele factoren. In welke richting de offshore-industrie bijvoorbeeld zich ontwikkelt, is onzeker. De markt als geheel vertoont onmiskenbaar de neiging tot inkrimpen. Toch gaat SMITWELD met vertrouwen op weg naar het jaar 2000; het kennisniveau, de strategie rustend op het beginsel van 'total quality’ en de innovatie van produkten vormen een solide basis voor continuïteit op de middellange termijn.
95
Steel hatchcovers and Ro-Ro equipment
Transport Efficiency, 20 years specialized in actual design and construction of: Hatchcovers for all types of ships of all sizes. Doors, Bow-visors, Ramps etc. for Ferries. Link-Spans etc.
Transport Efficiency 20 years of experience in design and construction.
96
'P€|
■
I
Transport Efficiency b.v. Regattaweg 11 9731 AJ Groningen The Netherlands Tel. 050-413000 Telex 53927 te nl Telefax 050-411592
PRODUKT-INFORMATIE VERZORGD DOOR TRANSPORT EFFICIENCY
Transport Efficiency B.V. Stalen scheepsluiken-Link-Spans
O ve rzich t fabricage van scheepsluiken. Hydraulic Folding: aandrijving ingebouwd in luik.
Luiksysteem v o o r een laadhoofd van 70 x I 3 meter.
Bovenaanzicht van een luikenkraan. Deze luikenkranen kunnen zow el in elektro-hydraulische alswel in diesel-hydraulische uitvoering gebouw d w orden.
CAE
(C om pute r A ided
Engineering)
In de
praktijk
O n tw e rp v o o r een Link-Span in Afrika.
SCHIP EN WERF INFO-SPECIAL NOVEMBER 1986
97
een voorsprong inkwaliteiten i^ K o n a a *
r X , ' l V A N V O O R D E N G IE T E R U
G ie tw e rk e n .
albuizen
CXi P R O M A C
VOORDEN ^schroeven
O
) 1V A N V O O R D E N R ^
BATlE
— r ^ r o e U e ^ at,eS
t
aXvANVOORDENGBOEP V A N VO O R O E N /H O D I
P R O M AC :
98
POSTBUS 67.5300 AB ZA LT B O M M E L TEL.04180 12654-TELEX 50140 POSTBUS 22,5300 A A ZA LT B O M M E L TEL 04180 13855‘ TELEX 50110
PRODUKT-INFORMATIE VERZORGD DOOR VAN VOORDEN GROEP B.V.
De Van Voorden groep, een dynamisch viermanschap Voortgekomen uit de dynastie van smeden werd in 1912 de huidige gieterij Van Voorden opge richt. Het bedrijf dat alleen gietwerk op bestelling maakte - wat overigens nog zo is - ging zich meer en meer toeleggen op de vervaardiging van scheepsschroeven. Destijds betrof het giet ijzeren scheepsschroeven, bestemd voor hulpmotoren die in de zeilvaart haar intrede deden. Van Voorden is met zijn tijd meegegaan en groeide uit tot wat het nu is: De Van Voorden Groep, bestaande uit: de gieterij VAN VOOR DEN GIETERIJ B.V., het schroeven reparatie bedrijf VAN VOORDEN REPARATIE B.V., HODl ZALTBOMMEL B.V. voor straalbuizen en PROMAC B.V. voor waterbehandeling, koudetechniek en maritieme installaties voor voortstu wing en manoeuvreren. Kwaliteitsgietwerk
Van Voorden is zijn aanvankelijke specialisme trouw gebleven. Het bedrijf heeft zich in feite steeds meer gespecialiseerd en levert nu op vele marktgebieden gietwerk door de metallurgische know how en de speciale giettechnieken, maar evenzeer door de toepassing van hoogwaardige materialen. Naast gietijzer, slijtvaste legeringen en brons levert Van Voorden ook gietstaal en roestvaststaal in diverse kwaliteiten. Hierdoor is er een ruime keuze ontstaan in materialen, afgestemd op gebruikstoepassingen, levensduur en kostenaspekten, Meedenken met over specifieke eisen en proble men is voor