Srovnání migrace a morfogeneze neurální lišty u evolučně důležitých zástupců paprskoploutvých ryb s cílem charakterizovat vývojové zdroje kraniofaciální diverzity
Prohlá!ení Prohla!uji, "e jsem tuto diplomovou práci vypracoval samostatn# pod vedením Mgr. Roberta $erného, PhD., a "e jsem v!echny pou"ité prameny %ádn# citoval. Jsem si v#dom toho, "e p%ípadné vyu"ití v&sledk', získan&ch v této práci, mimo Univerzitu Karlovu v Praze je mo"né pouze po písemném souhlasu této univerzity. Svoluji k zap'j(ení této práce pro studijní ú(ely a souhlasím s tím, aby byla %ádn# vedena v evidence vyp'j(ovatel'. V Praze dne 15.8. 2013
..………………………………
Pod!kování Na tomto míst! bych cht!l pod!kovat svému "koliteli Mgr. Robertu !ernému, PhD., kter" m# b#hem mého studia trp#liv# vedl, poskytoval mi cenné p#ipomínky, v!#il v mé v!decké schopnosti a za motivaci v!novat se v!d!ní. Také bych cht!l pod!kovat v"em koleg#m (sou$asn%m i b%val%m) z Laborato&e pro stadium kraniofaciální evoluce a v!voje za poskytnutí fotografií, zau"ení v práci s grafick!mi programy a dobré rady. V neposlední "ad# pat"í velk! dík m!m rodi$%m, kte#í mi svou bezmeznou podporou umo!"ují studovat a také v#em m$m blízk$m.
Abstrakt Pro v!voj obratlov"ího t#la a hlavn# hlavy obratlovc$ je zásadní role extenzivn# migrující populace bun#k tzv. neurální li%ty, která p&ispívá do obrovského mno'ství tkání a mimo jiné vytvá&í v#t%inu hlavového skeletu, respektive kraniofaciální "ásti lebky. Migrace hlavové neurální li%ty je nap&í" obratlovci pova'ována za velice konzervativní a definuje jí anteroposteriorní posloupnost t&ech proud$: trigeminálního, hyoidního a branchiálního. V této diplomové práci se zab!vám migrací neurální li%ty u bichira senegalského (Polypterus senegalus) a jesetera malého (Acipenser ruthenus), kte&í reprezentují zástupce dvou bazálních linií paprskoploutv!ch ryb (Actinopterygii). U obou druh$ jsem kombinací n#kolika technik vymapoval hlavovou neurální li%tu od jejího vzniku b#hem neurulace a' po pozdní migra"ní fáze a poda&ilo se mi identifikovat n#které rozdílné skute"nosti oproti klasickému migra"nímu schematu bun#k neurální li%ty. U bichira byla odhalena v!razná heterochronie v migraci zejména hyoidního proudu, kter! vzniká první a je v$bec nejmasivn#j%í, co' z&ejm# úzce souvisí s ran!m vznikem základ$ vn#j%ích 'aber bichira, které se nacházejí práv# na hyoidním oblouku. Jeseter naproti tomu vyjevuje klasické migratorní schema bun#k neurální li%ty, ale embryogeneze a raná morfogeneze jeho tkání je zásadn# ovlivn#na mno'stvím 'loutku, pozicí embrya v rámci 'loutkové koule, a také mezenchymatick!m stavem hlavového mezodermu, tak'e migrace bun#k neurální li%ty je planární a proudy jejích bun#k jsou objemné. Nalezené patrnosti bun#k neurální li%ty jsou diskutovány v rámci znalostí o ostatních obratlovcích a v kontextu jejich embryogeneze.
Klí!ová slova: embryogeneze, migrace, neurální li%ta, kraniofaciální diverzita, paprskoploutvé ryby, bichir, jeseter, evoluce.
!
"!
Abstract Extensively migrating population of neural crest cells, which contributes to many tissues and builds up most of craniofacial vertebrate structures, has a crucial role in embryonic development of vertebrate body. The migratory pathways of neural crest cells are thought to be very conserved throughout the vertebrates and cranial neural crest migration is defined by progression of three migratory streams: trigeminal, hyoid and a common branchial stream. In this diploma thesis, migration of cranial neural crest was analysed using embryos of the Senegal bichir (Polypterus senegalus) and of sterlet (Acipenser ruthenus), which represent two basal-most lineages of extant ray-finned fishes. A combination of several techniques was used in both species in order to study cranial neural crest cells from their sites of origin to postmigratory stages and the pattern of migration was compared and discussed in revealed embryonic context. In the Senegal bichir the hyoid neural crest stream was shown to migrate first and it is also the most abundant; this heterochrony shift is apparently related to formation of external gills, which in bichir are situated on the hyoid arch only. In sterlet, neural crest cells migrate in a classic pattern of three progressive streams but their dynamics and patterning is influenced by prominent yolk tissues and also by a mesenchymatic state of cranial mesoderm. These findings are discussed in a context of our knowledge from other vertebrates as well as in a framework of embryonic and morphogenetic dynamics of different species.
Key words:
neural crest, migration, craniofacial diversity, bichir, starlet, ray-finned fishes,
evolution
!
#!
Obsah 1. Obsah
6
2. P!ehled dosavadních poznatk"
8
2.1. Ektoderm
8
2.2. Entoderm
8
2.3. Mezoderm
9
2.4. Neurální li#ta
10
2.4.1. Historie
10
2.4.2. Evoluce
11
2.4.3. Embryonální vznik
12
2.4.4. Migrace
14
2.4.5. Deriváty bun$k neurální li#ty
17
2.5.Hlavová neurální li#ta a skupina ryb paprskoploutv%ch (Actinopterygii)18 2.6. &asoprostorové zm$ny v%vojov%ch událostí v evoluci 3. Metodika
20 23
3.1. Embryonální material
23
3.2. Extirpace
24
3.3. Skenovací elektronová mikroskopie (SEM)
24
3.4. Histologická anal%za
25
3.5. Imunohistochemie
25
3.5.1. Whole-mount barvení (zna'ení na celém embryu)
25
3.5.2. Zna'ení pomocí protilátek na !ezech
26
3.6. Injikace lipofilní barvy DiI
27
3.7. Elektroporace
27
3.8. Zna'ení pomocí CCFSE (Carboxyfluorescein)
27
3.9. WISH (Whole-mount in situ hybridizace)
27
3.10. Obrazová anal%za
28
4. Seznam pou(it%ch zkratek
29
5. V%sledky
31
5.1. Bichir senegalsk% (Polypterus senegalus) 5.1.1. Vn$j#í morfologie (SEM)
6
31 31
5.1.2. Extirpace povrchového ektodermu a anal%za pomocí SEM
32
5.1.3. Histologická anal%za (JB-4 prysky!ice)
33
5.1.4. Imunohistochemie
35
5.1.5. Vitální barvení lipofilním markerem DiI
37
5.1.6. In situ hybridizace
38
5.2. Jeseter mal% (Acipenser ruthenus)
56
5.2.1. Vn$j#í morfologie (SEM)
56
5.2.2. Extirpace povrchového ektodermu a anal%za pomocí SEM
57
5.2.3. Histologická anal%za (JB-4 prysky!ice)
58
5.2.4. Imunohistochemie
59
5.2.5. Vitální barvení lipofilním markerem DiI
60
6. Diskuze
72
6.1. Migrace hlavové neurální li#ty u dvou nejbazáln$j#ích zástupc" paprskoploutv%ch ryb
72
6.1.1. Vznik hlavové neurální li#ty u bichira a jesetera
73
6.1.2. Heterochronie v emigraci hyoidního proudu hlavové neurální li#ty bichira senegalského
74
6.1.3. Migra'ní patrnost hlav. neurální li#ty u bichira a jesetera
75
6.1.4. Trigeminální proud hlav. neurální li#ty u bichira a jesetera
77
7. Záv$r
79
8. Seznam pou(ité literatury
81
7
2.
P!ehled dosavadních poznatk"
Cílem této kapitoly je seznámit !tená"e s p"ehledem dosavadních poznatk# o jednotliv$ch zárode!n$ch listech, které se podílejí na útvá"ení hlavy obratlovc#, s d#razem na neurální li%tu a také uvést !tená"e do problematiky heterochronií a heterotopií. Neurální li%ta je spole!n& s epidermálními plakody pova'ována za jednu z nejd#le'it&j%ích synapomorfií obratlovc#, která mimo jiné umo'nila obratlovc#m p"ejít v evoluci od pasivní filtrace k aktivní predaci (srovnej. kup". evoluci !elistí) (Gans & Northcutt, 1983).
2.1. Ektoderm Ektoderm s entodermem jsou ozna!ovány jako primární zárode!né listy; vznikly jako první v evoluci 'ivo!ich# a v embryogenezi jsou také jako první rozli%itelné (kup". Hall, 2009). Ektoderm tvo"í vn&j%í vrstvu embrya a vzniká z n&j epidermis !i centrální a periferní nervová soustava (Kardong, 2009). Ektoderm je také místem vzniku epidermálních smyslov$ch plakod, které vznikají jako desti!kovité ztlu%t&niny v p"esn& lokalizované oblasti (kup". Schlosser, 2010). Z plakod vznikají mimo jiné senzorická ganglia, olfaktorick$ epitel, systém postranní !áry, senzorické bu(ky vnit"ního ucha, o!ní !o!ky, orgány chuti a elektrorecepce (Schlosser, 2010; Pieper et al., 2011). Nutno dodat, 'e ektoderm není jedin$m faktorem rozhodujícím o v$voji epidermálních plakod. Na indukci tvorby epibranchiální plakody se nap"íklad v$razn& podílí entoderm (Begbie et al., 1999). Tato informace je d#le'itá pro chápání celého v$voje, jeliko' je zde dob"e vid&t, 'e v&t%ina v$vojov$ch proces# je zalo'ena na induk!ních interakcích mezi n&kolika “hrá!i”, které jsou naprosto nezbytné pro správn$ v$voj jedince. (Hall, 2003)
2.2. Entoderm Entoderm vzniká b&hem embryonálního procesu gastrulace, co' je embryonální d&j, p"i kterém se vytvá"í zárode!né vrstvy a vzniká prvost"evo (archenteron). Z entodermu vzniká farynx, trávicí 'lázy (jako játra a slinivka b"i%ní), u bez!elistnat$ch obratlovc# (Agnatha) entoderm také vytvá"í epitel vnit"ních 'aber a 8
u !ty"no'c# (Tetrapoda) z entodermu vznikají plíce (shrnuto nap".. Kardong; 2009). Z faryngu se b&hem dal%ího v$voje formují faryngeální oblouky. Z druhého faryngeálního oblouku vzniká %títná 'láza (glandula thyroidea), z t"etího brzlík (thymus) a ze !tvrtého p"í%titná t&líska (glandulae parathyroideade) (Kardong, 2009), nicmén& brzlík byl v evolu!ní historii p"ítomen na ka'dém faryngeálním oblouku a a' u rodu Homo je lokalizován pouze na t"etím oblouku (kup". Slípka, 1986). Faryngeální entoderm je také nezbytn$ pro indukci kraniofaciálních chrupavek vznikajících z prvního 'aberního oblouku a kup"íkladu na ku"eti bylo ukázáno, 'e signály emanující z entodermu p"ímo rozhodují o velikosti a orientaci jednotliv$ch element# (kup"íkladu Couly et al., 2002).
2.3. Mezoderm Mezodermální zárode!n$ list vzniká b&hem gastrulace díky interakcím mezi primárními zárode!n$mi listy (tedy ektodermem a entodermem) a je tedy ozna!ován jako sekundární zárode!n$ list (Hall, 2009). Mezoderm se diferencuje do n&kolika subpopulací: postupn& vzniká chordamezoderm, zdroj chordy, paraxiální mezoderm, z n&ho' vzniká v&t%ina svalstva, mezoderm laterální desti!ky utvá"ející kosterní aparát kon!etin, srdce a vaskulární systém a také mezodermální subpopulace, ze které vzniká urogenitální soustava (Kardong, 2009). Paraxiální mezoderm je v trupu tvo"en somity. První somit se objevuje za otickou kapsulí a ka'd$ somit se diferencuje do t"ech !ástí: sklerotom, myotom a dermatom. Ze sklerotomu vznikají obratle a 'ebra, z myotom# se utvá"í svalovina trupu, z dermatomu vznikají svaly kon!etin (kup". Gilbert, 2010). V preotické hlavové oblasti je paraxiální mezoderm nesegmentovan$ a nejsou zde známy elementy !i jasn& segmentované populace, jako je tomu v trupu v p"ípad& somit#. U n&kolika obratlovc# byly nicmén& popsány tzv. somitomery (kup". Jacobson, 1988), které sice byly p"irovnávány k trupov$m somit#m, le! jakkoliv byla jejich existence v minulosti diskutována, dnes není obecn& akceptována (kup". Freund et al., 1996; Kuratani et al., 1999).
9
2.4. Neurální li#ta 2.4.1. Historie Neurální li%tu objevil %v$carsk$ anatom a fyziolog Wilhelm His, jen' tuto bun&!nou populaci pojmenoval v roce 1868 Zwischenstrang (voln$ p"eklad: “pruh tkán& mezi vrstvami”). Identifikoval ji na ku"ecím embryu mezi vyvíjející se neurální trubicí a povrchov$m ektodermem (His 1868, 1879; dle Hall, 2009). Termín neurální li%ta (angl. Neural crest) pou'il poprvé anglick$ zoolog Arthur M. Marshall v roce 1874 (Hall, 2009). V té dob&, tzn. v druhé polovin& 19. století, vládlo v embryologii dogma !i tzv. teorie zárode!n$ch vrstev (Germ-layer theory). Úst"ední my%lenkou této p"edstavy je, 'e v%echny tkán&, resp. bun&!né typy, jsou odvozeny od t"ech zárode!n$ch list# a 'e konkrétní typy tkání povstávají v'dy z konkrétních a jasn& dan$ch vrstev. Podle této teorie, obecn& "e!eno, z ektodermu vznikají vn&j%í tkán&, z entodermu tkán& vnit"ní a z mezodermu vznikají v%echny kosti, pojivová tká(, svalstvo a krevní bu(ky, tedy jakési tkán& vmeze"ené !i “prost"ední”. Objevem neurální li%ty byla podlomena do té doby p"evládající jednoduchost teorie zárode!n$ch vrstev, nebo) bu(ky neurální li%ty, odvozené vlastn& z ektodermu, viz ní'e, dávají vznik mnoha tkáním, jejich' invazivita jim umo'(uje osídlit kter$koliv prostor obratlov!ího t&la. První kdo p"i%el s d#kazem, kter$ byl jasn& v rozporu s teorií zárode!n$ch vrstev, byla americká embryolo'ka Julia B. Platt (Platt, 1893), která detailn& popsala p"ísp&vek neurální li%ty do !elistního a branchiálního aparátu u severoamerického mloka rodu Necturus. Tento objev byl v%ak v&t%inou tehdej%ích v&dc# odmítnut a upadl v zapomn&ní. A' po více ne' 30 letech potvrdili sv$mi experimenty kup"íkladu Landacre (Landacre, 1921) !i Stone (Stone, 1922) zásadní p"ínos Julie B. Platt k poznání embryogeneze hlavy. Hörstadius a Sellman (Hörstadius & Sellman, 1946) za pomoci experimentálního vy%t&pení (tedy tzv. extirpací) r#zn$ch !ástí neurálních val# axolotla vytvo"ili první “mapu” neuruly ukazující p"ísp&vek jednotliv$ch proud# bun&k neurální li%ty a jejich podíl na v$voji hlavy v anterio-posteriorním uspo"ádání a tedy dokázali, 'e v$voj neurální li%ty je regionalizován. Pro zjednodu%ení lze "íci, 'e nejvíce anteriorní !ást neurální li%ty dává vznik element#m prvního, mandibulárního oblouku. Elementy hyoidního 10
oblouku jsou vytvá"eny z populace neurální li%ty le'ící posteriorn&ji od mandibulární populace, zatímco z nejvíce posteriorní !ásti hlavové neurální li%ty vznikají skeletální elementy branchiálních oblouk#. Modern&j%í studie migrace neurální li%ty p"inesly dal%í potvrzení t&chto dat za pou'ití radioaktivní zna!ky (Hthymidinu), nap". u ku"ete (Johnston, 1966), !i na oboj'ivelnících (Chibon, 1967; dle Hall, 1999). Zásadním mezníkem pro pochopení biologie a migrace neurální li%ty byla metodika francouzské biolo'ky Nicole Le Douarin (Le Douarin, 1971; dle Hall, 1999), která vyu'ívá mezidruhov$ch transplantací a tvorbu chimér; v tomto p"ípad& ku"e a k"epelku). Díky mezidruhov$m transplantacím bylo umo'n&no sledovat osud bun&k neurální li%ty na histologické úrovni a tyto pozd&ji poslou'ily k tvorb& imunologického markeru na zna!ení neurální li%ty(Le Douarin, 1974). V sou!asné dob& se ke sledování bun&k neurální li%ty nej!ast&ji pou'ívá bu* metoda genové exprese – tedy topografická anal$za exprese gen#, které jsou v této subpopulaci aktivní (kup". Meulemans & Bronner-Fraser, 2004), !i tzv “fatemapping” p"ístupy, kdy je n&jak$ bun&!n$ marker (DiI, DiO) injikován do maternální populace neurální li%ty, tato se ozna!í, co' umo'(uje sledovat její následnou migraci (kup". Serbedzija et al., 1989; Lumsden et al., 1991).
2.4.2. Evoluce Neurální li%ta je spole!n& s neurálními plakodami pova'ována za jednu z nejd#le'it&j%ích synapomorfií nás obratlovc# (Gans & Northcutt, 1985; Gans 1987; Schlosser 2010). Recentní fylogenetická anal$za strunatc# ukazuje, 'e plá%t&nci (Urochordata)
tvo"í
sesterskou
skupinou
obratlovc#
(Vertebrata),
zatímco
bezlebe!ní (Cephalochordata) tvo"í bazální linii v rámci strunatc# (Chordata) (Delsuc et al., 2006) (Obr. 1). Blízk$ p"íbuzensk$ vztah plá%t&nc# a obratlovc# podporuje i recentní objev bun&!né linie povahy neurální li%ty (neural crest-like) u sumek (Abitua et al., 2013), zatímco u kopinatce zatím 'ádné embryonální populace !i struktury i p"es intenzivní snahy stále nalezeny nebyly. Pokud by tedy bun&!ná populace objevená u sumek byla skute!n& homologická neurální li%t&, znamenalo by to, 'e neurální li%ta je spí%e synapomorfií skupiny Olfactores (skupina tvo"ená obratlovci a plá%t&nci), ne' synapomorfií obratlovc#. Ve studii, ve které byla identifikována bun&!ná linie povahy neurální li%ty u sumek, auto"i 11
navrhují hypotézu, 'e bu(ky neurální li%ty vznikly koopcí (zavzetím) jednoho !i více mezenchymálních
determinant#
(nap".
genu
Twist)
do
“prap#vodních”
(rudimentárních) bun&k neurální li%ty. To by znamenalo, 'e bu(ky neurální li%ty nevznikly u obratlovc#, ale 'e vznikly modifikací v$vojové signaliza!ní sít& strunatc# (Abitua et al., 2013).
Obrázek 1: Fylogenetick$ strom strunatc# s vyzna!en$m po!átkem v$skytu neurální li%ty a neurálních plakod
2.4.3. Embryonální vznik Bu(ky neurální li%ty vznikají b&hem neurulace, co' je embryonální proces, kdy se na dorzální stran& embrya utvá"í neurální trubice. Bu(ky neurální li%ty vznikají na hranici neurálního a non-neurálního (epidermálního) ektodermu, v míst&, kde se pozd&ji utvá"ejí tzv. neurální valy (kup". Hall & Hörstadius, 1988). Vznik bun&k neurální li%ty je indukován interakcemi mezi neurálním ektodermem, epidermálním ektodermem a také i paraxiálním mezoderem (Dickinson et al., 1995; Basch et al., 2004). Indukce vzniku neurální li%ty je zalo'ena na kombinaci n&kolika základních signálních faktor#, jako jsou BMP, FGF, RA, !i tzv. Wnt proteiny (LaBonne & 12
Bronner-Fraser, 1998; Aybar & Mayor, 2002; Wu et al, 2003; shrnuto kup". v Basch & Bronner-Fraser, 2006). Po indukci bun&k neurální li%ty dochází k tzv. epitelo-mezenchymální tranzici !i p"echodu (EMT). V pr#b&hu EMT ztrácejí bu(ky postupn& adhezi k povrchu a k sousedním bu(kám, m&ní svou morfologii a migrují z povrchu neurálních val# (Duband et al., 1995; Theveneau & Mayor, 2012).
