Simulatie van de overstroming van de Hupselse Beek met het Wageningen Model Claudia Brauer, Peter Kloosterman, Ryan Teuling, Remko Uijlenhoet
Vakgroep Hydrologie en Kwantitatief Waterbeheer, Wageningen Universiteit
NHV najaarsbijeenkomst, Haarlo, 15 november 2012
Aanleiding
Brauer et al., HESS, 15, 1991-2005, 2011
Resultaat
Brauer et al., HESS, 15, 1991-2005, 2011
Vervolgonderzoek
Overstromingen in laaglandgebieden: I
Begrijpen
I
Simuleren
Afstudeervak Peter Kloosterman
30 20
Initial Q 0.07 0.07 0 0.43 0.19 0.1
Peak Q 42.2 35.9 26.5 28.3 27.7 22.6
1 0.1
Obs. LSGI SWAP
0.01
Q [mm d−1]
10
0
10
Q [mm d−1]
40
Verglijking 5 gelumpte neerslag-afvoermodellen
15 Aug
1 Sep
HBV Wag. Sac. 15 Sep
De geschiedenis van het Wageningen Model Ontwikkeld in jaren 70 bij Vakgroep Hydraulica en Afvoerhydrologie voor de Hupselse Beek
De geschiedenis van het Wageningen Model Sinds de jaren ’70: I
toegepast op stroomgebieden in binnen- en buitenland
I
talloze afstudeeronderzoeken
Verschillende versies: I
reservoirs voor langzame en snelle afvoer
I
vergelijkingen voor berekening verdampingsreductie
I
talen/programma’s: Fortran, Excel, R
De geschiedenis van het Wageningen Model Sinds de jaren ’70: I
toegepast op stroomgebieden in binnen- en buitenland
I
talloze afstudeeronderzoeken
Verschillende versies: I
reservoirs voor langzame en snelle afvoer
I
vergelijkingen voor berekening verdampingsreductie
I
talen/programma’s: Fortran, Excel, R
Wat hebben we gebruikt voor de wedstrijd?
2. Conceptualisatie Precipitation
Evapotranspiration
Saturation Field capacity
Percolation Soil moisture reservoir
Divider
Influence
Capillary rise
Groundwater reservoir
slow
Linear reservoir slow
f ast Linear reservoir f ast
Discharge
3+4. Schematisatie/discretisatie en randvoorwaarden I
Schematisatie/discretisatie a Ruimtelijk horizontaal: geen b Ruimtelijk verticaal: geen (reservoirs) c Temporeel: uurwaarden
I
Randvoorwaarden: geen
I
Beginvoorwaarden: voor de 4 reservoirs (gekalibreerd samen met parameters)
Precipitation
Evapotranspiration
Saturation Field capacity
Percolation Soil moisture reservoir
Divider
Influence
Capillary rise
Groundwater reservoir
slow
Linear reservoir slow
f ast Linear reservoir f ast
Discharge
5. Gebruikte code
5. Gebruikte code The Wageningen Model in R
96 97 98 99
Claudia Brauer
100
Hydrology and Quantitative Water Management Group
101 102
Wageningen University, The Netherlands
103 104
25 June 2012
105 106 107 108 109
1
110
2 3 4 5
111
############################################################ #################### WAGENINGEN MODEL #################### ############################################################
112 113 114
6
115
7 8
116
################# v e r s i o n 2 February 2012 ##################
117
9
118
10 11 12 13 14 15 16 17 18
119
############################################################ # Author : C l a u d i a Brauer # Hydrology and Q u a n t i t a t i v e Water Management Group # Wageningen U n i v e r s i t y , The N e t h e r l a n d s # Email a d d r e s s : C l a u d i a . Brauer@wur . n l # V i s i t i n g a d d r e s s : D r o e v e n d a a l s e s t e e g 3 , 6708 WB Wageningen # Mail a d d r e s s : P .O. Box 4 7 , 6700 AA Wageningen ############################################################
120 121 122 123 124 125 126 127
19
128
20
129
21
130
22
131
23
24 25 26
############################# # I n f o r m a t i o n and v e r s i o n l o g #############################
28
30 31 32 33 34 35
37
39 40 41 42
134
# I made two ch a n g e s t o t h e s p r e a d s h e e t −v e r s i o n : # 1 . S u r f a c e r u n o f f added when SM>SAT . # 2 . Min and max f u n c t i o n s added f o r computation PEF o r CAP # ( s o CAP i s not computed with f o r m u l a f o r PEF ) .