de technische staf een vanzelfspre kend feit geworden. Zo worden - met het onder werp als vertrekpunt - randvoorwaarden als vormgeving, wanddikte, mechanische eigen schappen en keuringseisen vooraf onderzocht en doorgesproken. Indien gewenst levert Van Voorden onder keur van alle erkende classificatiebureaus, zoals Bureau Veritas, Lloyd's Register of Shipping, Germanischer Lloyd, Det Norske Veritas en American Bureau of Shipping. De produktiecapaciteit bestaat uit scheeps schroeven met een diameter tol 4 meter, gietdelen tot 15 Ion netto, gloeicapaciteit tot 42 Ion en eigen machinale bewerking mei kotter- en carousselbanken tot 4600 mm. diameter, Scheepsschroefreparatie
Een schip moet varen. Vandaar dat er bij repara ties aan een scheepsschroef nooit langer moet worden gewerkt dan strikt noodzakelijk .... maar ook geen minuut te kort. Een slechte overhaaste reparatie kan U duur komen te staan. Denkt U maar eens aan de mogelijkheid van zware trillin gen en teveel brandstofverbruik. Voor zorgvuldig repareren is er altijd voldoende tijd nodig. Maar die kan, als het moet, zo kort zijn dat men er op kan wachten. Van Voorden Reparatie B.V. is een flexibel be drijf. Zonodig wordt ook in het weekeinde ge werkt, echter altijd met vakbekwame specia listen. Lassen gebeurt autogeen als het om mangaanbronzen schroeven gaat. Nikkel-aluminiumbronzen en roestvaststalen schroeven worden met een vlamboog elektrisch en halfautomatisch gelast, terwijl hel bedrijf levens over de techni sche vaardigheid beschikt om aluminium schroeven te lassen. De Van Voorden Reparatie B.V. heeft op 8 plaat sen in Nederland, België, Ierland en Duitsland een vestiging waar schroefreparaties kunnen worden uitgevoerd. Het hoofdkantoor en Cen trale werkplaats is gevestigd in Zaltbommel. De andere vestigingen bevinden zich in Alblasserdam, IJmuiden, Vlaardingen, Delfzijl, Rupelmonde (België), Gustavsburg (BRD) en Dublin (IRL). SCHIP EN WERF INFO-SPECIAL. NOVEMBER 1986
De reparatiebedrijven voeren ook expertises uit en door de nauwe samenwerking met de techni sche afdeling voor ontwerp en advies van de schroeven gieterij, kunnen optimale reparaties worden uitgevoerd. Straalbuizen
Hodi Zaltbommel B.V. is in 1957 begonnen met het ontwerpen van straalbuizen. De stringente eisen die Hodi aan het laswerk en de maatvoe ring stelt, heeft vanaf dit jaar tot gevolg gehad dat Hodi straalbuizen zonder uitzondering in het eigen staalconstructiebedrijf te Leiden werden en worden gebouwd. Straalbuizen dienen ter verhoging van de trek kracht waardoor een brandstofbesparing tot 30 procent kan worden bereikt. Mede daardoor heeft de straalbuis na de energiecrises aan ter rein gewonnen. Daarom worden de straalbuizen veelvuldig toe gepast op bevoorradingsschepen, sleepboten, vissersvaartuigen, baggervaartuigen, binnen vaartschepen en duwboten. Waarbij wat de bin nenvaart betreft moet worden opgemerkt dat de specifieke eigenschappen ook in deze tak op merkelijke voordelen hebben opgeleverd. Voor schepen waaraan hoge eisen worden ge steld op het gebied van manoeuvreren, levert Hodi ook straalbuisroeren (draaibare straal buizen). De voordelen van een dergelijke installatie ko men het beste tot uiting op bijvoorbeeld haven sleepboten. Promac B.V.