Obrázek 2: Schema neurulace (vznik neurální trubice invaginací); fialová zna!í neurální ektoderm, modrá zna!í ne-neurální ektoderm; zelená zna!í oblast z které vzniknou bu(ky neurální li%ty; Upraveno z Donoghue et al., 2008
Jak ji' bylo "e!eno, ke vzniku neurální li%ty dochází p"i utvá"ení neurální embryonální trubice. V tomto v$vojovém momentu dochází k tvorb& neurálních val# na rozhraních mezi neurální ploténkou a epidermálním ektodermem, které se postupn& zvedají dorzálním sm&rem, pozd&ji spl$vají a utvá"ejí uzav"enou trubici (Obr. 2). U v&t%iny obratlovc# dochází ke vzniku bun&k neurální li%ty a' po úplném uzav"ení neurální trubice, jak je vid&t kup". u pták# (Tosney, 1982; Noden, 1988; Tokita, 2006), plaz# (Kundrát, 2009), n&kter$ch oboj'ivelník# (Jacobson & Meier, 1984; Falck et al., 2002; Mitgutsch et
al., 2008), bahníka (Falck et al., 2000;
Ericsson et al., 2008) a mihulí (Horigome et al., 1999). Nicmén& u' i v takto raném stadiu existují vzájemné !asové posuny, tedy tzv. heterochronie, díky kter$m m#'e docházet k odmigrování bun&k neurální li%ty je%t& p"ed úpln$m uzav"ením neurální trubice, jak je známo u n&kter$ch oboj'ivelník# (skokan japonsk$: Ichikawa, 1937; drápatka: Sadaghiani & Thiébaud, 1987; bezblanka: Moury & Hanken, 1995; ku(ka v$chodní: Olsson & Hanken, 1996; vakorosni!ka: del Pino & Medina, 1998; skokan hn&d$: Mitgutsch et
al., 2008), !i savc# (Tan & Morris-Kay 1985, 1986). U
australské va!ice Monodelphis domestica bu(ky neurální li%ty odmigrovávají dokonce ji' z úrovn& nediferencované neurální ploténky, tedy mnohem d"íve, ne'-li 13
dochází k vlastní neurulaci (Smith, 2001).
2.4.4. Migrace V&t%ina v$vojov$ch proces# v t&le obratlovc# probíhá v anterio-posteriorním sledu a ne jinak je tomu u vzniku, resp. migrace bun&k neurální li%ty. Bu(ky neurální li%ty vznikají po celé délce neurální trubice a tak rozli%ujeme neurální li%tu - hlavovou, vagální (kr!ní) a trupovou (kup". Le Douarin & Kalcheim, 1999). Po prod&lání v$%e zmín&ného epitelo-mezenchymálního p"echodu migrují bu(ky hlavové neurální l%ity z oblasti budoucího mozku ventrolaterálním sm&rem, ponejvíce mezi vrstvou mezodermu a povrchov$m ektodermem, nicmén& velmi malá !ást bun&k neurální li%ty m#'e migrovat skrz paraxiální mezoderm (Noden, 1988; Serbedzija et al., 1992). Trupová neurální li%ta migruje dv&ma hlavními sm&ry: ventrolaterálním sm&rem pod povrchov$m ektodermem a ventrální cestou skrze somity (ventromediání cesta (Rickman et al., 1985; Le Douarin & Kalcheim, 1999). Bu(ky trupové neurální li%ty migrující skrze somity migrují pouze první polovinou somit#, tzn. 'e migrace je striktn& segmentální a z této subpopulace trupové neurální li%ty vznikají senzorická ganglia a Schwanovy bu(ky. Subpopulace trupové neurální li%ty migrující ventrolaterální sm&rem migruje naproti tomu nesegmentáln& a vznikají z ní p"edev%ím melanocyty (kup". v Bronner-Fraser, 1994; Krull, 2001). V migraci trupové neurální li%ty v%ak nem#'eme rozli%it migra!ní proudy tak, jako je tomu v hlav&, proto'e bu(ky trupové neurální li%ty migrují zásadn& jednotliv&. V hlavové oblasti je obecn& migra!ní patrnost (pattern) bun&k neurální li%ty definován t"emi migra!ními proudy, které vznikají separátn& z jednotliv$ch !ástí neurální trubice a naz$vají se trigeminální (nebo té' mandibulární), hyoidní a branchiální (neboli postotick$) (kup". Kuratani et al., 1999). Trigeminální proud vzniká z p"ední !ásti neurální trubice (prosencephala, mesencephala a dvou rhombomer (r1 a r2) rhombecephala) a v pozd&j%í fázi migrace vytvá"í t"i v&tve obklopující optickou plakodu (primordium oka) a osidluje celou anteriorní !ást hlavy (Kuratani et al., 1999; Cerny et al., 2004). Z nejvíce rostrální oblasti prosencephala odmigrovává jen velmi malé mno'ství bun&k (kup". Kuratani et al., 1999), co' má z"ejm& souvisloust s planplakodální oblastí (Pieper et al., 2011), jeliko' v této oblasti vzniká velké mno'ství plakod vyu'ívající tento prostor. Hlavní !ást 14
trigeminálního proudu emigruje z mesencephala, a prvních dvou rhombomer rhombencephala. K t&mto bu(kám je%t& p"ispívá !ást bun&k vznikající z rhombomery 3 (r3) (Lumsden et al., 1991; Sechrist et al., 1993; Schilling & Kimmel, 1994; Kulesa et al., 2004). Jak uvádí japonsk$ biolog Shigeru Kuratani (2005), je to práv& trigeminální proud a jeho bu(ky, které konstituují celou p"ední !ást lebky a tedy i tzv. kraniofaciální oblast (“obli!ej”), tedy tu asi nejvíce fenotypov& variabilní !ást. Tento migra!ní proud je u v%ech obratlovc# klasicky pova'ován za nejv&t%í (srovnej ale kapitola V$sledky bichir). Dal%ím proudem je hyoidní proud, kter$ vzniká v rhombome"e 4 (r4) a b$vá obecn& ze v%ech t"í proud# nejmen%ím (srovnej kapitola V$sledky bichir). Bu(ky hyoidní proudu spole!n& s mal$m p"ísp&vkem bun&k z r3 a r5 p"ispívají k tvorb& druhého branchiálního oblouku (Lumsden et al., 199; Schilling & Kimmel, 1994; Kulesa et al., 2004). Posledním migra!ním proudem je proud branchiální, vznikající z rhombomer 6 a 7, kter$ s mal$m p"ísp&vkem bun&k z r5 tvo"í mezenchym vypl(ující branchiální oblouky (Lumsden et al., 1991; Schilling & Kimmel, 1994). Jednotlivé proudy bun&k neurální li%ty jsou od sebe navzájem odd&leny dv&ma rhombomerami (r3 a r5), které vytvá"ejí tzv. „neural crest-free zone“ (Serbedzija et al., 1992; Sechrist et al., 1993; Birgbauer et al., 1995; Kulesa & Fraser, 1998). Z t&chto oblastí bu(ky nemigrují lateráln&, ale velká v&t%ina bun&k zde vznikl$ch prod&lává apoptózu (Graham et al., 1993; Graham et al., 1994). Bu(ky, které apoptóze uniknou migrují anteriorn& !i posteriorn& a p"ispívají tak k sousedním proud#m (Sechrist et al., 1993; Birgbauer et al., 1995; Graham et al., 2004). Oba tyto segmenty rhombencephala jsou definovány expresí genu krox20 (Nieto et al., 1992), ceho' se vyu'ívá p"i ur!ení p"esné lokace rhombomer 3 a5 (Bradley et al, 1993; Nieto et al., 1995). V hlavové oblasti se nacházejí bariéry, které svou p"ítomností ovliv(ují migraci jednotliv$ch proud# neurální li%ty a podílejí se tak na jejich sekundární separaci, jako jsou nap". faryngeální v$chlipky, o!ní primordium, !i otická kapsule (Kuratani et al., 1997; Cerny et al., 2004). Otická kapsule se vyvíjí na hranici rhombomer 4 a 5, co' umo'(uje bu(kám neurální li%ty migrovat z rhombomery 5, která je popisována jako neural crest-free zone, ale zárove( brání migraci z rhombomery 4. V dal%í fázi v$voje se otická kapsule p"esouvá do oblasti rhombomery 5 a bu(kám neurální li%ty tak brání v dal%í migraci z této oblasti a 15
bu(ky z rhombomery 4 mohou emigrovat. Ve finální pozici otická kapsule brání migraci bun&k neurální li%ty z rhombomery 5 a 6, nicmén& tato situace byla popsána u mihule (Kuratani & Horigome, 2000). Faryngeální v$chlipky utvá"ejí migra!ní koridor pro bu(ky neurální li%ty tím, 'e kanalizují migrující bu(ky pouze do p"esn& definované migra!ní cesty a také pomáhají k rozli%ení separátních proud# hlavové neurální li%ty (nap". Kuratani et al., 1999). Bu(ky hlavové neurální li%ty jsou b&hem migrace velmi plastické a doká'í reagovat na zm&ny ve svém okolí. Pokud je nap"íklad experimentáln& v#d!í !ást migra!ního proudu neurální li%ty vystavena mechanické p"eká'ce, doká'e zareagovat, obejít ji a domigrovat do finální lokality (srovnje kup". Kulesa et al., 2005). B&hem svého putování doká'í bu(ky neurální li%ty také velmi rychle osídlit místa, kde byla sní'ena jejich po!etnost kup". experimentální extirpací v!etn& migrace sousedních oblastí, kde normáln& nemigrují (Saldivar et al., 1997; Kulesa et al., 2000; Creuzet et al., 2004). Lze tedy "íci, 'e p"esto'e migra!ní partnost bun&k neurální li%ty je obecn& pom&rn& rigidn& nastavena ve smyslu rozd&lení na t"i hlavní proudy, v p"ípad& pot"eby m#'e b$t migrace modulována dle pot"eby, co' ukazuje na obrovskou plasticitu bun&k neurální li%ty. Neurální li%ta je !asto srovnávána s rakovinn$mi bu(kami, jeliko' sdílejí stejnou schopnost invazivity do jin$ch tkání (sdílejí stejnou expresi gen#, kup". Snail, Twist – Tucker, 2004; Kang & Massagué, 2004; Micalizzi et al., 2010). Spojitost s tak “populárním” tématem jakou je rakovina, p"iná%í obrovskou pozornost v&decké obce a získaná data o rakovin&, tak mohou b$t komparativn& vyu'ívána pro v$zkum samotné neurální li%ty. Velká pozoronost je v&nována p"edev%ím studiu mechanism# epitelo-mezenchymálního p"echodu a migrace. Tento „naviga!ní systém“ je velmi komplexním mechanismem (podrobn& v Kulesa et al., 2010), na kterém se podílí chemoatrakce (Kubota & Ito, 2000), mezibun&!n$ kontakt (Kulesa & Fraser, 1998; Carmona-Fontaine et al., 2008) a v neposlední "ad& kontakt bun&k s okolním prost"edím, resp. adheze bun&k k podkladu (Bronner-Fraser, 1993).
16
2.4.5. Deriváty bun$k neurální li#ty Neurální li%ta má dv& klí!ové vlastnosti: schopnost extenzivn& migrovat (viz v$%e) a vytvá"et obrovské mno'ství bun&!n$ch derivát# (Donoghue et al., 2008). Po svém vzniku z neurální trubice bu(ky neurální li%ty migrují ventrálním sm&rem skrze embryo a vytvá"í celou %kálu derivát#. Neurální li%ta poskytla v pr#b&hu evoluce obratlovc#m n&kolik nov$ch bun&!n$ch typ#, nap". senzorické neurony, gliové bu(ky, xantofory, bu(ky vytvá"ející povázky sval#, odontoblasty, osteocyty a celou "adu dal%ích (Obr. 3) (Le Douarin & Kalcheim, 1999; Le Douarin et al., 2004). Anal$za po!t# bun&!n$ch typ# odvozen$ch z jednotliv$ch zárode!n$ch list# ukázala, 'e neurální li%ta vytvá"í v$razn& v&t%í po!et bun&!n$ch derivát# ne' mezoderm (Vickaryous & Hall, 2006). Díky svému obrovskému v$vojovému potenciálu a %iroké %kále nov$ch bun&!n$ch typ# je neurální li%ta pova'ována za !tvrtou zárode!nou vsrtvu a obratlovci n&kdy b$vají ozna!ováni za tetrablastickou skupinu, tedy skupinu, která má !ty"i zárode!né listy (Hall, 1997, 2009).
Obrázek 3: Schema znázor(ující typy bun&!n$ch deriváz# vznikajících z neurální li%ty; Upraveno z Donoghue et al., 2008
17
2.5. Hlavová
neurální
li#ta
a
skupina
ryb
paprskoploutv%ch (Actinopterygii) Skupina paprskoploutv$ch ryb (Actinopterygii) má nejv&t%í diverzitu v rámci obratlovc# (cca 28 tisíc druh# z celkového po!tu asi 55 tisíc obratlovc#; Nelson, 2006) a díky obrovskému potenciálu modifikovat skeletální tkán& (srovnej kup". schopnost vytvá"et diverzifikované !elistní aparáty, viz kup"íkladu studie na v$chodoafrick$ch cichlidách: Roberts et al., 2011) p"edstavuje vynikající skupinu pro studium kraniofaciální diverzity. První
detailní
studie
popisující
migraci
hlavové
neurální
li%ty
u
paprskoploutv$ch ryb (Actinopterygii) sepsal Langille a Hall u druhu Oryzias latipes (Langille & Hall, 1987, 1988). Auto"i této prací mimo jiné ukázali, 'e chondrogenní potenciál (tedy schopnost diferenciovat se v chrupavku) mají bu(ky neurální li%ty migrující v oblasti mesencephala a rhombencephala, ne v%ak ty z prosencephala. Auto"i se v%ak nijak konkrétn& nevyjad"ují k tomu, co by toto omezení chondrogenní potence mohlo pro v$voj tohoto druhu znamenat. Dal%í podrobná práce zab$vající se migrací neurální li%ty byla zam&"ena na druhy Xiphophorus maculatus a X. helleri (Sadaghiani
& Vielkind, 1989). I v této práci byly
identifikovány jisté rozdíly v migraci oproti ostatním studovan$m obratlovc#m: zdá se, 'e se zde neutvá"ejí separátní migra!ní proudy, ale migrace bun&k neurální li%ty je celistvá (Sadaghiani & Vielkind, 1989). Jedním z nej!ast&ji vyu'ívan$ch modelov$ch druh# v dne%ní v$vojové biologii, a to dokonce pro studium kraniofaciální morfogeneze, je zeb"i!ka, nebo-li danio pruhované (Danio rerio). Obrovskou v$hodou tohoto rybího modelového druhu je mimo jiné pr#hlednost embryí b&hem v$voje a tedy vynikající mo'nost optick$ch anal$z ontogeneze (srovnej Metscher & Ahlberg, 1999). Pro studium migra!ní patrnosti neurální li%ty v%ak tento druh není p"íli% vhodn$ kv#li malé velikosti vají!ek (Obr. 5). Zeb"i!ka jako v&t%ina zástupc# kostnat$ch ryb prod&lává sekundární neurulaci, kdy se utvá"í tzv. neurální k$l a neurální trubice vzniká kavitací a ne invaginací jako je tomu u “klasické” primární neurulace (Papan & Campos-Ortega, 1994; Lowery & Sive, 2004). Bu(ky neurální li%ty v pr#b&hu sekundární neurulace vznikají delaminací z dorzální strany neurálního k$lu a akumulují se nad neurální 18
trubicí p"ed tím, ne' za!nou migrovat (Papan & Campos-Ortega, 1994; Hall, 2009). U zeb"i!ky v%ak velké mno'ství bun&k hlavové neurální li%ty nevzniká z dorzální strany strany neurálního k$lu, ale odmigrovává lateráln& a vytvá"í p"edmigra!ní masu bun&k neurální li%ty (Schilling & Kimmel, 1994). Tyto p"edmigra!ní bu(ky jsou v%ak segmentovány stejn$m zp#sobem do separátních proud#, jako je tomu u 'ivo!ich# s klasickou neurulací. Celá p"edmigra!ní populace bun&k neurální li%ty m#'e b$t také rozd&lena v medio-laterální ose na subpopulace poskytující r#zné typy derivát#. Z nejvíce laterální subpopulace vznikají neurony, z nejvíce mediální subpopulace vznikají chondrocyty a bu(ky pojivov$ch tkání a z prost"ední subpopulace vznikají Schwanovy a pigmentové bu(ky (Schilling & Kimmel, 1994). Nicmén& velká v&t%ina studií je zam&"ena na r#zné jednotlivosti spojené s neurální li%tou, ale komplexním vyjevením migrace hlavové neurální li%ty se nikdo detailn& nezab$val. Existují pouze studie zab$vající se migrací trupové neurální li%ty vyu'ívající extirpací a DiI injikací (Eisen & Weston, 1993; Raible & Eisen, 1994). V%echny v$%e uvedené druhy navíc pat"í do skupiny kostnat$ch ryb (Teleostei) a studie na bazálních "ádech jako jsou mnohoploutví (Polypteriformes) a jesete"i (Acipenseriformes) neexistují. Jedinou v$jimkou je práce na veslonosovi druhu Polyodon spathula, která okrajov& popisuje migraci neurální li%ty pomocí SEM (Bemis & Grande, 1992; Bemis et al., 2005). Proto jsem se rozhodl zam&"it svou pozornost na migraci neurální li%ty u druhu Polypterus senegalus (bichir senegalsk$;
Polypteriformes)
Acipenseriformes),
nebo)
oba
a
Acipenser
tyto
druhy
ruthenus
jsou
zajímavé
(jeseter jednak
mal$; sv$m
fylogenetick$m postavením a také svou morfologií. +ád mnohoploutví (Polypteriformes) je tvo"en dv&ma rody, Polypterus (Saint-Hilaire, 1802) !ítající 14 druh# a Erpetoichthys (Smith, 1865) s jedním druhem (Daget et al., 2001). +ád Polypteriformes se nachází velmi blízko evolu!ního bodu, kdy do%lo k odd&lení paprskoploutv$ch (Actinopterygii) a násadcoploutv$ch (Sarcopterygii) obratlovc#, a bichir je tedy pova'ován za reprezentanta evolu!n& “primitivních” ryb. +ád jesete"i (Acipenseriformes) pat"í do nad"ádu Chondrostei (chrupav!ití) a je tvo"en dv&ma !eled&mi, Acipenseridae (jeseterovití) a Polyodontidae (veslonosovití). Acipenseridae zahrnují 25 druh# a Polyodontidae dva rody, Polyodon (veslonos) a Psephurus (lopatonos) (Nelson, 2006). Cel$ "ád evolu!n& 19
vznikl z"ejm& z n&které skupiny tzv. paleonisk# (Grande & Bemis, 1991) a má velmi charakteristickou morfologii se zplo%t&l$m rostrem. U celé skupiny do%lo k potla!ení kostnat&ní ve vnit"ním i dermálním skeletu, take do%lo k redukci a' vymizení chrupu a objevují se charakteristické vousky na spodin& rypce p"ed ústy (Ostaszewska & Dabrowski, 2009).