143
145 146 147 148
150 151 152 153 154
47
54 55
156 157 158 159
# This p a r a m e t r i c a l model c a l l e d ”WagMod” i s a f u n c t i o n with two arguments : # Argument ” f o r c ” : t h e f o r c i n g data frame # Argument ” par ” : t h e parameter data frame # Argument ” run ” : t h e name you want t o g i v e t o t h e model run
160 161 162
57
59
60 61 62 63 64 65 66 67 68 69 70 71
164
WagMod = f u n c t i o n ( f o r c , par , run ) {
165 166
76 77 78
[mm/d ] [mm/d ] [mm] [mm] [ −] [mm/d ] [mm/d ] [mm/d ] [mm/d ] [mm/d ] [mm/d ]
o r [mm/h ] o r [mm/h ]
169 170 171 172 173
o r [mm/h ] o r [mm/h ] o r [mm/h ] o r [mm/h ] o r [mm/h ] o r [mm/h ]
174 175
177 178
182 183 184 185
85 86 87 88 89 90 91 92 93 94
# l i n e a r r e s e r v o i r c o m p ut a ti o n s in f a s t [ t ] = DIV [ t ] ∗ PEF [ t ] in slow [ t ] = (1−DIV [ t ] ) ∗ PEF [ t ] Q f a s t [ t +1] = max(Q f a s t [ t ] ∗ exp(−1/ par $Kf ) + i n f a s t [ t ] ∗ (1−exp(−1/ par $Kf ) ) , 0 ) Q s l o w [ t +1] = max(Q s l o w [ t ] ∗ exp(−1/ par $Ks ) + i n s l o w [ t ] ∗ (1−exp(−1/ par $Ks ) ) , 0 )
# inflow fast reservoir # i n f l o w slow r e s e r v o i r # outflow f a s t r e s e r v o i r # outflow slow r e s e r v o i r
# new groundwater s t o r a g e Gs to re [ t +1] = max( Gs to re [ t ] + i n s l o w [ t ] − Q s l o w [ t +1] , 0 ) } # end f o r −l o o p # a v e r a g e s o i l m o i s t u r e between time s t e p s # ( b e c a u s e t h o s e v a r i a b l e s with i n i t i a l v a l u e s a r e computed f o r time s t e p t +1) SM = (SM [ 1 : ( l e n g t h (SM ) −1)] + SM [ 2 : l e n g t h (SM ) ] ) /2 Gs to re = ( G st ore [ 1 : ( l e n g t h ( Gstor e ) −1)] + G st ore [ 2 : l e n g t h ( Gstor e ) ] ) / 2 Q s l o w = (Q s l o w [ 1 : ( l e n g t h (Q s l o w ) −1)] + Q s l o w [ 2 : l e n g t h (Q s l o w ) ] ) / 2 Q f a s t = (Q f a s t [ 1 : ( l e n g t h (Q f a s t ) −1)] + Q f a s t [ 2 : l e n g t h (Q f a s t ) ] ) / 2 # t o t a l o u t f l o w i s sum o f 2 r e s e r v o i r s and s u r f a c e r u n o f f Q tot = Q f a s t + Q slow + Q s u r f # used t o be : Q t o t = Q f a s t + Q s l o w w i t h o u t s u r f a c e r u n o f f
# bind output t o g e t h e r i n a data frame 5 date = f o r c $ date P obs = f o r c $P ETpot obs = f o r c $ETpot Q obs = f o r c $Q output = data . frame ( c b i n d ( date , P obs , ETpot obs , Q obs , ETact , PEF, SM, Gstore , DIV , i n f a s t , i n slow , Q f a s t , Q slow , Q s u r f , Q t o t ) ) # c u t o f f t h e warming−up p e r i o d output = output [ ( f o r c i n g $warm [ 1 ] + 1 ) : nrow ( output ) , ]