Promac B.V. heeft zich gespecialiseerd op het toeleveren van hoog gekwalificeerde produkten voor de scheepvaart en de offshore industrie. Om hierin effectief te functioneren bestaat Pro mac B.V. uit drie afdelingen t.w.: Promac Maritiem
Deze afdeling levert voor voortstuwing verstel bare schroefasinstallaties voor alle typen sche pen van 100 tot 50.000 PK. Ter verbetering van de manoeuvreerbaarheid en positionering van de schepen worden dwarsschroeven in diverse uitvoeringen en vermogens geleverd. Daarbij is menig schip door Promac B.V. uitge rust met het Promac slabilo roer, dat borg staat voor een kleine draaicirkel en een hoge draai snelheid van het schip. De Promac hydraulische stuurmachines heb ben hun weg gevonden naar alle scheepstypen voor zee-, kust- en binnenvaart. De know-how die opgebowd is bij de duizenden installaties die in bedrijf zijn wordt weer gebruikt voor de stuurmachines die Promac levert. Voor al deze installaties staan vakbekwame ser vice-monteurs klaar om indien nodig, snel en 'world-wide' service Ie verlenen. Promac Waterbehandeling
Promac Waterbehandeling staat borg voor schoon en helder water. De Promac drinkwaterinstallaties voldoen ruimschoots aan de eisen van de Wereld Gezondheids Organisatie. Sinds 1980 levert Promac o.a. aan de offshoreindustrie. De Promac Aquaset waterontzoutingsinstallatie waarmee zuiver drinkwa ter en/of proceswater direkt uit zeewater of brak water gemaakt kan worden, wordt veelvuldig geleverd voor offshoreprojekten. In Noord-West Europa was Promac één van de eersten die dergelijke apparaten, gebaseerd op de techniek van omgekeerde osmose, ontwik kelden op de markt bracht in een volledig PLC gestuurde industriële uitvoering. In 1980 werd de eerste installatie aan de NAM geleverd. Vanaf 1982 werd in toenemende mate aan ande re, vooraanstaande, offshore bedrijven gele verd. Zowel op bestaande platforms als voor nieuwbouweenheden en soms ook voor vervan
ging van de bestaande installatie van ander fabrikaat. Deze offshore klanten van Promac zijn over het algemeen gevestigd in de landen rond de Noord zee, die regelmatig met repeatopdrachten zijn gekomen. Het is algemeen bekend dat de eisen die aan de kwaliteit van offshore installaties gesteld worden bijzonder hoog zijn. Enkele maatschappijen zijn er zelfs toe overgegaan om aan de 'watermakers' de hoogste kwaliteitseisen te stellen vol gens BS 5750. De produktgroep Waterbehan deling van Promac kan als één van de zeer weinigen hieraan voldoen. Dit heeft ertoe geleid dal met name in 1984 en 1985 aanzienlijke contracten zijn uilgevoerd voor de meest vooraanstaande operators. Na tuurlijk is ook hier de algemene teruggang in de offshore merkbaar, maar Promac afdeling W.T. levert ook aan de schala van andere markten. Het totale pakket van toepassingen geeft het volgende beeld: - scheepsbouw/-vaart en offshore - civiele projekten en hotels - algemene industrie - medische toepassingen - high tech industrie (ultra puur water) - noodomstandigheden en milieutoepassingen - defensie