2.6. &asoprostorové
zm$ny
v%vojov%ch
událostí
v
ontogenezi ,asové a pozi!ní zm&ny jsou ozna!ovány jako heterochronie a heterotopie. Termín heterochronie poprvé definoval Ernst Haeckel, kter$ ji pova'oval za nerovnob&'nost mezi ontogenezí a fylogenezí (dle Smith, 2001) a heterotopie pova'oval za sou!ást heterochronií (dle Zelditch & Fink, 1996). Existuje n&kolik pohled# na to, co je heterochronie a heterotopie. Jednodu%e "e!eno, heterochronie je nestejn& rychlá evoluce r#zn$ch anatomick$ch znak# (Ro!ek, 2002) a heterotopii je mo'no vid&t jako pozi!ní posun evoluce r#zn$ch anatomick$ch znak#. Tyto dv& události v%ak mohou b$t navzájem sp"a'ené b&hem v$voje organism a tedy mohou fungovat spole!n& (Zelditch, 2003). Heterochronie ve spojitosti s neurální li%tou byly zmi(ovány p"edev%ím s jejich ranou emigrací, kdy se jedná p"edev%ím o to, zda bu(ky neurální li%ty odmigrovávají p"ed, !i a' po splynutí neurálních val# (kup". Moury & Hanken, 1995; del Pino & Medina, 1998; Mitgutsch et al., 2008). Asi v#bec nejran&j%í migrace bun&k neurální li%ty u obratlovc# byla popsána u va!natc#, konkrétn& u va!ice druhu Monodelphis domestica, u které bu(ky neurální li%ty za!ínají odmigrovávat dokonce na úrovni nediferencované neurální ploténky (Smith, 2001; Vaglia & Smith, 2003). V hlav& va!natc# se toti' p"ední !ást jejich chrupav!ité lebky a p"edev%ím pak nasální oblasti, kosti okolo ústní dutiny a svaly hlavy se vyvíjejí velmi ran& (Clark & Smith, 1993; Smith, 1994). Tato v$vojová heterochronie má zjevn$ ekologicko-evolu!ní dopad, nebo) nedovyvinutá mlá*ata va!nat# se tak mohou dostat po narození do mat!ina vaku k mlé!né bradavce vlastními silami. Dal%í p"íklad, kter$ se zab$vá heterochroniemi a neurální li%tou, je vznik svalu musculus pseudomasseter, kter$ se vyskytuje pouze u papou%k# (Pssitaciformes). Srovnávací anal$zou mezi ku"erem a papou%kem bylo zji%t&no, 'e u papou%ka 20
rodu Nymphicus bu(ky trigeminálního proudu neurální li%ty migrují !asn&ji a osidlují mnohem ventráln&j%í pozice. Bu(ky trigeminálního proudu neurální li%ty tak mohou mnohem d"íve osídlit první faryngeální oblouk, akumulovat se zde a dát vzniknout bu(kám pojivov$ch tkání, které pozm&ní svalovou architektoniku p"estavbou svalového prekurzoru musculus adductor mandibulae (Tokita, 2006). Jak je toti' známo z prací na n&kolika druzích obratlovc# (Noden, 1986; Olsson et al., 2001; Ericsson et al., 2004) jsou bu(ky pojivov$ch tkání odvozen$ch z neurální li%ty schopny p"ebudovávat svalovou architektoniku v hlav&, díky !emu' mohou vznikat nové svaly a tak nap"íklad u papopu%k# mohl vzniknout p"ebudováním m. adductor
mandibulae
jeden
ze
specifick$ch
sval#
pro
papou%ky
m.
pseudomasseter, kter$ papou%k#m nap"íklad umo'(uje rozlousknout extrémn& tvrdou potravu. Darwinovy p&nkavy jsou ideálními modely pro studium evolu!ních d&j#. Tyto p&nkavy rodu Geospiza mají d#sledkem adaptivní radiance zna!n& morfologicky diverzifikované zobáky, které umo'nili se specializovat na odli%né potravní niky, a pomohly tak zamezit vzájemné konkurenci o potravu. Ur!it$ pohled na v$vojov$ mechanismus, kter$ se podílí na tvorb& tvarové rozmanitosti zobák# u Darwinov$ch p&nkav, p"iná%ejí dnes ji' klasické práce Abzhanova et al. (2004; 2006), které pojednávají o tom, 'e za %í"ku zobák# je zodpov&dná exprese genu Bmp4 ve faciálním ektodermu (Abzhanov et al., 2004) a za v$voj dlouh$ch zobák# odpovídá exprese genu CaM také ve faciálním ektodermu (Abzhanov et al., 2006). Na expresi t&chto gen# je mo'né se dívat z pohledu heterochronického a heterotopického p#sobení, pon&vad' nap". p"i del%í a prostorov& %ir%í expresi genu Bmp4 se vyvíjí velmi masivní a %irok$ zobák, zatímco u druhu majícího u'%í zobák není exprese genu Bmp4 tak masivní. Funkce gen# Bmp4 a CaM na v$voj kraniofaciální !ásti lebky (“obli!eje”) byla také potvrzena u v$chodoafrick$ch cichlid (Parsons & Albertson, 2009). Je t"eba zmínit, 'e v$%e zmín&né práce na p&nkávách a cichlidách zmi(ují pouze roli povrchového ektodermu a jeho signalizací, ale jak$ podíl na tvorb& tvarové rozmanitosti v “obli!ejové” !ásti hlavy má mezenchym p#vodu neurální li%ty nezmi(ují. Je dob"e známo, 'e velká v&t%ina gen# jeu v&t%iny mnohobun&!n$ch organizm# (Metazoa) konzervativní (extrémem jsou kup". Hox geny) a fenotypovou 21
diverzitu neovliv(uje ani tak p"ítomnost !i nep"ítomnost “specifick$ch” gen# - jak se d"íve myslelo, n$br' rozdílná genová regulace “stejn$ch” gen# v prostoru a !ase (Caroll et al., 2001). Tento pr#nik molekulární genetiky a otázek spojen$ch s utvá"ením fenotypové diverzity pomocí heterochronií je dobr$m pojítkem mezi mikroevolu!ními procesy a makroevolu!ními zm&nami (Smith, 2003). Z pohledu evolu!ní biologie je tedy velmi zajímavé, 'e i jen malá !asoprostorová zm&na v p#sobení konzervativního genu m#'e zp#sobit obrovsk$ posun v morfogenezi a heterochronie a heterotopie tak mohou p"edstavovat klí!ové hrá!e fenotypové diverzity.
22
3.
Metodika
3.1. Embryonální materiál Embrya bichira senegalského (Polypterus senegalus, Cuvier, 1829) byla z !ásti zaji"t#na z vlastního chovu na"í Laborato$e (Katedra zoologie), v#t"ina embryonálního materiálu v"ak pocházela ze soukromého chovu pana Vojt#cha Tichého z Krava$ u Opavy. Vají!ka jesetera malého (Acipenser ruthenus, Linnaeus 1758) byla poskytnuta Ing. Davidem Gelou, PhD., z velkochov% V&zkumného ústavu
rybá$ského
a
hydrobiologického
(J'U,
'.
Bud#jovice) ve Vod(anech. Odchov
embryí
do
pot$ebného
stá$í
ontogenetického v&voje byl zaji"t#n pomocí speciální odchovávací aparatury (viz obr. 4), která byla vymy"lena a sestrojena autorem této práce a Mgr. Martinem Mina$íkem. Odchovávací aparatura byla umíst#na do akvarijních chov% katedry zoologie, kv%li teplotnímu optimu pro v&voj embryí obou druh%. P$i dosa)ení k&)eného
ontogenetického
stadia
byla
embrya
anestetizována v roztoku MS-222 (Serva) a poté fixována 4% PFA pufrovan&m 0,1M roztokem PBS, !i pro SEM fixa!ním roztokem dle Mitgutsch (2007) (modifikované Karnovskeho fixativum). Takto fixovan& materiál byl uskladn#n p$i 4°C. Pro pot$ebu in situ hybridizací byla embrya nejd$íve fixována ve 4% PFA a následující den postupn# p$evedena do 100% metanolu a skladována p$i -20°C. Pro pot$ebu ur!ení stá$í bichira byla pou)ita
Obrázek 4: Snímek odchovávací aparatury. Foto po$ídil M. Mina$ík
ontogenetická (stádiovací) tabulka publikována v roce 2009 (Diedhiou & Bartsch, 2009). Stá$í jesetera malého bylo ur!ováno pomocí stádiovací tabulky publikované v roce 1993 (Dettlaff et al., 1993).
23
3.2. Extirpace Pro extirpa!ní operace (rozum#j operace, p$i kter&ch je odstran#na !ást embrya, v tomto p$ípad# povrchov& ektoderm) byla embrya z fixa!ního roztoku promyta v 0,1M PBS. Následn# byla p$emíst#na do Petriho misky s plastelínou, jeliko) plastelína umo)nila vytvo$it vhodné kom%rky pro jednotlivá embrya a správn# je polohovat pro samotnou extirpaci mnohem lépe, ne) obecn# pou)ívan& agarov& blo!ek. Extirpace byly provád#ny pod binokulární lupou Olympus SZX12 za pomoci speciáln# brou"en&ch wolframov&ch jehel. Ektoderm byl odstra(ován z ventrální strany embrya a) na dorzální stranu neurální trubice. Po odstran#ní po)adovaného mno)ství tkán# byly vzorky dále zpracovány SEM.
3.3. Skenovací elektronová mikroskopie (SEM) Pro SEM byl pou)it materiál fixovan& v modifikovaném Karnovskeho fixativu dle Christiana Mitgutsche (Mitgutsch, 2008), nebo byl pou)it fixovan& materiál ve 4% PFA, kter& byl následn# p$efixován do v&"e zmín#ného fixa!ního roztoku minimáln# po 24 hodin. Po promytí 0,1M PBS se embrya odvodnila vzestupnou alkoholovou $adou a) do 100% etanolu (!asové intervaly 10-15 min podle velikosti vzorku). Pro dokonalej"í odvodn#ní byla pou)itá "ir"í "kála alkohol% o r%zn&ch koncentracích a ve 100% alkoholu byla embrya promyta dvakrát pro dosa)ení lep"í dehydratace. Alkoholové roztoky byly roz$ed#ny v PBS, co) se ukázalo jako lep"í ne) varianta $ed#ní v destilované vod#, jeliko) nedocházelo k morfologick&m defekt%m v podob# nap$. promá!knutí epidermis do dutin nalézajících se pod ní. Takto o"et$ené vzorky byly v Laborato$i elektronové mikroskopie na P$f UK vysu"eny metodou CPD (Critical Point Drying-pomocí CO2) v aparatu$e Bal-Tec CPD 030. Po vysu"ení byly vzorky rozmíst#ny na velmi tenké vrstv# prysky$ice (Tempfix Kit) na hliníkové ter!íky a vhodn# orientovány pomocí $asy upevn#né ve speciálním dr)áku. Pro dosa)ení tenké a rovnom#rné vrstvy prysky$ice bylo pou)ito podlo)ního skla. Analyza!ní ter!íky se následn# nechaly pokr&t vrstvi!kou zlata v aparatu$e Bal-Tec SCD 050 a pozorovaly se pod skenovacím elektronov&m mikroskopem JEOL 6380 LV.
24
3.4. Histologická anal!za Embrya pro histologickou anal&zu byla odvodn#na vzestupnou alkoholovou $adou a p$evedena p$es noc do roztoku slo)ek A+B prysky$ice JB-4 Embedding Kit (Polysciences, Inc.). Druh& den byly vzorky naorientovány do silikonové desti!ky (Polysciences, Inc.) a zality roztokem slo)ek A+B+C, kter& bez p$ístupu vzduchu zpolymerizuje na pevnou prysky$ici. Dle standardního protokolu uvád#ného v&robcem by blo!ky m#ly polymerizovat 3 dny. Nicmén# tento proces byl urychlen pomocí vysou"ení v desikátoru za kontinuálního p$ístupu CO2 po dobu 2 hodin. Díky této inovaci byla doba polymerizace v&razn# zkrácena, co) umo)nilo efektivn#j"í zpracování materiálu. Cel& proces urychlení byl vylep"en díky p$ísp#vku kolegy Mgr. Marka Romá"ka. Zpolymerizované blo!ky byly poté nalepeny na plastové ter!íky a na$ezány na mikrotomu Leica RM 2155 na tlou"*ku 4-5 +m. ,ezy byly p$eneseny do kádinky s destilovanou vodou (kv%li sní)ení povrchového nap#tí), následn# naorientovány na podlo)ní sklí!ko a vysu"eny. Na obarvení byl pou)it roztok smíchán& z histologick&ch barviv AzurB, Eosinu (Serva) a destilované vody v pom#ru 4:1:125 a p$ekryty krycími sklí!ky nalepen&mi za pomoci prysky$ice DPX (Fluka). Po zatvrdnutí prysky$ice byly preparáty pozorovány pod mikroskopem Olympus BX 51. Snímky byly po$ízeny pomocí kamery SPOT a programu Spot Advanced (Diagnostic Instruments).
3.5. Imunohistochemie 3.5.1. Whole-mount barvení (zna"ení na celém embryu) P$ed samotn&m zna!ením protilátkami bylo pot$eba eliminovat pigment, kter& by mohl maskovat k&)en& signál. Pro tento ú!el poslou)il roztok 30% H2O2 a metanolu (3:7), kter& se s embryi umístil pod p$ímé sv#tlo a reakce byla pr%b#)n# pozorována a) do úplné depigmentace. Embrya zcela zbavená pigmentu bylo nutno perforovat 10% Tritonem X-100 (Sigma), aby protilátka mohla prostoupit do hlub"ích vrstev. Po promytí v 0,1M PBS byl vzorek promyt BSA (bovine serum albumin, Sigma-Aldrich), co) pomáhá lep"ímu navázání protilátky. Primární protilátka (HNK-1) byla pou)ita v koncentraci 1:100 a ponechána na t$epa!ce p$i pokojové teplot# cca 5 dní. Po odmytí primární 25
protilátky byl pou)it Vectastaine Elite ABC Kit (Vector), kter& umo)(uje vizualizace protilátky ve viditelném sv#tle pomocí k$enové peroxidázy. Samotn& signál (barva) byl vyvíjen v roztoku DAB (diamidobenzidinu). Dále byly vyzkou"eny protilátky proti krox20, AP-2 a Slug (SigmaAldrich), ov"em v"echny tyto protilátky nefungovaly ani u jednoho studovaného druhu a proto je zde neuvádím.
3.5.2. Zna"ení pomocí protilátek na #ezech Vzorky pro imunohistochemickou anal&zu na $ezech byly nejprve n#kolikrát promyty 0,1M PBS, kv%li d%kladnému odmytí fixativu. Následn# bylo nutno vzorky prosytit 7,5% a 15% roztokem sacharózy po dobu 2,5 hodin ve 4°C a poté inkubovat v $ad# roztok% 15% sacharózy se zvy"ující se koncentrací )elatiny (7,5%, 15% a 20%) po 12 hodinách ve vodní lázni o teplot# 37°C. Takto o"et$ené vzorky se v 20% )elatin# zalily do silikonové formy (Polysciences, Inc.) a zamrazily na -25°C. Vzorky se upevnily na $ezací ter!íky pomocí Tissue Freezing Medium (Jung) a krájeny v kryostatu Leica CM 3050S na tlou"*ku 8-10 +m. Vzorky byly implementovány na nah$átá podlo)ní sklí!ka, která byla skladována do aplikace primární protilátky ve vlhké kom%rce ve 4°C. P$ed samotn&m zna!ením bylo nutno $ezy prom&t 0,1M PBS, o"et$it 1% roztokem BSA a poté aplikovat primární protilátku (fibronektin, rabbit anti-human (Dako,1:100)). Sklí!ka s primární protilátkou byla ponechána ve vlhké kom%rce p$i teplot# 4°C p$es noc. Následující den byla po odmytí primární protilátky pou)ita sekundární protilátka goat anti-rabbit Alexa Fluor 488 (Invitrogen 1:500), která byla aplikována na 1,5 hodiny p$i pokojové teplot#. Pro lep"í navázaní sekundární protilátky se sklí!ka s $ezy umístila na prom&va!ku. Po odmytí nenavázané sekundární protilátky byla sklí!ka zalita pomocí Vectashield Mounting Medium Hard Set (Vector), kter& obsahuje fluorescen!ní zna!ku DAPI pro vizualizaci DNA v jádrech, a p$ikryta krycími sklí!ky. Skladována byla p$i 4°C.
26
3.6. Injikace lipofilní barvy DiI Pro zna!ení migrujících bun#k neurální li"ty in vivo byla pou)ita injikace lipofilní barvy DiI (1,1`-dioctadecyl 1-3,3,3`,3`-tetramethylindocarbocyanineperchlorate). Zásobní roztok DiI (10mg DiI v 50ml 100% ethanolu) byl ultrazvukem o"et$en kv%li p$ítomnosti potenciálních krystal% a roz$ed#n v pom#ru 1:7 s 10% sacharózou. Takto upraven& finální roztok byl injikován bu- pomocí mikroinjektoru IM 300 (WPI) !i ústním injikátorem pomocí speciáln# upraven&ch sklen#n&ch jehel. Po injikacích byla embrya ponechána dovyvinout se do pot$ebného stadia v roztoku E2 (zebrafish medium; Nüsslein-Volhard & Dahm, 2002).
3.7. Elektroporace Na elektroporace byl pou)it elektroporátor Intracell Intracept TSS 10 ve vlastnictví 1. Léka$ské fakulty UK v laborato$i prof. Milo"e Grima. P$i elektroporaci se DNA konstrukt injikoval pomocí ultratenk&ch sklen#n&ch kapilár do neurální trubice (Scaal et al., 2004) a následn# se p$enesl do neurální trubice za pomoci dvou elektrod vyu)ívajících elektrick& gradient. V pr%b#hu elektroporace bylo nutno dbát na vzdálenost elektrod od embrya, aby nedo"lo k jeho spálení, ale zárove( musely b&t tyto dostate!n# blízko, aby transport v%bec prob#hl.
3.8. Zna"ení pomocí CCFSE (Carboxyfluorescein) Embrya p$ed uzav$ením neurálních val% byla dána na n#kolik minut do roztoku CCFSE v PBS (30+l v 15ml) bez p$ístupu sv#tla. Poté byla ponechána v E2 mediu a) do vhodného stadia ontogenetického v&voje a poté fixována v 4%PFA. Barvení pomocí CCFSE ozna!uje fluorescen!n# povrchov& ektodermem a z tohoto d%vodu je mo)né sledovat osud ektodermu, p$ípadn# i ektomezenchymov&ch bun#k (kup$. Griffith & Hay, 1992).
3.9. WISH (Whole-mount in situ hybridizace) P$i WISH bylo nejprve nutno embryo depigmentovat, viz podkapitola 3.5.1. Po depigmentaci byly vzorky vystaveny p%sobení proteinázy K na 7 min (1:1000), p$edev"ím pro degradaci RNA vazebn&ch protein% a následn# se vzorky 27
posfixovaly ve 4% PFA. Po krátké postfixaci se vzorky postupn# p$evedly do hybridiza!ního roztoku a samotná hybridizace byla provád#na p$es noc v hybridiza ních komorách (Quanta BioTech a Boekel Bambino) p$i teplot# 60°C. Následující den byly vzorky n#kolikrát promyty v posthybridiza!ním rozrtoku (modifikovan& hybridiza!ní roztok), p$evedeny do roztoku MABTween a o"et$eny blokovacím roztokem, kter& zabra(uje nespecifick&m interakcím. P$es dal"í noc byly vzorky inkubovány p$i 4°C s protilátkou, na které byla alkalická fosfatáza. T$etí den se vzorky prom&valy v roztoku MABTween, co) umo)nilo odplavit nenavázanou protilátku. Ozna!ené mRNA byly nakonec vizualizovány chromogenní reakcí, ji) se ú!astnil substrát pro alkalickou fosfatázu, kter& je p$ítomen v roztoku BM purple (Roche). V&sledn& signál daného genu (v tomto p$ípad# Dlx3) v embryu vytvá$el fialové zabarvení. Pou)itá próba na gen Dlx3 byla p$ipravena kolegou Davidem Jandzikem, PhD. a darována na"í laborato$i.
3.10. Obrazová anal!za Histologické a imunohistochemické preparáty byly analyzovány pod mikroskopem Olympus BX51, kter& je také vybaven integrovanou UV lampou. Fotografie se po$izovaly pomocí fotokamery SPOT. Fluorescen!ní fotografie byly upravovány a skládány do vícebarevné podoby pomocí programu Spot Advanced (Diagnostic Instruments). N#které protilátkou zna!ené preparáty byly pozorovány v Laborato$i fluorescen!ní mikroskopie na konfokálním mikroskopu (Leica TCS SP2 s AOBS (Acousto-Optical Beam Splitter) systémem). Extirpovaná embrya byla pozorována pod binokulární lupou Olympus SZX 12 s kamerou Olympus, která umo)(uje skládání z více nasníman&ch vrstev (DeepFocus) za pomoci softwaru QuickPhoto Micro (Promicra). Injikace embryí probíhala pod fluorescen!ní binolupou Olympus IX 81 a fotografovala se kamerou Orca Hamamatsu Photonics Camera. Finální úprava fotografií se provád#la v programu Adobe Photoshop CS a FIJI (ImageJ) Schémata byla vytvá$ena v programu Corel Draw vyu)ívající vektorovou grafiku.