# compute g o o d n e s s o f f i t measures and put them i n t h e same t a b l e NS = 1− sum ( ( output $Q obs − output $Q t o t ) ˆ 2 ) / sum ( ( output $Q obs − mean ( output $Q obs ) ) ˆ 2 ) logNS = 1− sum ( ( l o g ( output $Q obs ) − l o g ( output $Q t o t ) ) ˆ 2 ) / sum ( ( l o g ( output $Q obs ) − mean ( l o g ( output $Q obs ) ) ) ˆ 2 ) meanSS = mean ( ( output $Q t o t − output $Q obs ) ˆ 2 ) output = c b i n d ( output , NS , logNS , meanSS )
186
188
83
# IF groundwater s t o r a g e p o s i t i v e and p e r c o l a t i o n p o s i t i v e # THEN s o i l not v e r y dry # and p a r t o f water w i l l go through q u i c k f l o w r o u t e s # IF NOT, THEN s o i l v e r y dry # and no water w i l l go through q u i c k f l o w r o u t e s
179
181
# from ” par ” data frame # from ” par ” data frame # from ” par ” data frame # from ” par ” data frame
187
84
4
180
# set i n i t i a l conditions SM [ 1 ] = par $SM0 Gsto re [ 1 ] = par $ Gst or e0 Q s l o w [ 1 ] = par $Q s l o w 0 Q f a s t [ 1 ] = par $Q f a s t 0
80 81
# d i v i d e water between r e s e r v o i r s i f ( Gs tor e [ t ] >= 0 & PEF [ t ] >= 0 ) { DIV [ t ] = min ( ( G stor e [ t ] ∗ par $CR ∗ 0 . 0 0 1 ) , 1 ) } else { DIV [ t ] = 0 }
176
79
82
# # # # # # # # # # #
168
73 74
f i r s t estimate e f f e c t i v e precipitation s e c o n d e s t i m a t e new s o i l m o i s t u r e c o n t e n t e v a p o t r a n s p i r a t i o n r e d u c t i o n −> compute ETact 2nd PEF 3 rd SM 3 rd PEF 4 th SM 4 th PEF 5 th SM 5 th PEF 6 th SM
# = = = = = = = = = = =
estimate e f f e c t i v e precipitation e s t i m a t e new s o i l m o i s t u r e c o n t e n t PEF SM PEF SM PEF SM PEF SM
167
# dummy v e c t o r s which have t o be d e f i n e d b e f o r e t h e f o r −l o o p s t a r t s ETact = c () # actual evapotranspiration 2 PEF = c () # effective precipitation SM = c () # s o i l moisture content Gsto re = c ( ) # amount o f water s t o r e d i n groundwater r e s e r v o i r DIV = c ( ) # d i v i d e r between s l o w and q u i c k r e s e r v o i r in f a s t = c () # flow into f a s t r e s e r v o i r in slow = c ( ) # flow i n t o slow r e s e r v o i r Q fast = c ( ) # f l o w out o f f a s t r e s e r v o i r Q slow = c ( ) # f l o w out o f s l o w r e s e r v o i r Q surf = a r r a y ( 0 , dim=l e n g t h ( f o r c $P ) ) # o v e r l a n d f l o w Q tot = c () # t o t a l outflow
72
75