en marine Bijzondere aandacht verdient de Mobiele Drink water Installatie (MODU) voor noodomstandig heden zoals die in samenwerking met TNO PML is ontwikkeld voor de overheid. Met deze zeer geavanceerde installatie kan uit praktisch al het voorkomende oppervlaktewater ongeacht de aard en hoeveelheid van de veront reinigingen, inclusief de gevaarlijke NBC be smettingen (waaronder radio-actieve verontrei niging), zuiver drinkwater geproduceerd worden. Deze MODU is gedurende 2 jaar intensief en met succes beproefd en het spreekt voor zich dat hiervoor alom veel belangstelling is. Promac koudetechniek
Promac Koudetechniek heeft een aantal specia lisaties, Voor de scheepvaart en dan specifiek voor de visserij, heeft Promac een standaardrange koe linstallaties voor boomkorkotters ontwikkeld. Daarnaast is er ook de bekende scherlijsinstallatie met een capaciteit van 600 tot 4500 kg. per etmaal. Bijna de gehele Nederlandse en Belgi sche kottervloot is uitgerust met een dergelijke installatie. De installaties zijn thans zodanig geautomati seerd dat bij eventuele calamiteiten de compressorsets automatisch overgeschakeld worden. Een elektronische regelunit, geïnstalleerd in de brug, geeft in één oogópslag de werking van de installatie aan, alsmede de temperaturen in het visruim. Voor andere typen visserijvaartuigen, zoals shrimpers, purse seiners en vriestrawlers heeft Promac voor elk type schip en vistechniek een koel-of vriesinstallatie, perfekt op maat. Meedenken over de specifieke wensen van de cliënt en de marketing van het gevangen produkt is voor Promac bij de keuze van een installatie erg belangrijk. Aansluitend op deze aktiviteiten heeft Promac een lijn van koel-, vries- en scherfijsinstallaties voor het stationaire gebeuren. Complete, geïntegreerde koudelijnen die exact zijn uitgelegd op de processing van het product, d.w.z. van koeltanks voor ontvangst tot het vrie zen van fillets in een bandvriezer. Voor visserijhavenfaciliteiten levert en instal leert Promac complete ijsfabrieken met silo's en weeginstallaties. Dit soort installaties zijn sinds 1982 operationeel in Bahrein, Zwitserland, Spanje en Portugal. Thans zijn meer dan 750 scherfijsinstallaties wereldwijd geïnstalleerd, waarvan ca. 50 stuks op stationare lokaties met daarbij behorende silo's.
99
W BLOKSMA MEMBER OF THE BLACKSTONE EUROPEAN GROUP
Draaibrugweg 15 Industrieterrein De Vaart 1 1332 AB A L M E R E . H O L L A N D Postbus 1003 - 1300 BA Almere Tel. 03240-20214 Telex 40848 Telefax 03240 - 20439
WARMTEWISSELAARS voor scheepvaart en industrie
Oliekoelers w atergekoelu *'
W aterkoelers^»watergekoeid
Gecombineerde Water/Olie-koelers Lucht/Gas-koelers watergekoeid
Olie- en water verwarmers m .b .v . stoom en:
Butterworth heaters Condensors watergekoeid
P.F.-K oelers de kom pakte lichtgew ichtkoeler
Beunkoelers Tussen- en nakoelers voor compressoren Leverbaar m et ontw erpcode T E M A C , B o f R , A SM E Section V I II en Stoom w ezen. A fnam e volgens de eisen van alle erkende classificatie-bureaus.