28
4. Seznam zkratek B
Branchiální proud
c
coelom
co
cementov! orgán
ent
entoderm
exg
vn"j#í $ábra
f
farynx
g
ganglium
H
Hyoidní proud
hg
p%íchytná $láza
ht
srdce
mes
mesencephalon
mmez
mezodermální mezenchym
mnc
mandibulární kavita
not
notochord
olf
&ichov! vá&ek
optv
optick! vá&ek
otv
otická kapsule
p1
1. faryngeální v!chlipka
p2
2. faryngeální v!chlipka
pin
pineální orgán
pog
p%ední &ást embryonálního st%eva
prmc
premandibulární kavita
pron
pronefros
pros
prosencephalon
29
r2
2. rhombomera
r3
3. rhombomera
r4
4. rhombomera
r5
5. rhombomera
rhom
rhombencephalon
s
somit
s1 – Tab 6,3
1. somit
s2
2. somit
s3
3. somit
t
ocas
TRI
Trigeminální proud
IV.
4. mozková komora
V.
5. hlavov! nerv
VII.
7. hlavov! nerv
IX.
9. hlavov! nerv
30
5.
V!sledky
5.1. Bichir senegalsk! (Polypterus senegalus) 5.1.1. Vn"j#í morfologie (SEM) Snímky ze skenovacího elektronového mikroskopu (SEM) byly po!ízeny za ú"elem popisu vn#j$í morfologie bichira od proces% neurulace a& po stadium rané larvy. Takto získané informace poslou&ily k pochopení rané morfogeneze tkání bichira. Ve stadiu 21 (dle Diedhiou & Bartsch, 2009) (Tab. 1 A, A’) nejsou neurální valy dosud zcela splynulé: zatímco v posteriorní "ásti embrya se u& dot'kají (tzn. splynutí neurálních val% je zde rychlej$í), v anteriorní "ásti je rozestup neurálních val% v'razn# v#t$í, jeliko& se zde diferencuje budoucí mozek a dochází k aktivní morfogenezi této oblasti. Ve stadiu 21 je u& také vid#t nepatrné vyboulení (Tab. 1 A’), které indikuje místo vzniku budoucí vn#j$í &ábry. Jak bude ukázáno pozd#ji, toto vyboulení je zp%sobeno velmi rannou a masivní migrací hyoidního proudu neurální li$ty (Tab. 2 A, B). V následujícím stadiu 22 dochází ke kompletnímu splynutí neurálních val% (Tab 1.B, B’) a lze pozorovat v'razné primordium vn#j$í &ábry. Pro stadium 23 je charakteristická p!ítomnost dvou dob!e definovan'ch rann# se zakládajících larválních struktur, vn#j$ích &aber a cementov'ch orgán% (Tab. 1 C, C’). Cementové orgány se nacházejí v anteriorní "ásti vznikající hlavy, zatímco v hyoidní oblasti prominuje primordium vn#j$ích &aber. Ve stadiu 24 se embryo za"íná prodlu&ovat, tak&e jeho celková velikost za"íná p!esahovat &loutkovou kouli. Embryonální mozek je v této fázi ontogeneze rozd#len do t!í dob!e
rozli$iteln'ch
"ástí,
na
prosencephalon,
mesencephalon
a
rhombencephalon. Cementové orgány se v rostrální "ásti je$t# více zv#t$ují a nab'vají pro n# typické kulovité podoby. Vn#j$í &ábry se prodlu&ují laterálním sm#rem a mají polokulovit' tvar (Tab. 1 D, D’). Dal$í stadium (st. 25) je $patn# rozli$itelné od p!edchozího stadia, v hlavové oblasti je jedin'm vodítkem více prominující pineální organ (Tab. 1 E). Nejlep$ím znakem pro odli$ení stadia 25 a 24 je velikost ocasní "ásti embrya, která je ve stadiu 25 p!ibli&n# dvakrát del$í oproti stadiu p!ede$lému (Tab. 1 E).
31
5.1.2. Extirpace povrchového ektodermu a anal!za pomocí SEM Pro základní poznání celé migrace hlavové neurální li$ty byla pou&ita metoda, p!i které je za pomocí extirpace odstran#n povrchov' ektoderm a takto odoperovaná embrya se poté analyzují pomocí SEM. Tato metoda má obrovskou v'hodu, jeliko& p!i správn# provedené operaci poskytuje detailní informace o kontextu ve vyvíjející se hlav# a lze vizualizovat celou migra"ní patrnost (angl. pattern) hlavové neurální li$ty. Obrovskou nev'hodou nicmén# z%stává technická náro"nost a zru"nost povedení a té& pou&ití velkého mno&ství embryí. Nejran#j$í stadium, u kterého se zada!ilo odstranit epidermis a dále jej analyzovat, bylo stadium 22. U mlad$ích stadií se extirpace epidermis dokonale nezda!ily, jeliko& jednotlivé vrstvy zárode"n'ch list% se nacházejí ve velmi t#sném kontaktu a nemohla b't selektivn# odstran#na pouze jedna epiteliální vrstva. Ve stadiu 22 lze dob!e rozli$it trigeminální a hyoidní proud bun#k neurální li$ty (Tab. 2 A, B). Trigeminální proud migruje pouze z anteriorní "ásti prosencephala a p!es primordium oka. Hyoidní proud migruje z oblasti rhombencephala a je oproti trigeminálnímu velice urychlen, proto&e je vid#t mnohem ventráln#ji ne& trigeminální proud (Tab. 2 A). Také po"etnost bun#k tvo!ících hyoidní proud je z!eteln# mnohem v#t$í, ne& je tomu u proudu trigeminálního. Zatímco trigeminální proud se je$t# nachází na úrovni neurální trubice, hyoidní proud u& odmigroval z této úrovn# a osidluje oblast budoucí vn#j$í &ábry; na dorzální stran# faryngu naru$uje celistvost tohoto proudu evaginace entodermu mezi prvním a druh'm faryngeálním obloukem, která p!ispívá k morfogenezi vn#j$í &ábry (Tab. 2 B) (srovnej také Crkvová, 2012). Bu(ky neurální li$ty migrují kolem této p!eká&ky, spo"ívající v pevném kontaktu mezi evaginujícím se entodermem a vn#j$ím ektodermem. Ve stadiu 23 trigeminální proud zvy$uje po"et sv'ch bun#k a stále migruje p!es o"ní primordium (Tab. 2 D). Hyoidní proud osidluje celé primordium vn#j$í &ábry, pouze v jeho posteriorní "ásti nepokr'vá celistv' entoderm hyoidní v'chlipky (Tab. 2 C). V následujícím stadiu (24) je situace velmi podobná, ale v%bec poprvé lze identifikovat branchiální proud bun#k neurální li$ty (Tab. 2 E). V tomto stadiu se také prolamuje první faryngeální v'chlipka, která pomáhá rozli$ení trigeminálního a hyoidního proudu (Tab. 2 E, F). Ve stadiu 24 se v hyoidní oblasti objevuje otická 32
kapsule, která se zano!uje do migra"ního proudu bun#k neurální li$ty v hyoidní oblasti (Tab. 2 F) a pozd#ji se vmeze!í mezi hyoidní a branchiální migra"ní proud neurální li$ty, "ím& napomáhá k rozli$ení obou migra"ních proud%. Dále se zv#t$uje masivnost evaginujícího entodermu v posteriorním sm#ru. stadium 25 bylo poslední, které bylo za tímto ú"elem analyzováno. V tomto stadiu trigeminální proud obchází zv#t$ené o"ní primordium (Tab. 2 G, H), posteriorn# od o"ního primordia je také mo&no pozorovat vznikající ganglia V. hlavového nervu (Tab. 2 G). Hyoidní proud osidluje celou oblast vn#j$í &ábry a "ást tohoto proudu lze také pozorovat na otické kapsuli. Bu(ky branchiálního proudu migrují posteriorn# od otické kapsule a také jsou zde patrny dal$í zakládající se nervová ganglia (Tab 2. G). M%&eme tedy shrnout, &e anal'za za pomocí SEM mj. ukázala, &e migra"ní patrnost bun#k neurální li$ty u bichira senegalského je zm#n#na oproti o"ekávanému klasickému schématu – druh', hyoidní proud migruje rozsáhleji a d!íve, ne&-li proud první, trigeminální (Tab. 2).
5.1.3. Histologická anal!za (JB-4 prysky$ice) Histologická anal'za umo&(uje pochopit detaily migrace neurální li$ty na bun#"né úrovni (nap!. procesy vznikání) a také poskytuje mo&nost analyzovat raná embrya, u kter'ch bylo velice t#&ké bezrozporn# odstranit povrchov' ektoderm a p!esn# rozli$it epidermis od bun#k neurální li$ty. Pomocí této techniky chci také testovat p!edchozí nález o heterochronii v migra"ní patrnosti bun#k neurální li$ty u bichira Nejmlad$í stadium bichira, které bylo histologicky analyzováno a barveno pomocí metody Azure B/ Eosinu, bylo stadium 20, co& je stadium je$t# rané neurulace. Na frontálním !ezu mandibulární oblastí &ádné bu(ky neurální li$ty dosud nelze pozorovat (Tab. 3 A): povrchov' epitel zde velmi t#sn# p!iléhá k epitelu budoucí, stále je$t# $iroce otev!ené neurální trubice a vytvá!í tak neprostupnou bariéru pro jakékoli migrující bu(ky (Tab. 3 A). V hyoidní oblasti stejného stadia je v$ak ji& mo&né identifikovat epitelo-mezenchymální tranzici (Tab. 3 B, B´), co& je umo&n#no rozvoln#ním vn#j$ího epitelu od epitelu budoucí neurální trubice a m%&e tak vzniknout prostor pro
migrující bu(ky neurální li$ty. V
branchiální oblasti je op#t pozorován blízk' kontakt epitel% a &ádné migrující bu(ky 33
zde nelze identifikovat (Tab. 3 C). Situace u stadia 21 (Tab. 3 D-F) je velmi podobná p!edchozí ve stadiu 20. Zatímco trigeminální proud "i migrace se dosud neustavily (Tab. 3D), na frontálním !ezu hyoidní oblastí lze ji& pozorovat pom#rn# kompaktní migra"ní proud (Tab. 3 E,E´), kter' migruje sm#rem k lateráln# rozprost!enému mezodermálnímu mezenchymu. V branchiální oblasti je mo&no identifikovat první somit, ale epitely jsou stále ve velmi t#sném kontaktu a není zde prostor pro migraci neurální li$ty (Tab. 3 F). Ve stadiu 22 by u& dle p!edchozích extirpa"ních experiment% a následné SEM anal'zy m#l trigeminální proud neurální li$ty migrovat. Av$ak na frontálních !ezech mnou analyzovan'mi embryi nelze identifikovat mezenchymální populaci v oblasti prosencephala: epitely jsou zde stále ve velmi t#sném kontaktu (Tab. 4 A). Vysv#tlení tohoto nálezu bude nejspí$e spo"ívat ve velmi nízkém roz$kálování jednotliv'ch stadií v pr%b#hu raného v'voje bichira. V hyoidní oblasti je naproti tomu migrace dob!e vid#t a je velmi masivní oproti p!edchozím stadiím (Tab. 4 B, B´,C). Po"etnost hyoidního proudu nar%stá na anterio-posteriorní ose, jeliko& anteriorní "ást hyoidní proudu teprve prod#lává epitelo-mezenchymální tranzici (Tab. 4 B,B´) a v posteriorní "ásti jsou vid#t souvislé migra"ní kompartmenty (Tab. 4 C). V branchiální oblasti ve stadiu 22 nelze &ádné mezenchymatické bu(ky p%vodu neurální li$ty pozorovat (Tab. 4 D), nicmén# lze v$ak v tomto forntálním !ezu
identifikovat po"ínající desti"kovité ztlu$)ování potvrchového ektodermu,
kter'm je otická plakoda (Tab. 4 D). Ve stadiu 23 prominují v anteriorní "ásti hlavy párové larvální cementové orgány (Tab. 1 C,D). Na frontálním !ezu vedeném mezi cementov'mi orgány a primordiem oka jsem zachytil mezenchymatickou populaci, nacházející se pod mozkem (Tab. 4 E). Z toho !ezu bohu&el nelze rozhodnout o p%vodu mezenchymu. V mandibulární oblasti za optick'm vá"kem lze pozorovat migraci trigeminálního proudu z dorzální strany neurální trubice (Tab. 4 F, F´). Hyoidní proud lze stále pozorovat, ale nelze p!esn# rozpoznat, kam a& ventráln# dosahuje, jeliko& se jednotlivé mezenchymální populace ve ventrální "ásti faryngu ji& $patn# rozli$ují. Ve stadiu 23 je mo&né pozorovat dob!e patrnou IV. mozkovou komoru (Tab. 4 G). Otická plakoda je ji& ve stadiu 23 velmi dob!e rozpoznatelná a nab'vá svého charakteristické tvaru (Tab. 4 H). Posteriorn# od otické plakody jsem na !ezech poprvé identifikoval migrující bu(ky branchiálního proudu neurální li$ty (Tab. 4 I). 34
Posledním histologicky analyzovan'm stadiem bylo stadium 24. Bu(ky trigeminálního proudu jsem nalezl nad optick'm vá"kem (Tab 5. A). Trigeminální proud je mo&né sledovat také posteriorn#ji od optického vá"ku (Tab. 5 B,B´,C,C´). Hyoidní migra"ní proud je vid#t jak dosahuje entodermálního v'b#&ku faryngu, podílejícího se na v'voji vn#j$í &ábry (Tab. 5D). Hned dal$í posteriorn# umíst#n' !ez ukazuje, jak hyoidní migra"ní proud vypl(uje zcela vn#j$í &ábru (Tab. 5 E). Zajímavá je situace v oblasti otické plakody, která definuje okraj vn#j$í &ábry a tím také hyoidní oblast. V anteriorní "ásti lze pozorovat mezenchymatické bu(ky na její dorzální stran#, mezenchymatické bu(ky v$ak obcházející otickou kapsuli i po vnit!ní stran# (Tab. 5 E). Na frontálním !ezu lokalizovaném posteriorn#ji od !ezu p!edchozího lze pozorovat mezenchymatické bu(ky migrující mezi vn#j$ím ektodermem a otickou kapsulí (Tab. 5 F, F´). Posteriorn# od otické plakody lze pozorovat bu(ky branchiálního migra"ního proudu, které vytvá!ejí nev'razn' proud, mo&ná budoucí nerv, a migrují v blízkosti prvního somitu (Tab. 5 G). Ve stadiu 24 se mi také mo&ná poda!ilo poprvé identifikovat migrující první bu(ky trupové neurální li$ty (Tab. 5 H, H´).
5.1.4. Imunohistochemie Pro potvrzení nalezen'ch skute"ností v histologické anal'ze jsem se rozhodl vyu&ít imunohistochemického
zna"ení
pomocí
protilátky
proti
fibronektinu,
která
umo&(uje vizualizovat bazální laminy mezi epiteliálními tkán#mi a tak vyjasnit p!esnou pozici jednotliv'ch epitel%. Bichir je nemodelov'm druhem, a proto je nutné uva&ovat o specificit# imunohistochemického zna"ení, nicmén# protilátka proti fibronektinu ji& byla v na$í laborato!i úsp#$n# na bichirovi pou&ita (Mina!ík, 2011; Crkvová, 2012). Pro imunohistochemické zna"ení jsem klí"ová stadia na!ezal v kryostatu v horizontální a frontální rovin#. Dle m'ch p!edpoklad% m#ly frontální !ezy potvrdit pozici vmeze!ené neurální li$ty mezi povrchov'm epitelem a epitely vnit!ních struktur (neurální trubice, optická a otická kapsule a dal$í). Horizontálními !ezy jsem cht#l vizualizovat pozici mezenchymu neurální li$ty v%"i mezodermálnímu mezenchymu p!i utvá!ení faryngeálních oblouk%. Z proveden'ch anal'z je nicmén# vid#t, &e hranice epitel% b#hem neurulace a postneurulace v anteriorní "ásti embrya je velmi 35
nejasná oproti kup!. trupové "ásti embrya. Nejasné hranice epitel% z!ejm# souvisí s vysokou morfogenetickou aktivitou ve v'voji hlavy. Na frontálním !ezu stadia 24 v hyoidní oblasti lze identifikovat bu(ky neurální li$ty, hyoidního proudu, migrující z dorzální "ásti neurální trubice sm#rem k otické kapsuli (Tab. 6 A). Na tomto !ezu je také identifikován mezodermální mezenchym, kter' se nachází ventro-mediáln# od otické kapsule. V trupové "ásti je signál protilátky proti fibronektinu mnohem siln#j$í, co& lze dob!e vid#t na vizualizaci hranic somit% (Tab. 6 B); na tomto !ezu je mo&né také pozorovat bu(ky trupové neurální li$ty, které se nacházejí dorzáln# od somitu a vytvá!ejí jak'si mal' snopec bun#k (Tab. 6 B, B´). Na horizontálních !ezech stadiem 24 lze dob!e odli$it "ásti jednotliv'ch hlavov'ch migra"ních proud% (Tab. 6 C, D). Na horizontálním !ezu ventrální "ástí embrya lze také krom trigeminálního proudu odli$it evaginující entoderm v hyoidní oblasti, kter' se podílí na v'voji vn#j$ích &aber bichira (Tab. 6 C). Horizontální !ez dorzální "ásti embrya ve stadiu 24 odhaluje mezenchymatické bu(ky p%vodu neurální li$ty migrující p!es otickou kapsuli (Tab. 6 D). Nicmén# na !ezech horizontální rovinou u bichira nelze komplexn# popsat migra"ní patrnost bun#k neurální li$ty v pr%b#hu faryngogeneze (srovnej s axolotlem, Cerny et al., 2004 "i jeseterem Tab. 11). Krom# protilátky proti fibronektinu jsem se pokusil vyu&ít také komer"n# dostupné protilátky proti proteinu krox20 a anti-Slug a AP-2 protilátky, co& by mi umo&nilo lépe pochopit detaily migrace hlavové neurální li$ty. V$echny tyto pokusy se v$ak nezda!ily a neúsp#ch z!ejm# souvisí s komplikovanou funk"ností protilátek u nemodelov'ch druh%. Bu(ky neurální li$ty jsem se také pokusil zna"it klasickou protilátkou HNK-1, která byla u n#kolika druh% pou&ita ke zna"ení migrující neurální li$ty (BronnerFraser, 1986; Erickson et al., 1989; Sadaghiani & Vielkind, 1990) "i ke zna"ení vyvíjejích se nerv% (Kuratani et al, 2000). HNK-1 protilátku jsem vyzkou$el na cel'ch embryích i na !ezech, ale u bichira nefungovala.
36
5.1.5. Vitální barvení lipofilním markerem DiI Pomocí injikace lipofilní zna"ky DiI je mo&né vizualizovat selektivn# migrující bu(ky neurální li$ty (srovnej Materiál a metody). Proto jsem se rozhodl pou&ít tuto metodu, abych potvrdil data získaná z p!edchozích anal'z. Tato metoda je technicky náro"ná a navíc zna"ení je provád#no na &iv'ch embryích, co& vy&aduje velké mno&ství embryonálního materiálu a po injikaci je nutné zajistit jejich p!e&ití do k'&eného stá!í. Injika"ní experimenty se mi díky nedostatku &ivého materiálu poda!ilo provést pouze jednou. Celkem jsem injikoval do neurálních val% 40 embryí ve stadiu 21, z "eho& po n#kolikahodinové kontrole p!e&ilo a m#lo pozitivní signál 12 z nich. Injikaci jsem provád#l z laterální strany neurálních val% (viz Tab. 7 C ), "ím& jsem se pokusil eliminovat problém s injikací necht#n'ch tkání. P!i injikaci z laterální strany m%&e dojít pouze k ozna"ení bu(ek neurální li$ty a povrchového ektodermu, proto&e jak je vid#t z histologick'ch dat, &ádné jiné tkán# se v dorzální "ásti neurálních val% nenacházejí. V$ech 12 embryí vykazovalo pozitivní signál v migrujících bu(kách a u n#kolika z nich signál vypadal shodn# s daty získan'mi extirpa"ními experimenty (Tab. 7 A, B). Abych potvrdil, &e DiI je navázána pouze v mezenchymu p%vodem z neurální
li$ty,
embrya
jsem
následn#
histologicky
zpracoval
(n=12).