s i t u a t i o n SM < FC −−> c a p i l l a r y r i s e min(−par $FOS ∗ ( par $FC − SM[ t +1]) ∗ 0 . 0 0 1 ∗ Gs to re [ t ] , 0 ) max(SM[ t ] + f o r c $P [ t ] − f o r c $ETpot [ t ] − PEF [ t ] , 0 ) f o r c $ETpot [ t ] ∗ ( 0 . 5 − 0 . 5 ∗ c o s (SM[ t +1] ∗ p i / par $FC) ) min(−par $FOS ∗ ( par $FC − SM[ t +1]) ∗ 0 . 0 0 1 ∗ Gs to re [ t ] , 0 ) max(SM[ t ] + f o r c $P [ t ] − ETact [ t ] − PEF [ t ] , 0 ) min(−par $FOS ∗ ( par $FC − SM[ t +1]) ∗ 0 . 0 0 1 ∗ Gs to re [ t ] , 0 ) max(SM[ t ] + f o r c $P [ t ] − ETact [ t ] − PEF [ t ] , 0 ) min(−par $FOS ∗ ( par $FC − SM[ t +1]) ∗ 0 . 0 0 1 ∗ Gs to re [ t ] , 0 ) max(SM[ t ] + f o r c $P [ t ] − ETact [ t ] − PEF [ t ] , 0 ) min(−par $FOS ∗ ( par $FC − SM[ t +1]) ∗ 0 . 0 0 1 ∗ Gs to re [ t ] , 0 ) max(SM[ t ] + f o r c $P [ t ] − ETact [ t ] − PEF [ t ] , 0 )
} else { PEF [ t ] SM [ t +1] ETact [ t ] PEF [ t ] SM [ t +1] PEF [ t ] SM [ t +1] PEF [ t ] SM [ t +1] PEF [ t ] SM [ t +1] }
1 st 2nd 2nd 3 rd 3 rd 4 th 4 th 5 th 5 th 6 th
163
56
58
# # # # # # # # # #
155
########## # FUNCTION ##########
51 52
s i t u a t i o n FC < SM < SAT −−> p e r c o l a t i o n = max(SM[ t +1] ∗ par $REPA ∗ (SM[ t +1] − par $FC) / par $SAT, 0 ) = max(SM[ t ] + f o r c $P [ t ] − f o r c $ETpot [ t ] − PEF [ t ] , 0 ) = max(SM[ t +1] ∗ par $REPA ∗ (SM[ t +1] − par $FC) / par $SAT, 0 ) = max(SM[ t ] + f o r c $P [ t ] − ETact [ t ] − PEF [ t ] , 0 ) = max(SM[ t +1] ∗ par $REPA ∗ (SM[ t +1] − par $FC) / par $SAT, 0 ) = max(SM[ t ] + f o r c $P [ t ] − ETact [ t ] − PEF [ t ] , 0 ) = max(SM[ t +1] ∗ par $REPA ∗ (SM[ t +1] − par $FC) / par $SAT, 0 ) = max(SM[ t ] + f o r c $P [ t ] − ETact [ t ] − PEF [ t ] , 0 ) = max(SM[ t +1] ∗ par $REPA ∗ (SM[ t +1] − par $FC) / par $SAT, 0 ) = max(SM[ t ] + f o r c $P [ t ] − ETact [ t ] − PEF [ t ] , 0 )
149
46
53
} else { # PEF [ t ] SM [ t +1] PEF [ t ] SM [ t +1] PEF [ t ] SM [ t +1] PEF [ t ] SM [ t +1] PEF [ t ] SM [ t +1] }
142
144
# Changes between t h e d i f f e r e n t v e r s i o n s o f t h e R−code : # 2−2−2012: added : warming−up p e r i o d # 2−2−2012: added : logNash−S u t c l i f f e and mean sum o f s q u a r e s # 31 −1 −2012: added : e x t r a i t e r a t i o n s t o f i n d SM and PEF # 26 −1 −2012: added : ” run”−argument t o g i v e t h e run a name
45
50
138 139 140
44
48
136 137
141
43
49
# i f s t i l l SM>SAT # compute s u r f a c e r u n o f f # s e t SM t o s a t u r a t i o n
133
135
# This code i s n e a r l y t h e same a s t h e s p r e a d s h e e t v e r s i o n o f t h e Wageningen Model . # These s p r e a d s h e e t and R−v e r s i o n s have two l i n e a r r e s e r v o i r s i n s t e a d o f # t h e o r i g n i n a l j −model and c o n v e c t i o n −d i f f u s i o n r e s e r v o i r i n t h e Fortran−code .