100
Technisch Handelsburo
L(R(RUUJ LAND- en SCHEEPSINSTALLATIES
W. A. Scholtenweg 55 - 9607 PJ FOXHOL - Telefoon 05980 - 96039 en 91901
Hydraulische installaties Centrale verwarming Airconditioning Koeltechniek Elektrotechnische installaties Dieselmotoren-aggregaten
Technisch Handelsburo
N
A U
T I S E R
V O
Gas-, water-, sanitair- en loodgieterswerken Pijpleidingen Konstruktiewerken Bedrijfsverwarming Lens- en ballastsystemen
B L R IR U U U b v
Industrieweg 64 P.O. Box 19 2650 AA BERKEL HOLLAND Tel. 01891-3955* Telex 26774 NAUTI-NL M A R IT IM E : For all yourshipshydraulicsand pneumatics IN DUSTR Y: For all your nautical, industrial and technical instruments
OWN SERVICE AND REPAIR FACILITIES AND SERVICEMEN AVAILABLE
VERTEGENWOORDIGT
TKANSMAItK HYDKOTECHNIEK Pampuslaan 42-46 1382 JR Weesp Industrieterrein Noord Nederland
<j|>
Telefoon 02940-15133 Int. + 31 2940 15133 Telex 12173 (trhyd nl)
Naast verkoop van hydraulische komponenten en ontwerp, fabricage en verkoop van hydrauli sche aggregaten en systemen, voert Trans mark Hydrotechniek de alleenvertegenwoordi ging van ondermeer:
VICKERS SYSTEMS kompleet hydraulisch programma
"ROUND THE WORLD AND AROUND THE CLOCK" MORE THAN 3000 VESSELS SAILING AROUND THE WORLD WITH OUR INSTALLED EQUIPMENT
STERLING HYDRAULICS LTD. kompleet programma inschroefpatronen
DOWTY HYDRAULICS UNITS intrinsiekveilige kleppen en servoventielen
COMMERCIAL SHEARING INC.
WÆITIRStHIID
axiaal plunjerpompen- en motoren
SAI S.A. radiaal plunjermotoren
snijringkoppelingen
CHRISTIE HYDRAULICS LTD. hydraulische accumulatoren
MONTAN HYDRAULIC GMBH hydraulische cylinders
DE JUISTE KOMBINATIE
SCHIP EN WERF INFO-SPECIAL, NOVEMBER 1986
101
M A C H IN E FA B R IE K VAN ZETTEN B.V. R O TTER D A M T E L 010-4194922 - VO O R A L UW K R U K A S S E N - EN R O N D S L IJP W E R K -
Slijpcapaciteit - krukassen - walsen - assen * Lengte 9200 mm * Diameter 2000 mm * Gewicht 25 ton
O n ze kw aliteit - U w zekerheid Machinefabriek van Zetten B.V. is reeds meer dan 60 jaar specialist op het gebied van krukassen- en rondslijpwerk. Door een recente uitbreiding van het machinepark is de slijpcapaciteit vergroot tot een lengte van 9200 mm tussen de centers en een diameter van bijna 2 meter, zowel voor krukassen, walsen als assen. De gigant welke dit grote werk aan kan is een in WestDuitsland vervaardigde machine van absolute topkwa liteit van het befaamde huis Naxos-Union, met een eigen gewicht van ca. 100.000 kg. Op deze reusachtige machine kunnen krukassen, wal sen en assen tot een gewicht van 25 ton met zeer grote nauwkeurigheid geslepen worden, waarbij ondanks de grote afmetingen van de werkstukken nauwkeurighe den tot enkele duizendste van een milimeter behaald kunnen worden. Deze nieuwe machine is de grootste krukassen-slijpbank van Nederland en behoort tot één der grootste machines van West-Europa en zij is daardoor een opvallende aanwinst voor de Nederlandse industrie. De enorme, in 60 jaar verwon/en "know-how" van Machinefabriek van Zetten B.V. maakt het mogelijk om aanvankelijk vaak bijna onmogelijk lijkende opdrach ten toch te realiseren. Of het nu gaat om het slijpen van een asje van 100 mm lengte of een krukas van meer
102
dan 9 meter lang; Machinefabriek van Zetten heeft een pasklare oplossing in huis, waarbij ’’ouderwetse servi ce” , ondanks onze moderne technieken, hoog in het vaandel staat, in dienst van de scheepvaart, industrie en wegtractie. Machinefabriek van Zetten B.V. werkt dagelijks onder keur van o.a. Lloyd’s Reg., Bureau Veritas, A.B.S. en de Scheepvaart Inspectie. Turbine-assen, schroefassen, papierwalsen, krukas sen, nokkenassen, kunststof walsen, ankers voor elek tromotoren en dergelijke zijn regelmatig tussen de centers van de slijpbanken van Machinefabriek van Zetten B.V. te vinden. Wij krijgen door specialiteit en verworven faam werk stukken uit bijna alle werelddelen voor slijpbewerking toegeleverd. Andere activiteiten van Machinefabriek van Zetten oa. hohnen, fijnboren, vlakslijpen, draaien. Een informatie-brochure over de activiteiten van Ma chinefabriek van Zetten wordt op verzoek gaarne toe gezonden. Machinefabriek van Zetten B.V. Beukendaal 4 3075 LG Rotterdam Tel.: 0 1 0 -4 1 9 49 22 Telex: 28986 mfzet nl
Ruime vervuilingsreserve, robuste konstrukties en lange levensduur hebben de NRF warmtewisselaars als kenmerk in de baggerij.