Z
histologick'ch dat je nicmén# vid#t, &e b#hem injikace pom#rn# "asto do$lo k ozna"ení dal$í bun#"né populace, p!edev$ím mezodermálního mezenchymu (Tab. 7 A´). U
n#kter'ch injikovan'ch embryí histologicky zpracovan'ch lze
získan' signál velmi komplikovan# odli$it, nálézá-li se v bu(kách neurální li$ty "i v mezodermálním mezechymu (Tab. 7 B´). Mimo injikace bun#"ného markeru DiI jsem také pou&il zna"ení pomocí CCFSE (pro detaily viz kapitola Materiál a metody), které primárn# zna"í povrchov' ektoderm. V mém p!ípad# jsem toto zna"ení pou&il na embrya s otev!en'mi neurálními valy, proto&e tuto dobu dochází k emigraci bun#k neurální li$ty. Jeliko& bu(ky neurální li$ty vznikají z ektodermu neurálních val%, b#hem epitelo-mezenchymálního p!echodu a poté migrují, ponesou si zna"ku CCFSE s sebou v pr%b#hu migrace a mohou tak b't snadno detekovatelné. Tato metoda se neosv#d"ila, jeliko& se ukázalo, &e cilie, která má embryo bichira hojn# na svém 37
povrchu, svou "inností odmyjí tuto zna"ku ze svého povrchu, ikdy& se zprvu jevil experiment pozitivn# (Tab. 7 D).
5.1.6. In situ hybridizace Pro dal$í potvrzení dat získan'ch z p!ede$l'ch experiment% jsem se rozhodl vyu&ít molekulárn#-biologické metody in situ hybridizací na cel'ch embryích (WISH), p!i kter'ch je mo&né vizualizovat expresi studovaného genu. Tato metoda funguje na základ# komplementarity sondy s navázanou protilátkou (tzv. próby) a sekvencí genu. Jeliko& v na$í laborato!i disponujeme $irokou $kálou sond, rozhodl jsem se vyzkou$et sondu proti genu Dlx3, co& je gen, kter' by m#l b't exprimován mimo jiné práv# i v pr%b#hu migrace neurální li$ty. Gen Dlx3 má expresi v&dy v ploutevním lemu, co& m%&e b't pou&ito jako kontrola specificity pou&ité próby(Akimenko et al., 1994). Prvním stadiem, u kterého byla exprese genu Dlx3 detailn# analyzována, bylo stadium 23 (Tab. 8 A, B). V tomto stadiu je mo&né pozorovat silnou expresi genu Dlx3 v hyoidní oblasti, která je lokalizována ventráln# od rhombencephala (Tab 8 A, B). Expresi genu Dlx3 lze také pozorovat v nejvíce anteriorní "ásti hlavy, kde jsou p!ítomny bu(ky trigeminálního proudu neurální li$ty (srovnej Tab. 2), která z!ejm# souvisí se silnou kondenzací bun#k trigeminálního proudu v této oblasti (Tab. 8 B). Rozsah trigeminálního proudu neurální li$ty je mnohem masivn#j$í, jak ukazují data z extripa"ních experiment%, kde jsou bu(ky trigeminálního proudu lokalizovány a& na hranici mesencephala (Tab. 2D). Tomuto rozsahu m%&e odpovídat slabá exprese genu Dlx3, která m%&e b't ovlivn#na men$ím po"tem bun#k trigeminálního proudu v této pozici (srovnej Tab. 8B a Tab. 2D). Ve stadiu 24 je exprese genu Dlx3 patrná dorzáln# od cementového orgánu, ale u& nelze pozorovat expresní signál na dorzální stran# prosencephala (Tab. 8 C, D). Podoba této exprese by tedy nazna"ovala, &e exprese genu Dlx3 v tomto stadiu se nachází v t#ch bu(kách trigeminálního proudu neurální li$ty, které se nalézají pouze v oblasti cementov'ch orgán%, zatímco v bu(kách na dorzální stran# neurální trubice exprese chybí. Silná exprese v bu(kách hyoidního proudu neurální li$ty je rozeznatelná i ve ventrální "ásti primordia budoucí vn#j$í &ábry (Tab. 8 C). P!i dorzálním pohledu na hlavou "ást embrya je mo&né identifikovat 38
expresi genu Dlx3 v primordiu vn#j$í &ábry, kde vytvá!í expresní patrnost ve tvaru obráceného písmene L (Tab. 8 D). V nejstar$ím analyzovaném stadiu bichira (st. 25) je exprese genu Dlx3 v trigeminálním oblasti rozeznatelná pouze ve velmi malém rozsahu dorzáln# od cementového orgánu (Tab. 8 E). Exprese v hyoidní oblasti je ve stadiu 25 lokalizována pouze v nejvíce posteriorní "ásti primordia budoucí vn#j$í &ábry (Tab. 8 E) a v'$e popsaná expresní patrnost v podob# obraceného písmene L je zde stále dob!e pozorovatelná (Tab. 8 F).
39
Tabulka 1: Ran! v!voj bichira senegalského Polypterus senegalus (SEM). (A - E) Laterální pohled na jednotlivá stadia od rané neurulace po ranou larvu. (A´ - E´) Dorzální pohled na hlavovou oblast jednotliv!ch stádií; "ipka ozna!uje hyoidní oblast; hv"zdi!ka zna!í vyvíjející se pineální orgán; snímky B a B´ po!ídil Mgr. Martin Mina!ík
40
Tabulka 2: Migrace hlavové neurální li!ty bichira seneglaského (Extirpace a SEM anal!za). (A) Dorzální pohled na trigeminální a hyoidní proud hlavové neurální li!ty ve stadiu 22. (B) Detail hyoidního proudu hlavové neurální li!ty ve stadiu 22. (C) Laterální pohled na trigeminální a hyoidní proud neurální li!ty ve stadiu 23. (D) Dorzální pohled na anteriorní !ást hlavové oblasti ve stadiu 23. (E - F) Laterální pohled na trigeminální, hyoidní a branchiální proud hlavové neurální li!ty ve stadiu 24. (G - H) Laterální pohled na trigeminální, hyoidní a branchiální proud neurální li!ty; !ipka ozna!uje vznikající neurální ganglia. Ektoderm Entoderm Mezoderm Neurální ektoderm Neurální li!ta
42
Tabulka 3: Heterochronie v emigraci hyoidního proudu hlavové neurální li!ty (JB-4 histologie). (A - C) Frontální !ezy stádiem 20. (D F) Frontální !ez stádiem 21. (A) Frontální !ez mandibulární oblastí stadia 20. (B) Frontální !ez hyoidní oblastí stadia 20. (B´) Detail dorzální !ásti neurálního valu v hyoidní oblasti stadia 20. (C) Frontální !ez branchiální oblastí stadia 20. (D) Frontální !ez mandibulární oblastí stadia 21.(E) Frontální !ez hyoidní oblastí stadia 21. (E´) Detail neurální trubice v hyoidní oblasti stadia 21. (F) Frontální !ez branchiální oblastí stadia 21; !lutá oblast zna!í hranice neurální trubice; bílá oblast zna!í bazální laminu vn!j"ího epitelu. #lutá !ipka zna!í kontakt vn"j#ího epitelu s epitelem neurální trubice; zelená !ipka ozna!uje bu!ky hlavové neurální li"ty; v ráme!ku SEM snímek stadia 21 (D - F).
44
Tabulka 4: Vznik migra!ních proud" hlavové neurální li#ty bichira senegalského (JB-4 histologie). (A-D) Frontální $ezy stádiem 22. (A) Frontální $ez rostrální !ástí mandibulární oblasti stadia 22. (B) Frontální $ez posteriorní !ástí mandibulární oblasti stadia 22. (B´) Detail vrcholku neurální trubice v mandibulární oblasti s vyzna!en%mi emigrujícími bu&kami trigeminálního proudu. (C) Frontální $ez hyoidní oblastí stadia 22 s vyzna!en%mi migrujícími bu&kami hyoidního proudu hlavové neurální li#ty. (D) Frontální $ez hranicí mezi hyoidní a branchiální oblastí stadia 22. Vizualizována vznikající otická plakoda. (E - I) Frontální $ezy stádiem 23. (E) Frontální $ez mandibulární oblastí a cementov%mi orgány; Snímek ve vertikální rovin'. (F) Frontální $ez mandibulární oblastí stadia 23 za cementov%mi orgány. (F´) Detail zam'$en% na migrující bu&ky trigeminálního proudu hlavové neurální li#ty. (G) Frontální $ez hyoidní oblastí s vyzna!en%mi bu&kami hyoidního proudu neurální li#ty. (H) Frontální $ez oblastí stadia 23 s vyvíjející se otickou plakodou. (I) Frontální $ez branchiální oblastí stadia 23 s vyzna!en%mi migrujícími bu&kami branchiálního proudu hlavové neurální li#ty; (lutá oblast zna!í hranice neurální trubice; bílá oblast zna!í bazální laminu vn'j#ího epitelu. (lutá #ipka zna!í kontakt vn'j#ího epitelu s epitelem neurální trubice; zelená #ipka ozna!uje bu&ky hlavové neurální li#ty; v ráme!ku SEM snímek stadia 22 (A - D) a stadia 23 (E – I).
46
Tabulka 5: Pozdní fáze migrace hlavové neurální li!ty bichira senegalského (JB-4 histologie). (A - I) Frontální "ezy stádiem 24. (A) Frontální "ez mandibulární oblastí na hranici mezi cementov#m orgánem a optick#m vá$kem ve stadiu 24 s vyzna$en#mi migrujícími bu%kami trigeminálního proudu neurální li!ty. (B) Frontální "ez mandibulární oblastí s vyzna$en#mi bu%kami trigeminálního proudu neurální li!ty. (B´) Detail p"edchozího "ezu. (C - D) Frontální "ez rostrální $ástí hyoidní oblasti s vyzna$en#mi bu%kami hyoidního proudu. (C´) Detail p"edchozího "ezu. (E – F) Frontální "ez hyoidní oblastí v míst& s otickou kapsulí. (F´) Detailní snímek migrujících bu%&k hyoidního proudu nad otickou kapsulí. (G) Frontální "ez branchiální oblastí s vyzna$en#mi bu%kami branchiálního proudu nad vyvíjejícím se prvním somitem. (H) Frontální "ez trupovou oblastí s vyzna$en#mi bu%kami trupové neurální li!ty nalézajícími se dorzáln& od somitu. (H´) Detailní snímek p"edchozího "ezu s d'razem na bu%ky trupové neurální li!ty; bílá oblast zna$í bazální laminu vn&j!ího epitelu. (lutá !ipka zna$í kontakt vn&j!ího epitelu s epitelem neurální trubice; zelená !ipka ozna$uje bu%ky hlavové neurální li!ty; v ráme$ku SEM snímek stadia 24 (A - H´).
48
Tabulka 6: Morfogeneze v hlavové oblasti bichira senegalského, s d!razem na vizualizaci bazálních lamin jednotliv"ch epitel! pomocí protilátky proti fibronektinu. (A-B´) Frontální #ezy stádiem 24. (A) Frontální #ez hyoidní oblastí ve stadiu 24 s vyzna$en"mi bu%kami hyoidního proudu neurální li&ty. (B) Frontální #ez trupovou oblastí ve stadiu 24. V detailu (B´) je vid't populace trupové neurální li&ty ozna$ená v p#edchozím snímku &ipkou. (C-D) Horizontální #ezy hlavovou oblastí ve stadiu 24. (C) Horizontální #ez s vyzna$en"mi bu%kami trigeminálního proudu neurální li&ty. Laterální expanze entodermálních bun'k k povrchovému ektodermu. (D) Horizontální #ez stadiem 24 s vyzna$en"mi bu%kami hyoidního a branchiálního proudu neurální li&ty; pro lep&í p#ehlednost bílá te$kovaná hranice vizualizuje pozici bazálních lamin.
50
Tabulka 7: Mapování migrace bun!k neurální li"ty pomocí DiI injikací. (A) Injikované embryo ve stadiu 23+ s pozitivním signálem na hranici hyoidní a branchiální oblasti. (A´) Frontální #ez p#edchozím embryem se pozitivním signálem v somitu a vn!j"ím ektodermu. (B) Injikované embryo ve stadiu 24 s pozitivním signálem v hyoidní oblasti. (B´) Horizontální #ez p#edchozím embryem s pozitivním signálem ve vn!j"ím ektodermu a v mezodermálním mezenchymu nebo v mezenchymu p$vodu neurální li"ty. (C) Schéma ilustrující provedení injikace DiI. (D) Neurula bichira po obarvení roztokem CCFSE a pozitivním signálem v oblasti neurálních val$; Bílá te%kovaná %ára zna%í hranice povrchového epitelu.
52
Tabulka 8: Expresní pattern genu Dlx3 v bu!kách hlavové neurální li"ty bichira senegalského (ISH). (A) Laterální pohled na embryo ve stadiu 23 s expresním patternem genu Dlx3 lokalizovan#m v hyoidní oblasti; ozna$eno "ipkou. (B) Dorzální pohled na stadium 23+ s expresním patternem genu Dlx3 v trigeminální oblasti (oblast oza$ena bílou te$kovanou $árou) a expresním signálem v hyoidní oblasti (ozna$eno "ipkou). (C) Laterální pohled na embryo ve stadiu 24 s expresním patternem genu Dlx3 lokalizovan#m ve ventrální $ásti primordia vn%j"í &ábry (oblast vyzna$ena bílou te$kovanou $árou) a v trigeminální oblasti nad cementov#m orgánem (ozna$eno "ipkou). (D) Dorzální pohled na embryo ve stadiu 24 s expresním patternem genu Dlx3 dorzáln% od cementového orgánu (ozna$eno "ipkou) a v hyoidní oblasti s postero-ventrálním expresním patternem ve tvaru obráceného písmene L (oblast ozna$ena bílou te$kovanou $árou). (E) Laterální pohled na embryo ve stadiu 25 se slab"ím expresním patternem umíst%n#m dorzáln% od cementového orgánu (ozna$eno "ipkou) a s expresním patternem v posterio-ventrální $ásti primordia vn%j"í &ábry, nicmén% s men"ím rozsahem exprese ne& ve stadiu p'edchozím. (F) Dorzální pohled na embryo ve stadiu 25 s expresním patternem genu Dlx3 v primordiu vn%j"í &ábry (oblast ozna$ena bílou te$kovanou $árou); Hranice rhombencephala ozna$ena fialovou te$kovanou $árou.
54
5.2. Jeseter mal! (Acipenser ruthenus) Jesetera malého jsem vybral do své studie jako komparativní druh, kter! stejn" jako bichir pat#í mezi bazální #ády paprskoploutv!ch ryb. Jeseter má navíc velmi zajímav! kraniofaciální fenotyp (nap#. v!razné rostrum), co$ se hodí pro studium kraniofaciální diverzity.
5.2.1. Vn"j#í morfologie (SEM) Pro popis vn"j%í morfologie proces& neurulace a raného v!voje jesetera jsem jako u p#edchozího druhu pou$il skenovací elektronov! mikroskop. Ji$ na první pohled lze konstatovat, $e neurulace jesetera probíhá v rámci $loutkové koule a embryo se nevyvíjí na povrchu $loutkové koule jako je tomu u bichira. Ve stadiu 24 jsou ji$ neurální valy vzedmuté a jejich dorzální strany se vzájemn" p#ibli$ují a v n"kter!ch místech se ji$ dot!kají (Tab. 9 A). V tomto stadiu se formuje první faryngeální v!chlipka, pronefros a neurální trubice se za'íná rozd"lovat do dvou oddíl& budoucího mozku: prosencephalon a rhombencephalon (Tab. 9 A). Ve star%ím stadiu (st. 25) neurální valy zcela splynuly a celé embryo p&sobí kompaktn". V tomto stadiu se také vyvíjí druhá faryngeální v!chlipka (Tab. 9 B). Ve stadiu 26 se t"lo zárodku prodlu$uje v anterio-posteriorním sledu a vyvíjí se u n"j ocasní 'ást t"la (Tab. 9 C). V tomto stadiu u jesetera emanuje na povrch p#íchytn! larvální orgán („cementov! orgán“; o p&vodu toho orgánu se mnoho neví, ale p#edpokládá se jeho vznik z entodermu) (Tab. 9 C´). V hlavové oblasti se mozek rozd"luje ji$ do t#ech oddíl& (prosencephlaon, mesencephalon a rhombencephalon) a prolamuje se také 'ichov! vá'ek (Tab. 9 C´). Ve stadiu 27 dochází k nárustu ocasní 'ásti t"la, která je vid"t p#i dorzálním pohledu na celé embryo (Tab. 9 D). V embryonálním mozku stadia 27 se v rhombencephalu diferencuje IV. mozková komora. U stadia 28 se ocasní 'ást prodlu$uje, dosahuje relativn" blízko k hlavové 'ásti a je jednou tak del%í ne$ ve stadiu 27 (Tab. 9 E). U stadia 28 se o'ní primordium zv"t%uje a je ji$ dob#e patrné, co$ u p#edchozího je%t" nelze dob#e rozeznat (srovnej Tab 9 D´ a E´).
56
5.2.2. Extirpace povrchového ektodermu a anal!za pomocí SEM Stejn" jako u bichira jsem i zde pou$il extirpací, abych vyjevil migra'ní patrnost celé hlavové neurální li%ty a pochopil tento pattern v kontextu vyvíjející se hlavy jesetera. V!hodou extirpací u jesetera byla velikost jeho vají'ek, která je oproti bichirovi zhruba dvojnásobná. stadium 25 bylo první, které se mi poda#ilo extirpovat a jsou na n"m ji$ vid"t v%echny t#i proudy hlavové neurální li%ty tak, jak je tomu u v%ech studovan!ch obratlovc&. Jednotlivé migra'ní proudy hlavové neurální li%ty jesetera jsou definovány také první a druhou faryngeální v!chlipka (Tab. 10 A), které jim vytvá#ejí migra'ní koridor (srovnej Tab. 10 F). Bu(ky trigeminálního proudu dosahují i nejvíce anteriorní 'ásti hlavy a obcházejí emanující „cementov! orgán“ (Tab. 10 B). Celistvost trigeminálního proudu je naru%ena rostoucím primordiem budoucího oka (Tab. 10 A, B). U embrya tohoto stá#í je ji$ pozorovatelná vyvíjející se otická plakoda, která pomáhá také lokalizovat pozici hyoidního proudu hlavové neurální li%ty (Tab. 10 A). V dal%í v!vojovém stadiu (st. 26) se migra'ní patrnost neurální li%ty nem"ní (Tab. 10 C, D). V tomto stadiu se mi poda#ilo identifikovat poprvé pozici jednotliv!ch rhombomer rhombencephala. SEM snímky stadia 26 také odhalily obrovskou coelomovou dutinu (Tab. 10 D). Jako dobr! znak pro rozli%ení stadia 26 od p#edchozího je mo$né pou$ít zv"t%ující se faryngeální v!chlipky (Tab. 10 C). Ve stadiu 27 je po'et bun"k hlavové neurální li%ty na dorzální stran" neurální trubice v její anteriorní 'ásti men%í ne$ v p#edchozích stadiích (Tab. 10 E). V branchiální oblasti jsou vid"t na dorzální stran" rhombencephala bu(ky prod"lávající epitelo-mezenchymální p#echod (Tab. 10 F, H). Poprvé je mo$no v tomto stadiu pozorovat velké po'ty bun"k trupové neurální li%ty, které jsou vid"t na dorzální stran" somit& (Tab. 10 E, F). Dále se mi poprvé poda#ilo identifikovat nervová ganglia (Tab. 10 E; ozna'en rozsah %ipkami) a také v anteriorní 'ásti pod neurální trubicí jsou pozorovatelné laterální v!b"$ky p#ední 'ásti vyvíjejícího se embryonálního st#eva (Tab. 10 E). Díky selektivní extirpaci bun"k hyoidní proudu je dob#e vid"t migra'ní koridor, kter! je utvá#en první a druhou faryngeální v!chlipkou a utvá#í jím jedinou mo$nou migra'ní cestu (Tab. 10 F). Ve stadiu 28 jsou bu(ky hlavové neurální li%ty p#ítomny lateráln" od neurální 57
trubice. Jedin!m poz&statkem hlavové neurální li%ty na dorzální stran" embryonálního mozku jsou bu(ky nacházející se okolo pineálního orgánu (Tab. 10 G). V mandibulární oblasti je ve stadiu 28 vid"t prominující mandibulární hlavová kavita a dorzáln" od ní lze identifikovat neurální ganglium (Tab. 10 G). Dal%í neurální ganglium se utvá#í posteriorn" od otické kapsule (Tab. 10 G). Star%í embrya se nezda#ila dob#e extirpovat, proto$e hlavová oblast jesetera je velmi komplikována p#ítomností nap#. 'ichov!ch vá'k&, emanujícími hlavov!mi kavitami apod. Obecn" lze konstatovat, $e hlavová neurální li%ta jesetera malého p&sobí dosti kompaktn" oproti bichirovi a také $e jednotlivé migra'ní proudy velikostn" odpovídají informacím získan!m z ostatních studovan!ch druh& (a$ na bichira, viz Tab. 2).