36
38
# maximum p e r c o l a t i o n # new s o i l m o i s t u r e minus p e r c o l a t i o n
i f (SM[ t +1] > par $SAT) { Q s u r f [ t ] = SM[ t +1] − par $SAT SM[ t +1] = par $SAT }
132
1
27
29
{ # s i t u a t i o n SM > SAT −−> s u r f a c e r u n o f f and p e r c o l a t i o n PEF [ t ] = par $REPA ∗ ( par $SAT − par $FC) SM[ t +1] = SM[ t ] + f o r c $P [ t ] − ETact [ t ] − PEF [ t ]
# run f o r −l o o p o v e r each time s t e p f o r ( t i n 1 : l e n g t h ( f o r c $P) ) {
189 190
# write tables w r i t e . t a b l e ( output , p a s t e ( ” output ” , run , ” . dat ” , s e p=” ” ) , row . names=FALSE) w r i t e . t a b l e ( par , p a s t e ( ” p a r a m e t e r s ” , run , ” . dat ” , s e p=” ” ) , row . names=FALSE)
191 192
SM[ t +1] = SM[ t ] + f o r c $P [ t ] − f o r c $ETpot [ t ] # three situations : # SM > SAT −−> s u r f a c e r u n o f f and p e r c o l a t i o n # FC < SM < SAT −−> p e r c o l a t i o n # SM < FC −−> c a p i l l a r y r i s e
# f i r s t e s t i m a t e new s o i l m o i s t u r e c o n t e n t
193 194
r e t u r n ( output ) } # end f u n c t i o n
i f (SM[ t +1] >= par $FC) { # p e r c o l a t i o n ( with o r w i t h o u t s u r f a c e r u n o f f ) ETact [ t ] = f o r c $ETpot [ t ] # no e v a p o t r a n s p i r a t i o n r e d u c t i o n −> ETact = f o r c $ETpot i f (SM[ t +1] > par $SAT) # check f o r s a t u r a t i o n
95
3
6
6. Data en parameterisatie Invoer (uurwaarden) I
P : regenmeter op KNMI-station
I
ETpot : dagsom met Makkink van KNMI-station (o.b.v. dagsom globale straling en daggemidelde temperatuur) → disaggregeren met uursommen van straling
I
Afvoer (om te kalibreren): stuw waterschap Rijn en IJssel → omgerekend naar mm h−1 met 6.5 km2
Parameters I
7 parameters gekalibreerd
I
4 initi¨ele waarden toestandsvariabelen gekalibreerd
7. Modelanalyse Gevoelig voor parameters over: I percolatiesnelheid I
langzame reservoir
I
snelle reservoir
Parameterafhankelijkheid I
7 parameters is al te veel
I
Identificatie lastig: meer combinaties leiden tot hetzelfde resultaat
Parameteronzekerheid I
100 parametersets voor de Berkel (figuur: afstudeeronderzoek Herman Haaksma)
0 5 10 1998−10−31
1998−11−15
1998−11−30
1998−09−16
1998−10−01
1998−10−16
1998−10−31
1998−11−15
1998−11−30
1998−09−16
1998−10−01
1998−10−16
1998−10−31
1998−11−15
1998−11−30
1998−09−16
1998−10−01
1998−10−16
1998−10−31
1998−11−15
1998−11−30
150 50 0 70
P Peff Gstore
30 10
2 0 0.8
Q obs Q mod Q slow Q fast Q surf
0.0
Q [mm/h]
1.2
1998−09−01
0.4
P [mm/h]
15 20 1998−10−16
4
6
8
1998−09−01 P, Peff [mm/h]
1998−10−01
Soil moisture [mm]
1998−09−16 ETpot ETact Soil moisture Field capacity and saturation
50
ETpot, ETact [mm/h]
1998−09−01
Gstore [mm]
1.2 0.8
Q obs Q mod, NS = NA P
0.4 0.0 0.1 0.2 0.3 0.4 0.0
Q obs, Q mod [mm/h]
7. Kalibratie: 1 apr 1997 – 31 mrt 1999, NS=0.90
1998−09−01
0 2 4 6 8 2001−09−21
2001−10−11
2001−10−31
2001−11−21
2001−12−11
2001−12−31
2001−09−21
2001−10−11
2001−10−31
2001−11−21
2001−12−11