THERMAL ENGINEERING NRF Thermal Engineering, de industriële dochter van de NRF Holding, heeft zich in de loop van meer dan 20 jaar gespeciali seerd in warmtewisselaars voor scheep vaart, industrie en offshore. De voornaamste produkten voor de scheepvaart zijn: • Oliekoelers en zoetwaterkoelers • Bunkoelers • Platenkoelers • Zeewaterverwarmers, brandstofverwarmers, CV-waterverwarmers • Dumpcondensors en nakoelers • Gesloten koelsystemen voor elektro motoren/generatoren • Radiateur-units voor generatorsets. Voor elke motorkamerinstallatie kan NRF
een compleet warmtewisselaarprogramma aanbieden. Van voorverwarmers tot centrale-koelers worden alle componen ten op elkaar afgestemd, zodat een optima le verhouding investering-brandstofverbruik kan worden bereikt. Naast het standaardprogramma ronde warmtewisselaars levert NRF ook toestel len volgens de regels van TEMA C, ASME, Stoomwezen, LRS, enz. Voor de binnenvaart en kustvaart levert NRF - al meer dan 20 jaar - bunkoelers. Compakte inbouw, grote vervuilingsreserve, lange levensduur en hoge restwaarde zijn de kenmerken van NRF bunkoelers. Ook in de baggervaart heeft NRF een goe de naam opgebouwd.
Tot het produktieprogramma behoren ook de z.g. elektro-koelunits. Grote elektrische machines behoeven in tensieve koeling om de ijzer- en koperverliezen af te voeren. Koeling d.m.v. (zoute) buitenlucht kan schade brengen aan het interieur; daarom vinden NRF koelunits steeds meer toepas singen. De unit bestaat uit een dooskonstruktie met luchtflensen - passend op de machine een E-motor met waaier en een lucht koeler. Een luchtstroom wordt om het anker en de polen gevoerd, neemt daar warmte op en geeft die af aan de ingebouwde lucht koeler. Afhankelijk van het type machine, kan een koolstoffilter worden ingebouwd. Door haar brede programma, lange erva ring en korte levertijden staat de NRF sterk in de markt van de scheepvaart. De NRF organisatie, met meer dan 300 medewer kers, is Uw vertrouwen waard.
Kuiperstraat 2 Postbus 307 5400 AH UDEN Telefoon 04132-68855 telex 74802 nrfte nl
SCHIP EN WERF INFO-SPECIAL. NOVEMBER 19S6
103
LIJST VAN ADVERTEERDERS
AEG Nederland N.V........................... 66 en 67 AGAM Motoren B.V.................................... 14 Alfa-Laval 3 omslag Armacon Ocean Transport B.V................. 23 Baan Hofman ............................................. 34 Benes Roer- en Stevenbouw B.V............. 45 62 Bennex Holland B.V.................................... Beverol B.V.................................................. 10 Blaauw, Technisch Handelsbureau ......... 101 100 Bloksma B.V................................................ Brand P. J............................................ 68 en 69 ECCE B.V............................................. 70 en 71 Econosto B.V............................................... 54 Electrolux B.V.............................................. 57 Facinex B.V.................................................. Fritimco B.V................................................. Geveke Motoren B.V.......................... Gusto Engineering ............................