5.2.3. Histologická anal!za (JB-4 prysky$ice) Na histologick!ch #ezech jsem se pokusil popsat první známku emigrace hlavové neurální li%ty jesetera. P#esto$e se histologické zpracování tkání jesetera ukázalo jako technicky velice slo$ité z d&vodu p#ítomnosti hlavov!ch kavit apod, i tak se mi poda#ilo identifikovat emigraci neurální li%ty a pozdní fázi migrace hlavové neurální li%ty na histologick!ch #ezech. První emigrující bu(ky hlavové neurální li%ty jsem identifikoval ve stadiu 23 (Tab. 11 A-C). Frontální #ez zcela anteriorní 'ástí mandibulární oblasti, kter! ukazuje zvednuté a dosud nespojené neurální valy, neobsahuje $ádné patrné migrující bu(ky neurální li%ty (Tab. 11 A, A´). Hned na dal%ích, více posteriorn" umíst"n!ch #ezech jsem v%ak identifikoval první migrující bu(ky hlavové neurální li%ty v mandibulární oblasti (Tab. 11 B, B´). Na detailním snímku vrcholu neurálního valu jsou patrné emigrující bu(ky, kter!m ektodermální epitel uvol(uje prostor pro migraci (Tab. 11 B´). Na dorzální stran", lateráln" od neurálních val& je vid"t n"kolikavrstevn! ektoderm, jeho$ desti'kovité zlu%t"ní je nejasného ur'ení (Tab. 11 B´ a C; ozna'eno %ipkou). Na frontálním #ezu budoucí hyoidní oblastí u$ nejsou patrné $ádné bu(ky neurální li%ty (Tab. 11 C). Pozdní fázi migrace neurální li%ty jsem analyzoval na embryu ve stadiu 27 (Tab. 12 A-F). V tomto stadiu lze bu(ky hlavové neurální li%ty rozli%it i podle 58
barevného odstínu, 'eho$ se ve velmi ran!ch stadiích nepoda#ilo dosáhnout. Na frontálním #ezu mandibulární oblastí v míst" budoucího oka jsou vid"t bu(ky trigeminálního proudu migrující z dorzální strany rhombencephala, p#es primordium oka a nacházející se v tenkém migra'ním pruhu bun"k (Tab. 12 A). Na tomto #ezu lze pozorovat cévy lateráln" a ventráln" umíst"né od embryonálního mozku (Tab. 12 A; ozna'eny hv"zdi'kou). Na ventrální stran" tohoto #ezu se nachází „cementov! orgán“, kter! má typickou stavbu se sekretujícími bu(kami (Tab. 12 A). Na dal%ím #ezu jsou u$ vid"t bu(ky trigeminálního i hyoidního proudu, které jsou od sebe rozd"leny první faryngeální v!chlipkou (Tab. 12 B). Ve stejném #ezu jsou rozpoznatelené hlavové kavity, konkrétn" kavita premandibulární umíst"ná více mediáln", a kavita mandibulární le$ící lateráln" od premandibulární (Tab. 12 B). Na ventrální stran" je také mo$no identifikovat vyvíjející se srdce (Tab. 12 B). Dal%í frontální #ez ukazuje #ez vyvíjejícím se hyoidním obloukem, kde bu(ky hyoidní proudu neurální li%ty obkru$ují mezodermální mezenchymatické jádro (Tab. 12 C). Frontální #ez hyoidní oblastí ukazuje jak vyvíjející se embryo jesetera sedí na „stopce“ entodermu, která slou$í k vy$ivování embrya. Na tomto #ezu lze identifikovat neurální ganglium umíst"né mediáln" od otické kapsule a také je dob#e viditelná coelomová dutina (Tab. 12 D). Na #ezu branchiální oblastí jsou patrné migrující bu(ky branchiální proudu neurální li%ty a lze rozpoznat anteriorní 'ást prvního somitu (Tab. 12 E). Poslední frontální #ez je veden trupovou oblastí, kde lze pozorovat somity a zv"t%ující se notochord (Tab. 12 F), ale bu(ky trupové neurální li%ty zde nelze dob#e odli%it.
5.2.4. Imunohistochemie Pro dal%í ov"#ení migra'ní patrnosti hlavové neurální li%ty jsem pou$il imunohistochemického zna'ení pomocí klasického markeru neurální li%ty HNK-1, kter! se také krom" zna'ení bun"k neurální li%ty pou$ívá ke zna'ení nerv&. HNK-1 protilátku s navázan!m biotinem jsem pou$il ve stadiích 23-28. Jedin!mi stadii s pozitivním signálem jsou stadia 27 a 28, u mlad%ích stadií je také vid"t signál, ale tento signál je nespecifick! a zdá se navíc, $e protilátka s biotinem uvízla v r&zn!ch typech dutin, jako nap#. v otick!ch kapsulích apod. Namísto 59
identifikací bun"k neurální li%ty se tedy zdá, $e protilátka HNK-1 se vá$e na vznikající hlavové nervy. Ve stadiu 27 jsem pomocí HNK-1 vizualizoval V. hlavov! nerv (n. trigeminus), VII. hlavov! nerv (n. facialis) a IX. hlavov! nerv (n. Glossopharyngeus) (Tab. 13 A´). V tomto stadiu je také mo$no identifikovat tzv. Rohon-Beardovy bu(ky v trupové 'ásti t"la (Tab. 13 A´). .
Vyzkou%el jsem stejn" jako u bichira protilátku proti fibronektinu, která by mi
pomohla detekovat p#esnou pozici bazálních lamin jednotliv!ch epitel&. Jak ji$ v%ak bylo #e'eno v!%e, zpracování embryonálního materiálu jesetera na #ezech je velmi komplikované, a pou$il jsem jedinou vhodnou techniku na imunohistochemické zna'ení, vibratomové #ezy. Nicmén" protilátka proti fibronektinu u jesetera nefungovala a pozitivní signál nebyl dokonce detekován ani v trupové oblasti, kde standardn" tato protilátka funguje. Komplikací pro imunohistochemické zna'ení jesetera je také zpracování jeho tkání na #ezech, nebo) jesete#í materiál nelze zpracovat v kryostatu, kde se jeho $loutkem bohaté tkán" v zalévacích mediích trhají, ani na vibratomu, kde vypadávají z agarového blo'ku.
5.2.5. Vitální barvení lipofilním markerem DiI Pomocí injikací lipofilního markeru jsem cht"l p#esn" vizualizovat migra'ní patrnost jednotliv!ch migra'ních proud& hlavové neurální li%ty. Injikace jsem provád"l do neurálních val& ve stadiu 23 a 24. Celkem jsem nainjikoval 120 embryí, z 'eho$ v%ak 15 m"lo pozitivní signál, ale pouze u 5 jsem identifikoval signál v bu(kách neurální li%ty (kup#. Tab. 13 B, C). Takto injikována embrya byla ponechána v E2 médiu a$ do k!$eneho v!vojového stadia, kdy dle znalostí z p#edchozích anal!z byly bu(ky neurální li%ty v p#íslu%né fázi migrace. Z pozitivn" injikovan!ch vzork& se ukázalo, $e injikaci jsem provedl pom"rn" posteriorn" a byly tak ozna'eny pouze bu(ky hyoidního a branchiálního proudu (Tab. 13 B, C). Nicmén" získan! signál odpovídá informacím získan!m z extirpa'ních experiment& (srovnej Tab. 10 E, F). Pro potvrzení injika'ních experiment& jsem se pokusil injikovaná embrya na#ezat a obarvit pomocí DAPI (na vizualizaci bun"'n!ch jader) a protilátkou proti fibronektinu. Nicmén" problém se zpracováním embryí na #ezech se ukázal jako 60
zásadní a získané #ezy nebyly tak kvalitní, aby v nich mohl b!t pozorován pozitivní signál DiI. Na embryonálním materiálu jesetera jsem se také pokusil pou$it zna'ení pomocí CCFSE. Nicmén" tato látka se ukázala pro jesetera velmi toxická a zp&sobila okam$ité úmrtí embrya, které se projevilo protr$ením $loutku.
61
Tabulka 9: Ran! v!voj jesetera malého Acipenser ruthenus (SEM). (A - D) Dorzální pohled na jednotlivá stadia od pozdní fáze neurulace a" po stadium rané larvy. (C´ - D´) Detailní pohledy na hlavovou oblast stadia 26 – 28.
62
Tabulka 10: Migrace hlavové neurální li!ty jesetera malého (Extirpace a SEM anal"za). (A) Dorzální pohled na jednotlivé migra#ní proudy hlavové neurální li!ty ve stadiu 25 (B) Detailní pohled na anteriorní #ást hlavové oblasti s vyzna#en"m trigeminálním proudem hlavové neurální li!ty ve stadiu 25; Hlava sm$%uje dol& (C) Dorzální pohled na jednotlivé migra#ní proudy hlavové neurální li!ty ve stadiu 26. (D) Laterální pohled na migra#ní proudy hlavové neurální li!ty ve stadiu 26.(E-F) Dorzální pohled na embryo ve stadiu 27 se v!emi migra#ními proudy hlavové neurální li!ty a na vyzna#ené bu'ky trupové neurální li!ty. (G) Laterální pohled na migra#ní proudy hlavové neurální li!ty ve stadiu 28. (H) Detailní pohled na epitelo-mezenchymální p%echod; !ipky ozna#ují vznikající neurální ganglia. Ektoderm Entoderm Mezoderm Neurální ektoderm Neurální li!ta
64
Tabulka 11: Vznik neurální li!ty jesetera malého (JB-4 histologie). (A C) Frontální "ezy stádiem 23. (A) Frontální "ez nejvíce anteriorní #ástí mandibulární oblasti. (A´) Detailní snímek p"edchozího "ezu zachycující dorzální #ást neurálního valu s vyzna#enou bazální laminou (bílá te#kovaná #ára) povrchového ektodermu. (B) Frontální "ez posteriorn$ umíst$n% od p"edchozího (A) s vyzna#enou emigrací bun$k trigeminálního proudu hlavové neurální li!ty (ozna#eny zelenou !ipkou). (B´) Detailní snímek dorzální #ásti neurálního valu p"edchozího "ezu s vyzna#enou pozicí bazální laminy (bílá te#kovaná #ára) povrchového ektodermu. (C) Frontální "ez hyoidní oblastí s vyzna#enou pozicí bazální laminy povrchového ektodermu (bílá te#kovaná #ára) a s ozna#ením n$kolikavrstevného ztlu!t$ní povrchového ektodermu umíst$ného lateráln$ od vrcholku neurálního valu (ozna#eno !ipkou). (C´) Detail ztlu!t$ného povrchového ektodermu
66
Tabulka 12: Pozdní fáze migrace hlavové neurální li!ty u jesetera malého (JB-4 histologie). (A – F) Frontální "ezy stadiem 27. (A) Frontální "ez mandibulární oblastí v míst# otického vá$ku s vyzna$en%mi bu&kami trigeminálního proudu. (B) Frontální "ez posteriorní $ástí mandibulární oblasti s vyzna$en%mi bu&kami trigeminálního proudu neurální li!ty a evaginujícím entodermem. (C) Frontální "ez vznikajícím hyoidním obloukem, kter% utvá"ejí bu&ky hyoidního proudu a obklopují mezodermální jádro. (D) Frontální "ez hyoidní oblastí s vyzna$en%mi bu&kami hyoidního proudu neurální li!ty. 'ez také zachycuje entodermální stopku, na které embryo sedí a slou(í mu k vy(ivování. (E) Frontální "ez branchiální oblastí zachycující migrující bu&ky branchiálního proudu a vznikající první somit. (F) Frontální "ez trupovou oblastí; zelené !ipky zna$í migrující bu&ky hlavové neurální li!ty; hv#zdi$ka ozna$uje cévy; $erná !ipka poukazuje na erytrocyty
68
Tabulka 13: Mapování migrace neurální li!ty jesetera pomocí HNK-1 protilátky a DiI injikací. (A) Laterální pohled na hlavovou "ást embrya ve stadiu 27 bez pomocné vizualizace detekovaného signálu. (A´) Pomocné schéma identifikující jednotlivé signály HNK-1 protilátky; Bílá te"kovaná "ára zna"í rozsah hlavov#ch nerv$; !ipka ozna"uje signál v Rohonbeardov#ch bu%kách; hv&zdi"ka ozna"uje blí'e neur"en# signál. (B - C) Dorzo-laterální pohled na migrující bu%ky hyoidního a branchiálního proudu ozna"eného pomocí DiI markeru; bílá te"kovaná "ára ozna"uje rozsah ozna"en#ch proud$ za pomoci DiI.
70
6.
Diskuze
6.1. Migrace
hlavové
neurální
li!ty
u
dvou
nejbazáln"j!ích zástupc# paprskoploutv$ch ryb Bichir je dnes pova!ován za zástupce nejbazáln"j#ích paprskoploutv$ch ryb (Inoue et al., 2004; Gardiner et al., 2005), ov#em d%íve byl za%azován i mezi svaloploutvé ryby
(Sarcopterygii)
a
byl
chápán
jako
pojítko
mezi
oboj!ivelníky
a
paprskoplouv$mi rybami (kup%. Kerr, 1903; Goodrich, 1958). Jeseter stejn" jako bichir pat%í mezi bazální paprskoploutvé ryby a má stejn" jako bichir spoustu spole&n$ch pleziomorfních znak' (nap%. ganoidní #upiny, zachované spirakulum apod.). Bichir a jeseter se tedy nacházejí blízko v"tvení paprskoploutv$ch a svaloploutv$ch ryb a díky své pozici jsou bichi%i a jesete%i pova!ováni za ideální druhy pro komparativní studie a pro pochopení evoluce znak' ve skupin" paprskoploutv$ch ryb, ale také znak' v rané evoluci tetrapod (kup%. Bartsch et al., 1997; Hall, 2001). Ran$ embryonální v$voj bichira a jesetera p%ipomíná spí#e v$voj oboj!ivelník' ne! v$voj paprskoploutv$ch ryb, co! je dob%e vid"t i nap%. na gastrulaci obou druh', která p%ipomíná gastrulaci drápatky (Bolker, 1993; Takeuchi et al., 2009). Také neurulace obou druh' je rozdílná oproti neurulaci u paprskoploutv$ch ryb, nebo( oba druhy prod"lávají tzv. primární neurulaci a vytvá%ejí tedy neurální trubici invaginací ektodermu (Tab. 3). Naproti tomu neurulace u paprskoploutv$ch ryb (sekundární neurulace) probíhá v"t#inou p%es tzv. neurální k$l a neurální trubice vzniká kavitací (Papan & Campos-Ortega; 1994). Oba mnou studované druhy se v#ak také v mnohém li#í: embryo bichira se vyvíjí na povrchu !loutké koule, zatímco v$voj jesetera probíhá v rámci !loutkové koule, co! mo!ná souvisí s vnit%ním uspo%ádáním celého vají&ka, proto!e embryo jesetera sedí na masivní entodermální stopce a zbytek embrya je obklopen obrovskou coelomovou dutinou (srovnej bichir: Tab. 1, 2 a jeseter: Tab. 9, 10) .
72
6.1.1.
Vznik hlavové neurální li!ty u bichira a jesetera
Ke vzniku neurální li#ty dochází b"hem formování neurální trubice (Le Douarin & Kalcheim, 1999; Hall, 2009). Já jsem u bichira i jesetera pozoroval velmi ranou emigraci bun"k hlavové neurální li#ty, nebo( tyto bu)ky u obou druh' za&ínají migrovat je#t" p%ed splynutím neurálních val' (Tab. 3 a Tab. 11), zatímco u v"t#iny studovan$ch obratlovc' dochází k odmigrovávání bun"k hlavové neurální li#ty a! po úplném splynutí neurálních val', jak je vid"t kup%. u pták' (Tosney, 1982; Noden, 1988; Tokita, 2006), plaz' (Kundrát, 2009), n"kter$ch oboj!ivelník' (&olek: Jacobson & Meier, 1984; axolotl: Falck et al., 2002; Mitgutsch et al., 2008), bahníka (Falck et al., 2000; Ericsson et al., 2008) a mihulí (Horigome et al., 1999). U n"kter$ch druh' nicmén" dochází stejn" jako u mnou studovan$ch druh' k emigraci bun"k hlavové neurální li#ty ve stadiích s otev%enou neurální trubicí: takto tomu je u n"kter$ch oboj!ivelník' (skokan japonsk$: Ichikawa, 1937; drápatka: Sadaghiani & Thiébaud, 1987; bezblanka: Moury & Hanken, 1995; ku)ka v$chodní: Olsson & Hanken, 1996; vakorosni&ka: del Pino & Medina, 1998; skokan hn"d$: Mitgutsch et al., 2008), &i savc' (krysa: Tan & Morris-Kay, 1985; 1986; va&ice: Smith, 2001). Jeliko! paprskoploutvé ryby prod"lávají jin$ typ neurulace ne! ostatní obratlovci, tak lze jen velmi obtí!n" srovnávat emigraci bun"k hlavové neurální li#ty, proto!e u paprskoploutv$ch ryb nelze mluvit o otev%ené &i uzav%ené neurální trubici. Nabízí se samoz%ejm" otázka, co mají spole&ného ty druhy, u kter$ch dochází k emigraci bun"k hlavové neurální li#ty je#t" p%ed uzav%ením neurální trubice, tedy d%íve, ne! je klasicky o&ekáváno (Le Douarin & Kalcheim, 1999; Hall, 2009). Na tuto otázku nejde jednozna&n" odpov"d"t, nebo( se jedná o velmi rozli&né druhy. Zajímavé v#ak je, !e kup%íkladu u tém"% v#ech !ab (v"t#ina skokan', drápatka, ku)ka, !áby s p%ím$m v$vojem: vakorosni&ka, bezblanka dochází k emigraci z otev%ené neurální trubice a nap%íklad u skonana &ernobokého migrují bu)ky hlavové neurální li#ty a! z uzav%ené neurální trubice (Mitgtutsch et. al., 2008) i p%es to, !e mají nap%íklad velmi podobn$ typ vají&ek (tvarov") a migra&ní patrnost hlavové neurální li#ty je u v#ech !ab naprosto stejná a nelze identifikovat !ádné rozdíly.
73
Paprskoploutvé ryby navíc prod"lávají odli#n$ typ neurulace, ne! ostatní obratlovci, nelze zde mluvit o otev%ené &i zav%ené neurální trubici, a je tedy pom"rn" obtí!né provád"t p%ímá srovnání. Je nicmén" z%ejmé, !e bu)ky neurální li#ty pro svou indukci &i emigraci z povrchu epitel' neurální trubice nepot%ebují splynutí a tedy dotknutí se vrcholk' neurálních val', jak se klasicky uvád"lo, nebo( u mnoha druh' za&ínají bu)ky neurální li#ty migrovat drive, ne! k tomuto dojde (v"t#ina skokan', ku)ka, !áby s p%ím$m v$vojem, my#, krysa, va&ice). Obecn" lze asi soudit, !e je v$hodné, aby bu)ky neurální li#ty odmigrovaly co nejd%íve a tedy v co nejran"j#ím stadiu, a zapojili se do morfogeneze t"la je#t" b"hem neurula&ních proces'. Asi nejvíce extrémní p%ípad p%edstavují va&ice (Monodelphis sp.), kde dochází k emigraci bun"k hlavové neurální li#ty je#t" na úrovni nediferencované ploténky, co! umo!ní, !e se této va&ici diferencují skeletální a svalové struktury orálního aparátu velmi ran". Tato v$vojová heterochronie má ekologicko-evolu&ní dopad, proto!e umo!)uje nedovyvinutému mlád"ti va&ice dostat se vlastními silami do mat&ina vaku.