72 en 73 74 en 75
Helder & May B.V....................................... Hoop Groenpol B.V., De ........................... International Engineering S ervices
24 50
18 41
Nautisch College Noorderhaaks ..... 82 en 83 Navalconsult B.V............................... 2 omslag Nieland Groningen B.V............................... 27 46 Niestern Sander B.V................................... NRF Thermal Engineering ........................ 103 Okay B.V..............................................
84 en 85
Philips USFA B.V................................ 86 en 87 Pikker Trading, Robert .............................. 8 Regulateurs Europe .................................. 42 32 Roestvrij B.V................................................ Rotterdams Zandstraal- en Schildersbedrijf.................................. 88 en 89 Schottel-Nederland B.V...................... 90 en 91 Schreuder H andelm ij................................. 21 Seastate Offshore B.V................................ 3 Smits Neuchatel B.V. ...................... 92 en 93 Smitweld ............................................. 94 en 95 S p e rry.......................................................... 17 Sperry Electronic S e rvice .......................... 58 Stromag B.V................................................. 49 ....... 53 Trainingsinstituut Brandbestrijding Transport Efficiency B.V.................... 96 en 97
4 omslag Uittenbogaart..............................................
Johnson & Co. B.V., A.......................
76 en 77
Koning & Brevini Aandrijvingen B.V
4
Lubrafil B.V...................................................
37
Maaskant B.V............................................... Macor .......................................................... MDB Smeertechniek ................................. Memarco B.V....................................... 78 en Metier Management Systems Benelux .............................................. 80 en Motrac B.V....................................................
22 7 9 79
104
28
81 31
Verto Ver. Staalkabelfabrieken ................ 38 Vlaardingen Oost ....................................... 33 Vlamboog, De ............................................ 65 Voorden Groep, Van ......................... 98 en 99 Wartsila ....................................................... Wavin Repox B.V........................................
61 13
Zetten B.V., Machinefabriek Van .............
102
Er zijn nog steeds schepen die het zonder apparatuur van Alfa-Laval kunnen stellen. Maar hoe lang nog?
Alfa-Laval is in tal van sectoren en vooral in de scheepvaart een bekende en vertrouwde naam. A ktief in o.a. centrifuges, engineering, appendages, automatiseringsapparatuur, pompen en verdampers. En ook op het gebied van warmtewisselaars, doseerapparaten en fuel-oil blenders. Alfa-Laval heeft eigen vestigingen in vrijwel alle belangrijke havens ter wereld. Want er zijn nog maar weinig schepen en andere maritieme objecten die het zonder Alfa-Laval kunnen stellen. Alfa-Laval N.V. — Hoofdkantoor: Zonnebaan 1,3606 CG Maarssen, tel. 0 3 0 - 46 8211. Service:4e Industriestraat45,3133 E K Vlaardingen, tel. 010-4 34 9066. A L F A -LAVAL
Ó F fS H O R t
H O U J^S U R S1986 Bt
9R stahdw
;
INTERNATIONAL ENGINEERING SERVICES B.V.: IS TROTS TE PRESENTEREN OP HET GEBED VAN BEVEILIGING. DE NIEUWE "AIM GAS DETECTOR" VOOR HET OPSPOREN VAN 49 SOORTEN GAS. VOOR INFORMATIE INTERNATIONAL ENGMEEFtNG SERVCES B V , BEUKELSOUK 906. 302 2 OJ ROTTERDAM. TEL 0 1 0 -4 7 6 8 1 0 0 / 4 7 6 8 3 1 3 . TELEX 2 3 2 4 5 ES B V