6.1.2.
Heterochronie v emigraci hyoidního proudu hlavové
neurální li!ty bichira senegalského Vznik neurální li#ty bichira, jak ji! bylo %e&eno, je velmi &asn$. U bichira jsem identifikoval, !e jako první odmigrovávají bu)ky hyoidního proudu neurální li#ty a to z dorzální strany neurálních val' (Tab. 3), co! je naprosto unikátní nález, kter$ dosud nebyl u jiného studovaného obratlovce nalezen. Hyoidní emigrující proud jsem identifikoval ve stadiu, kdy se teprve dochází k formování neurálních val' (Tab. 3 B, B´) a ani v následujícím stadiu nebyl zaznamenán dal#í emigrující proud hlavové neurální li#ty (Tab. 3 D – F). Tuto situaci lze tedy popsat jako v$raznou heterotopii (hyoidní proud migruje &asn"ji oproti zb$vajícím hlavov$m proud'm) a heterotopii (hyoidní proud osidluje oblast okolo faryngu jako první) v emigraci hyoidního proudu hlavové neurální li#ty bichira. U obratlovc' platí obecné pravidlo, !e hlavové tkán" se vyvíjejí v p%edozadním sm"ru a tak i v obecném schematu migrace hlavové neurální li#ty jsou to bu)ky trigeminálního proudu, které migrují první (kup%. Cerny et al., 2004) a zajímavé je, !e toto platí i druh', u kter$ch dochází k emigraci z otev%ené neurální 74
trubice (kup%. Mitgutsch et al., 2008). Jedinou nalezenou zm"nou v emigra&ní posloupnosti jednotliv$ch migra&ních proud' hlavové neurální li#ty, kterou jsem v literatu%e dokázal nalézt, je nediskutovaná zmínka o ran"j#í emigraci branchiálního proudu hlavové neurální li#ty oproti hyoidnímu proudu u krysy (Tan & Morriss-Kay, 1985). Velmi raná emigrace bun"k hyoidního proudu hlavové neurální li#ty z%ejm" souvisí s &asn$m v$vojem hyoidního oblouku, na kterém u bichira vznikají vn"j#í !ábry. Vn"j#í !ábry slou!í larvám oboj!ivelník' (!áby, mloci a &ervo%i), bahník' (Protopteus, Lepidosiren ale ne u Neoceratoda) a také bichir' k d$chání, nicmén" standardn" se nacházejí na obloucích branchiálních. Vn"j#í !ábry p%edstavují zjevnou ekologickou adaptaci k podmínkám s men#ím obsahem kyslíku a musí tedy existovat siln$ ekologick$ tlak na ran$ v$voj !aber. Proto!e vn"j#í !ábry bichira se nacházejí na hyoidním oblouku, je o&ekávatelné, !e se práv" taková heterochronie v migraci hyoidního proudu bichira objeví. *asn$ v$voj primordia vn"j#ích !aber bichira je patrn$ u! z vn"j#í morfologie bichira ve velice ran$ch stadiích (Tab. 1), nicmén" jejich v$voj je komplikovan"j#í v tom, !e se do n"j zapojuje je#t" evaginující entoderm (Crkvová, 2012). Z v$#e %e&eného je mo!né o&ekávat, !e druhy s vn"j#ími !ábrami na branchiálních obloucích budou mít obdobnou heterochronickou adaptaci ve smyslu ran"j#í &i v$razn"j#í migrace branchiálního proudu, ov#em !ádná obdobná zmínka v literatu%e dosud neexistuje.
6.1.3.
Migra%ní patrnost hlavové neurální li!ty u bichira a
jesetera Pro kompletní vyjevení migrace hlavové neurální li#ty jsem vyu!il extirpací povrchového ektodermu a následné anal$zy skenovací elektronovou mikroskopií. Extirpace povrchové ektodermu byla pou!ita v n"kolika klasick$ch pracech, proto!e umo!)uje dob%e vizualizovat kompletní migraci hlavové neurální li#ty v kontextu vyvíjející se hlavy (kup%. Horigome et al., 1999; Falck et al., 2000; Cerny et al., 2004; Mitgutsch et al., 2008). Bu)ky trigeminálního proudu emigrují u bichira nejd%íve jen z nejvíce anteriorní &ásti prosencephala a teprve v pozd"j#ích fázích v$voje dochází k 75
migraci také z posteriorní &ásti prosencephala (Tab. 2 a Tab. 8). Velmi podobná situace je pozorovatelná i u bun"k trigeminálního proudu jesetera (Tab. 10). U obou mnou studovan$ch druh' v#ak z nejvíce posteriorní &ásti prosencephala k emigraci bun"k trigeminálního proudu, proto!e se v této oblasti vyvíjí pineální orgán (Tab. 2 G a Tab. 10 G), kter$ se diferencuje z diencephala p%edního mozku (kup%. zeb%i&ka: Liang et al., 2000). Také u jin$ch druh' z prosencephala odmigrovává jen velmi malé mno!ství bun"k trigeminálního proudu (kup%. Kuratani et al., 1999, ale nap%íklad u ku%ete (Johnston, 1966; Noden, 1975) a krysy (Tan & Morriss-Kay, 1985) není migrace bun"k trigeminálního proudu z prosencephala známa; u my#i je v#ak p%ísp"vek bun"k z prosencephala pom"rn" zna&n$ a dob%e prozkouman$ (Serbedzija et al., 1992; Osumi-Yamashita et al., 1994). Zajímavá situace u obou mnou studovan$ch druh' je v oblasti mesencephala odkud nemigrují !ádné bu)ky neurální li#ty, které by p%ispívaly do trigeminálního proudu (bichir: Tab. 2, Tab. 8 a jeseter: Tab. 10). U v#ech studovan$ch druh' obratlovc' v#ak standardn" z této oblasti odmigrovávají bu)ky trigeminálního proudu neurální li#ty (kup%. Osumi-Yamashita et al., 1994; Kuratani et al, 1999). V mesencephalu se v#ak m'!e nacházet tzv. “neural crest-free zone”, tedy oblast bez bun"k neurální li#ty, odkud tyto bu)ky nemigrují (kup%. Cerny et al., 2004 a citace tam). Z m$ch dosavadních dat v#ak dosud nejsem schopen podat bli!#í informace o rozsahu této oblasti: v budoucnu by se hodilo nap%íklad provést hybridizace genu AP-2 &i Snail, které by mohly pomoci rozklí&ovat tuto otázku. Hyoidní proud je u bichira nejmasivn"j#ím proudem a p%ed&í tak svou velikostí i trigeminální proud, kter$ je u v#ech studovan$ch obratlovc' nejv"t#í (kup%. Le Douarin & Kalcheim, 1999; Kulesa et al., 2004). Naproti tomu hyoidní proud hlavové neurální li#ty jesetera dodr!uje obecnou migra&ní posloupnost a také svou velikostí odpovídá obecnému migra&nímu schématu, proto!e je ze v#ech t%í hlavov$ch migra&ních proud' nejmen#í (Tab. 10 srovnej s kup%. Cerny et al., 2004). Hyoidní proud na svém distální konci u jesetera kontaktuje bu)ky jak trigeminálního, tak branchiálního proudu (Tab. 10). Otázkou je, zda-li zde dochází k mí#ení mezenchymatick$ch bun"k jednotliv$ch proud', co! pouze ze skenovací elektronové mikroskopie nelze %íci, a proto by bylo vhodné zkusit zjistit tuto situaci nap%. pomocí DiI injikací jen do hyoidního proudu a poté vizualizovat pozici jednotliv$ch ozna&en$ch bun"k. Bu)ky hyoidního proudu neurální li#ty migrují ve 76
standardní migra&ní patrnosti z rhombomery 4 (kup%. Köntges & Lumsden, 1996), kterou lze vid"t dob%e i u jesetera (Tab. 10 C), naproti tomu u bichira tuto rhombomeru nejsem schopen detekovat. Branchiální proud u bichira i jesetera za&íná odmigrovávat a! jako poslední z hlavov$ch migra&ních proud' neurální li#ty (Tab. 4 I, Tab. 5 G, Tab. 13 B-C). Branchiální migra&ní proud bichira je velikostn" v$razn" omezen dominantním hyoidním proudem, kter$ zabírá velkou v"t#inu prostoru a tla&í bu)ky branchiálního proudu na vznikající somity (Tab. 2 E). Branchiální proud v obecném migra&ním schématu vzniká za otickou kapsulí (kup%. Cerny et al., 2004). U zeb%i&ky, drápatky a my#i je branchiální proud tvo%en bu)kami vznikajícími z rhombomer 5 a 6 a u ku%ete je tvo%en bu)kami vznikajícím z rhombomer 6 a 7 (Sadaghiani & Thiebaud, 1987; Osumi-Yamashita et al., 1994; Schilling & Kimmel, 1994; Trainor & Tam, 1995; Kontges & Lumsden, 1996). U mnou získan$ch dat nejsem schopen %íci, ze kter$ch rhombomer bu)ky branchiálního proudu bichira i jesetera vznikají, proto bych navrhoval pokusit se p%esn" detekovat pozici rhombomery 5 pomocí in situ hybridizací genu krox20, kter$ je specificky exprimován v rhombome%e 3 a 5 (Wilkinson et al., 1989).
6.1.4.
Trigeminální proud hlavové neurální li!ty u bichira a
jesetera Jak ji! bylo %e&eno v p%edchozí podkapitole, bu)ky trigeminálního proudu hlavové neurální li#ty migrují z anteriorní &ásti prosencephala u bichira i jesetera. Jak ukazuje expresní anal$za genu Dlx3 (Tab. 8), je v anteriorní &ásti prosencephala siln$ expresní pattern genu Dlx3, co! by mohlo souviset s vysokou kondenzací bun"k trigeminálního proudu v této oblasti. V pozd"j#ích fázích v$voje je exprese genu Dlx3 lokalizována dorzáln" od cementov$ch orgán' (Tab. 8). Exprese genu Dlx3 lokalizována v tomto míst" m'!e souviset s v$vojem V. hlavového nervu, kter$ inervuje cementové orgány. Ty slou!í larv" bichira k p%ichycení k podkladu. Cementové orgány se stejn" jako vn"j#í !ábry u bichira vyvíjejí velmi &asn", jejich primordia se zakládají ji! b"hem neurulace (Tab. 1). Jeliko! cementové orgány a vn"j#í !ábry jsou orgány nezbytné pro p%e!ití larvy, lze
77
vysv"tlit tyto deviace v migraci hlavové neurální li#ty bichira v$#e zmín"n$mi zm"nami. Jeseter stejn" jako bichir má p%íchytn$ larvální orgán. U jesetera se mi sice nezada%ilo provést expresní anal$zu genu Dlx3, nicmén" pomocí protilátky HNK-1 se mi poda%ilo vizualizovat zakládající se hlavové nervy (Tab. 13 A,A´). Je to práv" V. hlavov$ nerv, kter$ zodpovídá za inervaci p%íchytn$ch larválních orgán' (kup%. Frankenberger, 1927), a kter$ je dle síly signálu navázané HNK-1 tím nejmasivn"j#ím hlavov$m nervem. Trigeminální proud hlavové neurální li#ty u bichira migruje jak ji! bylo %e&eno z nejvíce anteriorní &ásti prosencephala a poté migruje ventrálním sm"rem p%es o&ní primordium (Tab. 2), co! je velmi unikátní stav, proto!e ve standardním migra&ním schématu k takovéto migraci nedochází (kup%. axolotl: Cerny et al., 2004), proto!e bu)ky trigeminálního proudu o&ní primordium obcházejí a vytvá%í se tak sekundární proudy, preoptick$ a postoptick$ (Kuratani, 2005). Nicmén" vyvstává otázka pro& dochází k takovéto migraci. Já se domnívám, !e tento ojedin"l$ typ migrace je ovlivn"n vznikajícími cementov$mi orgány, které zabírají velkou &ást rostrální &ásti hlavy a tak bezpochyby mají velk$ vliv na ostatní tkán". Na záv"r tedy mohu konstatovat, !e o bichirovi a jeseterovi se hovo%í jako o bazálních paprskoploutv$ch rybách (kup%. Inoue et al., 2003) a je tedy o&ekáváno, !e by m"li mít bazální stav znak'. Má data v#ak jasn" ukazují, !e co se t$ká typu embryonálního v$voje (Tab. 1 a 9), &i migrace hlavové neurální li#ty (Tab. 2 a Tab. 10), oba tyto druhy mají unikátní adaptace &i posuny znak'. Nelze tedy %íci, !e bazální zástupci sdílejí n"jakou archetypální patrnost migrace, ale je nutno spí#e uva!ovat o jedine&nosti migrace hlavové neurální li#ty druh od druhu, která je ovlivn"na r'zn$mi faktory. D'le!it$m úkolem následujících let bude zjistit, jak$ vliv mají tyto &asoprostorové zm"ny na utvá%ení speciálních znak' a jak cel$ tento posun vzniká.
78
7.
Záv!r
V této diplomové práci byla d!kladn" prostudovaná migrace hlavové neurální li#ty u
dvou
zástupc!
bazálních
paprskoploutv$ch
ryb,
bichira
senegalského
(Polypterus senegalus) a jesetera malého (Acipenser ruthenus). U obou druh! byla migrace hlavové neurální li#ty vymapována pomocí n"kolika technik od rané neurulace a% po pozdní fázi migrace neurální li#ty. Byla tak seskupena data o po&átcích migrace, samotné migraci a r!zn$ch odli#nostech oproti klasickému migra&nímu schematu. Ukázalo se, %e hlavová migrace u obou druh! vzniká velmi ran", u% ve stadiích, kdy dochází k formování neurálních val!. U jesetera i bichira byly identifikovány obligátní t'i migra&ní proudy hlavové neurální li#ty, nicmén" u bichira byla zaznamená velmi masivní a &asná emigrace hyoidního proudu, co% je naprosto unikátní stav, kter$ zatím u jin$ch studovan$ch druh! nalezen nebyl. Tato heterotopie a heterochronie v migraci hyoidního proudu souvisí s velmi ran$m v$vojem vn"j#ích %aber, které jsou spolu s cementov$mi orgány naprosto klí&ov$mi larválními orgány, bez kter$ch by larva bichira nebyla schopna p'e%ít. U jesetera se vn"j#í %ábry nenalézají, nicmén" i jeseter má p'íchytn$ larvální orgán. Ve spojitosti s ran$m v$vojem p'íchytn$ch orgán! bichira a jesetera byla u t"chto druh! identifikována masivní migrace z rostrální &ásti prosencephala, která m!%e souviset s v$vojem p'íchytn$ch organ!, jeliko% bu(ky hlavové neurální li#ty se podíejí na jejich inervaci. Data p'edstavená v této diplomové práci p'inesla první kompletní vyjevení migrace hlavové neurální li#ty u bazálních paprskoploutv$ch ryb. V této práci je také poprvé popsaná migra&ní heterochronie a heterotopie hyoidního proudu hlavové neurální li#ty u obratlovc! a ta pak je diskutována s ekologicko-evolu&ní adaptací bichira. V budoucnu by bylo vhodné roz#í'it plejádu technik, která by umo%nila rozklí&ovat dal#í jednotlivé detaily, které mohou dále napomoci lep#ímu pochopení kontextu, jako nap'. kde p'esn" jsou lokalizovány rhombomery 3 a 5. Dále by bylo vhodné detailn"ji prostudovat jesetera, jeliko% se u této ryby vyskytují pom"rn" archetypální struktury, tzv. hlavové kavity. Tyto struktury v hlav" jesetera vytvá'ejí velk$ po&et dutin, které také mohou ovlivnovat migraci hlavové neurální li#ty. 79
Záv"rem lze 'íci, %e se ukázalo, %e i u bazálních zástupc!, u kter$ch lze p'edpokládat jakousi p!vodní podobu migrace, je patrnost této migrace hlavové neurální li#ty velmi odli#ná a li#í se druh od druhu.
80
Begbie, J., Brunet, J.F., Rubenstein, J.L., Graham, A. 1999. Induction of the epibranchial placodes. Development 126, 895 - 902.
8. Seznam pou!ité literatury Abitua P.B., Wagner E., Navarrete I.A.,
Bemis, W.E., Grande, L. 1992. Early Levine M. 2012. Identification of a rudimentary neural crest in a non-vertebrate development of the actinopterygian head. I. External development and staging of the chordate. Nature 492, 104-107 paddlefish Polyodon spathula. Journal of Morphology 213, 47 - 83. Abzhanov, A. Protas, M., Grant, B.R., Grant, P.R., Tabin, C.J. 2004. Bmp4 and morphological variation of beaks in Darwin’s Birgbauer, E., Sechrist, J., BronnerFraser, M., Fraser, S. 1995. Rhombomeric finches. Science 305, 1462 – 1465. origin and rostrocaudal reassortment of neural crest cells revealed by intravital Abzhanov, A., Kuo, W.P., Hartmann, Ch., microscopy. Development 121, 935 - 945. Grant, B.R., Grant, P.R., Tabin, C.J. 2006. Bolker J.A. 1993. Gastrulation and The calmodulin pathway and evolution of mesoderm morphogenesis in the white elongated beak morphology in Darwin's sturgeon. Journal of Experimental Zoology finches. Nature 442, 563 - 567. 266, 116-131 Aybar, M.J., Mayor, R. 2002. Early induction of neural crest cells: lessons learned from frog, fish and chick. Current Opinion in Genetics & Development 12, 452 - 458.
Bradley, L.C., Snape, A., Bhatt, S. , Wilkinson, D.G. 1993. The structure and expression of the Xenopus Krox-20 gene: conserved and divergent patterns of expression in rhombomeres and neural crest. Mechanisms of Development 40, 73 - 84.
Bartsch P., Gemballa S. Piotrowski T. Bronner-Fraser, M. 1986. Analysis of the 1997. The embryonic and larval development early stages of trunk neural crest migration in of Polypterus senegalus Cuvier, 1829: its avian embryos using monoclonal antibody statiging with reference to external and HNK-1. Developmental Biology 115, 44-55 skeletal features, behaviour and locomotory habits. Acta Zoologica 78, 309- 328 Bronner-Fraser, M. 1993. Mechanisms of neural crest cell migration. BioEssays 15, Basch, M.L., Bronner-Fraser, M. 2006. 221 - 230. Neural crest inducing signals. Advances in Experimental Medicine and Biology 589, 24 Bronner-Fraser, M. 1994. Neural crest cell 31. formation and migration in the developing Basch, M.L., García-Castro, M.I., Bronner- embryo. The FASEB Journal 8, 699 - 706. Fraser, M. 2004. Molecular mechanisms of neural crest induction. Birth Defects Research 72, 109 - 123. 81
Carmona-Fontaine, C., Matthews, H.K., Kuriyama, S., Moreno, M., Dunn, G.A., Parsons, M., Stern, C.D., Mayor, R. 2008. Contact inhibition of locomotion in vivo controls neural crest directional migration. Nature 456, 957 - 961.
del Pino, E.M., Medina, A. 1998. Neural development in the marsupial frog Gastrotheca riobambae. International Journal of Development Biology 42, 723 - 731.
Delsuc, F., Brinkmann, H., Chourrout, D., Philippe, H. 2006. Tunicates and not Caroll S.B., Grenier J.K., Weatherbee S.D. cephalochordates are the closest living 2001. From DNA to diversity: Molecular relatives of vertebrates. Nature 439, 965 Genetics and the Evolution of Animal Design.968. Malden, Mass: Blackwell Science Dettlaff T.A., Ginsburg A.S., Cerny, R., Meulemans, D., Berger, J., Schmalhausen O.I. 1993. Sturgeon Fishes, Wilsch-Bräuninger, M., Kurth, T., Developmental Biology and Aquaculture. Bronner-Fraser, M., Epperlein, H.-H. 2004. Springer Combined intrinsic and extrinsic influences pattern cranial neural crest migration and Dickinson, M.E., Selleck, M.A., McMahon, pharyngeal arch morphogenesis in axolotl. A.P., Bronner-Fraser, M. 1995. Developmental Biology 266, 252 - 269. Dorsalization of the neural tube by the nonneural ectoderm. Development 121, 2099 2106.
Clark, Ch.T. & Smith, K.K. 1993. Cranial osteogenesis in Monodelphis domestica (Didelphidae) and Macropus eugenii Diedhiou S., Bartsch P. 2009. Staging of (Macropodidae). Journal of Morphology 215, the Early Development of Polypterus 119 - 149. (Cladistia: Actinopterygii). In: Kunz, Y. Development of non-teleost fishes. (Science Couly, G., Creuzet, S., Bennaceur, S., Publishers: Enfield NH.2009) Vincent, Ch. & Le Douarin, N.M. 2002. Interactions between Hox-negative cephalic Donoghue, P.C.J., Graham, A., Kelsh, R.N. neural crest cells and the foregut endoderm 2008. The origin and evolution of the neural in patterning the facial skeleton in the crest. BioEssays 30, 530 - 541. vertebrate head. Development 129, 1061 1073. Duband, J.L., Monier, F., Delannet, M., Creuzet, S., Schuler, B., Couly, G., Le Douarin, N.M. 2004. Reciprocal relationships between Fgf8 and neural crest cells in facial and forebrain development. PNAS 101, 4843 - 4847. Crkvová B. 2012. Komparativní v!vojová morfogeneze vn"j#ích $aber obratlovc%. Diplomová práce. Katedra Zoologie, P!F UK v Praze
Newgreen, D. 1995. Epitheliummesenchyme transition during neural crest development. Acta Anatomica 154, 63 - 78.
Eisen, J.S., Weston, J.A. 1993. Development of the neural crest in the zebrafish. Developmental Biology 159, 50 59.
82
Erickson C.A., Loring J.F., Lester S.M. 1989. Migratory pathways of HNK-1immunoreactive neural crest cells in the rat embryo. Developmental Biology 134, 112118
Gardiner B.G., Schaeffer B., Masserie J.A. 2005. A review of the lower actinopterygian phylogeny. Zooological Journal of the Linnean Society 144, 511-525
Gilbert S. F. 2010. Developmental biology. Ericsson, R., Cerny, R., Falck, P., Olsson, Ninth edition. Sinauer Associates,Inc., L. 2004. The role of cranial neural crest cells Publishers in visceral arch muscle positioning and patterning in the Mexican axolotl, Goodrich E.S. 1909. Studies on the Ambystoma mexicanum. Developmental structure and development of vertebrates. Dynamics 231, 237-247. Vol. II. Chapters 9-14. Dover publications, Inc. New York and Constable and Company Ltd. London
Ericsson, R., Joss, J. , Olsson, L. 2008. The fate of cranial neural crest cells in the Australian lungfish, Neoceratodus forsteri. Graham, A., Heyman, I., Lumsden, A. Journal of Experimental Zoology 310B, 345 - 1993. Even-numbered rhombomeres control 354. the apoptotic elimination of neural crest cells from odd-numbered rhombomeres in the Falck, P., Joss, J., Olsson, L. 2000. Cranial chick hindbrain. Development 119, 233 neural crest cell migration in the Australian 245. lungfish, Neoceratodus forsteri. Evolution & Development 2, 179 - 185. Graham, A., Francis-West, P., Brickell, P., Lumsden, A. 1994. The signalling molecule Falck, P., Hanken, J. ,Olsson, L. 2002. BMP4 mediates apoptosis in the Cranial neural crest emergence and rhombencephalic neural crest. Nature 372, migration in the Mexican axolotl (Ambystoma 684 - 686. mexicanum). Zoology 105, 195 - 202. Graham, A., Begbie, J., McGonnell I. 2004. Significance of the cranial neural Freund, R., Dörfler, D., Popp, W., Wachtler, F. 1996. The metameric pattern of crest. Developmental Dynamics 229, 5 - 13. the head mesoderm — does it exist? Anatomy and Embryology 193, 73 - 80. Gans, C., Northcutt, R.G. 1983. Neural crest and the origin of vertebrates: a new head. Science 15, 268 - 273.
Grande, L., Bemis, W.E. 1991. Osteology and phylogenetic relationships of fossil and recent paddlefishes (Polyodontidae) with comments on the interrelationships of Acipenseriformes. Journal of Vertebrate Paleontology 11, 1 - 121.
Griffith C.M., Hay E.D. 1992. EpithelialGans, C., Northcutt, R.G. 1985. The brain mesenchymal transformation during palatal and sense organs of the earliest vertebrates: fusion: carboxyfluorescein traces cells at light reconstruction of a morphotype. Evolutionary and electron microscopic levels. Biology of Primitive Fishes 103, 81 - 112. Development 116, 1087-1099 83
Hall, B.K. 2009. The neural crest in development and evolution. Springer Hall B. K. 2001. John Samuel Budgett (1872-1904): In Pursuit of Polypterus. BioScience 51, 399-407 Hall B.K. 2003. Evo-Devo: evolutionary developmental mechanisms. International Journal of developmental Biology 47, 491495
Johnston M.C.A. 1966. A radioautographic study of the migration and fate of cranial neural crest cells in the chick embryo. Anatomical Record 156, 143-155
Kang Y., Massagué J. 2004. Epithelialmesenchymal transitions: Twist in development and metastasis. Cell 118, 277279
Kardong K.V. 2009. Vertebrates: Hall, B.K. 2009. The neural crest and neural Comparative anatomy, function, evolution, Fifth edition. McGraw-Hill crest cells in vertebrate development and evolution. Springer Kerr J.G. 1903. The development of Horigome N., Myojin M., Ueki T., Hirano Polypterus senegalus Cuv. In: The work of John Samuel Budgett, Balfour student of The S., Aizawa S., Kuratani S. 1999. University of Cambridge: Being a collection Development of cephalic neural crest cells in of his zoological papers, together with a embryos of lampetra japonica, with special biographical sketch by A.E.Shipley, F.R.S., reference to the evolution of the jaw. and contributions by Richard Assheto, Edward T.Browne, J.Herbert Budgett and Developmental Biology 207, 287-308 J.Graham Kerr (ed. Kerr J.G.). pp. 195-289. Cambridge: Cambridge University Press Ichikawa, M. 1937. Experiments on the Amphibian Mesectoderm, with special reference to the cartilage-formation. Memoirs Kontges G., Lumsden A. 1996. of the college of Science, Kyoto Imperial Rhombencephalic neural crest segmentation University, Series B. XII, 312-351 is preserved throughout craniofacial ontogeny. Development 122, 3229-3242 Inoue J.G., Miya M., Tsukamoto K., Krull C.E. 2001. Segmental organization of Nishida M. 2003. Basal actinopterygian relationships: a mitogenomic perspective on neural crest migration. Mechanisms of the phylogeny of the “ancient fish”. Molecular development 105, 37-45 Phylogenetics and Evolution 26, 110-120 Kubota Y., Ito K. 2000. Chemotactic migration of mesencephalic neural crest cells Jacobson A.G., Meier S. 1984. in the mouse. Developmental Dynamics. Morphogenesis of the head of a newt: 217, 170-179 Mesodermal segments, neuromeres, and distribution of neural crest. Developmental Biology 106, 181-193
Kulesa P.M., Fraser S.E. 1998. Neural crest cell dynamics revealed by time-lapse video microscopy of whole embryo chick explant Jacobson A.G. 1988. Somitomeres: cultures. Developmental Biology 204, 327mesodermal segments of vertebrate embryos. Development 104 Suppl., 209-20 344 84
Kulesa P.M., Bronner-Fraser M., Fraser S.E. 2000.0. In ovo time-lapse analysis after dorsal neural tube ablation shows rerouting of chick hindbrain neural crest. Development 127, 2843-2852
Kuratani S., Horigome N. 2000. Developmental morphology of branchiomeric nerves in a cat shark, Scyliorhinus torazame, with special reference to rhombomeres, cephalic mesoderm, and distribution patterns of cephalic crest cells. Zoological Science Kulesa P.M., Ellies D.L., Trainor P.A. 2004. 17, 893-909 Comparative analysis of neural crest cell death, migration, and function during vertebrate embryogenesis. Developmental Dynamics 229, 14-29
Kuratani S., Nobusada Y., Saito H., Shigetani Y. 2000. Morphological characteristics of the developing cranial nerves and mesodermal head cavities in sturgeon embryos from early pharyngula to Kulesa P.M., Lu C.C., Fraser S.E. 2005. late larval stages. Zoological Science 17, Time-Lapse Analysis Reveals a Series of Events by Which Cranial Neural Crest Cells 911-933 Reroute around Physical Barriers. Brain, Behavior and Evolution 66, 255-265 Kuratani S. 2005. Craniofacial development and the evolution of the vertebrates: the old problems on a new background. Zoological Kulesa P.M, Bailey C.M., KasemeierScience 22, 1-19 Kulesa J.C., McLennan R. 2010. Cranial neural crest migration: New rules for an old road. Developmental Biology 344, 543-554
LaBonne C., Bronner-Fraser M. 1998. Neural crest induction in Xenopus: evidence for a two-signal model. Development 125, Kundrát M. 2009. Heterochronic shift between early organogenesis and migration 2403-2414 of cephalic neural crest cells in two divergent evolutionary phenotypes of archosaurs: Landacre F.L. 1921. The fate of the neural crocodile and ostrich. Evolution & crest in the head of the urodeles. Journal of Development 11, 535-546 Comaparative Neurology 33, 39-40 Kuratani S., Matsuo I., Aizawa S. 1997. Developmental patterning and evolution of the mammalian viscerocranium: Genetic insights into comparative morphology. Developmental Dynamics 209, 139-155
Langille R.M., Hall B.K. 1987. Development of the head skeleton of the Japanese medaka, Oryzias latipes (Teleostei). Journal of Morphology 193, 135-158
Langille R.M., Hall B.K. 1988. Role of the Kuratani S., Horigome N., Hirano S. 1999. neural crest in development of the Developmental morphology of the head cartilaginous cranial and visceral skeleton of mesoderm and reevaluation of segmental the medaka, Oryzias latipes (Teleostei). theories of the vertebrate head: evidence Anatomy and Embryology 177, 297-305 from embryos of an agnathan vertebrate, Lampetra japonica. Developmental Biology Le Douarin N. M., Kalcheim C. 1999. The 210, 381-400 neural crest, second edition. Cambridge 85
University Press Mitgutsch Ch., Piekarski N., Olsson L., Le Douarin N.M., Creuzet S., Couly G., Haas A. 2008. Heterochronic shifts during Dupin E. 2004. Neural crest cell plasticity early cranial neural crest cell migration in two and its limits. Development 131, 4637-4650 ranid frogs. Acta Zoologica 88, 1-10 Le Douarin N.M. 1974. Cell recognition based on natural morphological nuclear markers. Medical Biology 52, 281-319
Moury J.D., Hanken J. 1995. Early cranial neural crest migration in the directdeveloping frog, Eleutherodactylus coqui. Acta Anatomica 153, 243-253
Liang J.O, Etheridge A., Hantsoo L. Rubinstein A.L.,Nowak S.J., Izpisua Nelson J.S. 2006. Fishes of the world. Belmonte J.C., Halpern M.E. Asymmetric Fourth Edition. John Wiley & Sons, Inc. nodal signaling in the zebrafish diencephalon positions the pineal organ. Development 127,Nieto M.A., Gilardi-Hebenstreit P., 5101-5112 Charnay P., Wilkinson D.G. 1992. A Lumsden A., Sprawson N., Graham A. 1991. Segmental origin and migration of neural crest cells in the hindbrain region of the chick embryo. Development 113, 12811291 Metscher B.D., Ahlberg P.E. 1999. Zebrafish in context: uses of a laboratory model in comparative studies. Developmental Biology 210, 1-14
receptor protein tyrosine kinase implicated in the segmental patterning of the hindbrain and mesoderm. Development 116, 11371150 Nieto M.A., Sechrist J., Wilkinson D.G., Bronner-Fraser M. 1995. Relationship between spatially restricted Krox-20 gene expression in branchial neural crest and segmentation in the chick embryo hindbrain. The EMBO Journal 18, 1697-1710
Meulemans D., Bronner-Fraser M 2004. Noden D.M. 1986. Patterning of avian Gene-regulatory interactions in neural crest craniofacial muscles. Developmental Biology evolution and development. Developmental 116, 347-356 cell 7, 291-299 Noden D.M. 1988. Interactions and fates of Micalizzi D.S., Farabaugh S.M., Ford H.L. avian craniofacial mesenchyme. 2010. Epithelial-mesenchymal transition in Development 103, 121-140 cancer: Parallels between normal development and tumor progression. Journal Noden D.M. 1991. Cell movements and of Mammary Gland Biology and Neoplasia control of patterned tissue assembly during 15, 117-134 craniofacial development. Journal of Mina"ík M. 2011. V!vojová morfogeneze p&íchytn!ch $láz a orgán% u ni$#ích obratlovc%. Diplomová práce. Katedra Zoologie, P!F UK v Praze
Craniofacial Genetic and Developmental Biology 11, 192-213
86
Olsson L., Hanken J. 1996. Cranial neuralcrest migration and chondrogenic fate in the oriental fire-bellied toad Bombina orientalis: Defining the ancestral pattern of head development in anuran amphibians. Jouranl of Morphology 229, 105-120
Anzeiger 8, 506-509 Raible D.W., Eisen J.S. 1994. Restriction of neural crest cell fate in the trunk of the embryonic zebrafish. Development 120, 495503
Rickman M., Fawcett J.W., Keynes R.J. Olsson L., Falck P., Lopez K., Cobb J., 1985. The migration of neural crest cells and Hanken J. 2001. Cranial neural crest cells the growth of motor axons trhrough the contribute to connective tissue in cranial rostral half of the chick somite. Journal of muscles in the anuran amphibian, Bombina Embryology and experimental Morphology orientalis. Developmental Biology 237, 354- 90, 437-455 367 Roberts R.B, Hu Y., Albertson R.C., Ostaszewska T., Dabrowski K. 2009. Early Kocher T.D. 2011. Craniofacial divergence Development of Acipenseriformes and ongoing adaptation via the hedgehog (Chondrostei: Actinopterygii). In: Kunz, Y. pathway. PNAS 108, 13194-13199 Development of non-teleost fishes. (Science Publishers: Enfield NH.2009) Ro#ek Z. 2002. Historie obratlovc%. Evoluce, Osumi-Yamashita N., Ninomiya Y., Eto K., fylogeneze, systém. Academia Doi H. 1994. The contribution of both forebrain and midbrain crest cells to the Sadaghiani B., Thiébaud Ch.H. 1987. mesenchyme in the frontonasal mass of Neural crest development in the Xenopus mouse embryo. Developmental Biology 164, laevis embryo, studied by interspecific 409-419 transplantation and scanning electron microscopy. Developmental Biology 124, 91Papan C., Campos-Ortega J.A. 1994. On 110 the formation of the neural keel and neural tube in the zebrafish Danio (Brachydanio) Sadaghiani B., Vielkind J.R. 1989. Neural rerio. Roux’s archives of developmental crest development in Xiphophorus fishes: biology 203, 178-186 scanning electron and light microscopic studies. Development 105, 487-504 Parsons K.J, Albertson R.C. 2009. Roles for Bmp4 and CaM1 in shaping the jaw: EvoSadaghiani B., Vielkind J.R. 1990. Devo and beyond. Annual Review of Distribution and migration pathways of HNKGenetics 43, 369-388 1-immunoreactive neural crest cells in teleost fish embryos. Development 110, 197-209 Pieper M., Eagleson G.W., Wosniok W., Schlosser G. 2011. Origin and segregation Saldivar J.R., Sechrist J.W., Krull C.E., of cranial placodes in Xenopus laevis. Ruffins S., Bronner-Fraser M. 1997. Dorsal Developmental Biology. 360, 257-275 hindbrain ablation results in rerouting of neural crest migration and changes in gene Platt J.B. 1893. Ectodermic origin of the expression, but normal hyoid development. cartilages of the head. Anatomischer Development 124, 2729-2739 87
Scaal M., Gros J., Lesbros C., Marcelle Smith K. K. 2001. Early development of the Ch. 2004. In ovo electroporation of avian neural plate, neural crest and facial region of somites. Developmental Dynamics 229, 643- marsupials. Journal of Anatomy 199, 121650 131 Sechrist J., Serbedzija G.N., Scherson T., Fraser S.E., Bronner-Fraser M. 1993. Segmental migration of the hindbrain neural crest does not arise from its segmental generation. Development 118, 691-703
Smith K.K. 2003. Time’s arrow: heterochrony and the evolution of development. International Journal of Developmental Biology 47, 613-621
Stone L.S. 1922. Some notes on the Serbedzija G.N, Bronner-Fraser M., Fraser migration of neural crest cells in Rana S.E. 1989. A vital dye analysis of the timing palustris. Anatomical Records 23, 39-40 and pathways of avian trunk neural crest cell migration. Development 106, 809-816 Takeuchi M., Takashashi M., Okabe M., Aizawa S. 2009. Germ layer patterning in bichir and lamprey; an insight into its Serbedzija G.N, Bronner-Fraser M., Fraser evolution in vertebrates. Developmental S.E. 1992. Vital dye analysis of cranial neuralBiology 332, 90-102 crest cell migration in the mouse embryo. Development 116, 297-307 Schilling T.F., Kimmel Ch.B. 1994. Segment and cell type lineage restrictions during pharyngeal arch development in the zebrafish embryo. Development 120, 483494 Schlosser G. 2010. Chapter Four-Making Senses: Development of Vertebrate cranial placodes. International Review of Cell and Molecular Biology 283, 129-234
Tan S.S., Morris-Kay G. 1985. The development and distribution of the cranial neural crest in the rat embryo. Cell Tissue Research 240, 403-416 Tan S.S., Morris-Kay G. 1986. Analysis of cranial neural crest cell migration and early fates in postimplantation rat chimaeras. Journal of Embryology and experimental Morphology 98, 21-58
Theveneau E., Mayor R. 2012. Neural crest delamination and migration: From epitheliumSlípka J. 1986. Evolutionary morphology of to-mesenchyme transition to collective cell migration. Developmental Biology 336, 34-54 the branchial region as the reflection of environemental changes. Behaviour, adaptation and evolution. 203-211 Smith K.K. 1994. The development of craniofacial musculature in Monodelphis domestica (Marsupialia, Didelphidae). Journal of Morphology 222, 149-173
Tokita M. 2006. Cranial neural crest cell migration in cockatiel Nymphicus hollandicus (Aves: Psittaciformes). Journal of Morphology 267, 333-340 Tosney K.W. 1982. The segregation and early migration of cranial neural crest cells in the avian embryo. Developmental Biology 88
89, 13-24
Keywords and Concepts in Evolutionary Developmental Biology (Harvard University Press, 2003)
Trainor P.A., Tam P.P. 1995. Cranial paraxial mesoderm and neural crest cells of the mouse embryo: co-distribution in the craniofacial mesenchyme but distinct segregation in branchial arches. Development 121, 2569-2582 Tucker R.P. 2004. Neural crest cells: a model for invasive behavior. The International Journal of Biochemistry & Cell Biology 36, 173-177 Vaglia J.L., Smith K.K. 2003. Early differentiation and migration of cranial neural crest in the opossum, Monodelphis domestica. Evolution & Development 5, 121135
Vickaryous M.K., Hall B. K. 2006. Human cell type diversity, evolution, development, and classification with special reference to Sekundární citace cells derived from the neural crest. Biological review 81, 425-455 Hörstadius S., Sellman S. 1946. Experimentelle untersuchungen über die Wilkinson D.G., Bhatt S., Chavrier P., Determination des Knorpeligen Kopfskelettes Bravo R., Charnay P. 1989. Segmentbei Urodelen. Nova Acta Royal Society specific expression of a zinc-finger gene in Scientist Upsala serie 4, 13, 1-170 the developing nervous system of the mouse. Nature 337, 461-464 Chibon P. 1967. Marquage nucléaire par la thymidine tritiée des dérivés de la crête Wu J., Saint-Jeannet J.-P., Klein P.S. neurale chez l'amphibien urodèle 2003. Wnt-frizzled signaling in neural crest Pleurodeles waltlii Michah. Journal of formation. Trends in Neurosciences 26, 40- Embryology and Experimental Morphology 45 18, 343-358 Zelditch M.L., Fink W.L. 1996. Heterochrony and heterotopy: stability and innovation in the evolution of form. Paleobiology 22, 241-254 Zelditch M. 2003. Space, Time, and Repatterning. In Hall B.K., Olson W.M.:
Le Douarin N.M. 1971. Comparative ultrastructural study of the interphasic nucleus in the quail (Coturnix coturnix japonica) and the chicken (Gallus gallus) by the regressive EDTA staining method. C.R. Acad. Science, Serie III. 2334-2337 89