2001−12−31
2001−09−21
2001−10−11
2001−10−31
2001−11−21
2001−12−11
2001−12−31
2001−09−21
2001−10−11
2001−10−31
2001−11−21
2001−12−11
2001−12−31
0
0.00
50
150
ETpot ETact Soil moisture Field capacity and saturation
Soil moisture [mm]
0.15
0.30
2001−09−01 ETpot, ETact [mm/h]
P [mm/h]
0.2
0.4
Q obs Q mod, NS = NA P
0.0
Q obs, Q mod [mm/h]
7. Validatie: 1 apr 2001 – 31 mrt 2003, NS=0.83
50 30 10
Gstore [mm]
4 1
2
3
P Peff Gstore
0
P, Peff [mm/h]
5
2001−09−01
0.2
Q obs Q mod Q slow Q fast Q surf
0.0
Q [mm/h]
0.4
2001−09−01
2001−09−01
10 0 30 2011−01−30
2011−03−31
2010−05−31
2010−07−31
2010−09−30
2010−11−30
2011−01−30
2011−03−31
2010−05−31
2010−07−31
2010−09−30
2010−11−30
2011−01−30
2011−03−31
2010−05−31
2010−07−31
2010−09−30
2010−11−30
2011−01−30
2011−03−31
150 50 0 20 40 60 80
25 15 3.0 2.0
Soil moisture [mm]
2010−11−30
P Peff Gstore
2010−04−01 Q obs Q mod Q slow Q fast Q surf
0.0
1.0
P [mm/h]
50
1.0 0.6
2010−09−30
0 5
P, Peff [mm/h]
2010−04−01
Q [mm/h]
2010−07−31
0.2
0.4
2010−05−31 ETpot ETact Soil moisture Field capacity and saturation
0.0
ETpot, ETact [mm/h]
2010−04−01
Gstore [mm]
3.0 2.0
Q obs Q mod, NS = 0.85 P
0.0
Q obs, Q mod [mm/h]
8. Simulatie: 1 apr 2010 – 31 mrt 2011: NS=0.82
2010−04−01
10 0 30 2010−09−08
2010−09−14
2010−09−20
2010−08−20
2010−08−26
2010−09−01
2010−09−08
2010−09−14
2010−09−20
2010−08−20
2010−08−26
2010−09−01
2010−09−08
2010−09−14
2010−09−20
2010−08−20
2010−08−26
2010−09−01
2010−09−08
2010−09−14
2010−09−20
150 50 0 20 40 60 80
25 15 3.0 2.0
Soil moisture [mm]
2010−09−01
P Peff Gstore
2010−08−14 Q obs Q mod Q slow Q fast Q surf
0.0
Q [mm/h]
2010−08−26
0 5
P, Peff [mm/h]
2010−08−14
1.0
P [mm/h]
50
1.0 0.4 0.2
2010−08−20 ETpot ETact Soil moisture Field capacity and saturation
0.0
ETpot, ETact [mm/h]
2010−08−14
Gstore [mm]
3.0 2.0
Q obs Q mod, NS = 0.85 P
0.0
Q obs, Q mod [mm/h]
8. Simulatie: 14 aug 2010 – 20 sept 2010: NS=0.86
2010−08−14
8. Resultaten simulatie 2010
Observatie Model
Piek Q
RR
[m3 s−1 ] 5.0 5.4
[-] 0.38 0.51
Looptijd 1 [h] 42 33
Looptijd 2 [h] 10 11
Looptijd 1: zwaartepunt P - zwaartepunt Q Looptijd 2: zwaartepunt P - piek Q
Start stijging Q
Moment piek Q
26/8 7:00 26/8 5:00
27/8 3:00 27/8 4:00
9. Ervaringen Tijdsbesteding: I
Afstudeervak van 6 maanden, incl. de andere 4 modellen, analyses en rapportage, excl. schrijven R-code
Rekentijden: 1 jaar uurwaarden doorrekenen kost
9. Ervaringen Tijdsbesteding: I
Afstudeervak van 6 maanden, incl. de andere 4 modellen, analyses en rapportage, excl. schrijven R-code
Rekentijden: 1 jaar uurwaarden doorrekenen kost
6 seconden
Toekomst Wageningen Model verbeteren I
Slecht te verklaren onderdelen aanpassen
I
Minder parameters?
I
“Consensuscode”
I
Open source, freeware en gemakkelijk toepasbaar
Doel: een simpel, licht, conceptueel neerslag-afvoermodel dat geschikt is voor laaglandstroomgebieden
Toekomst (Afstudeer)onderzoeken over (simuleren van) overstromingen
Toekomst (Afstudeer)onderzoeken over (simuleren van) overstromingen
Meer informatie I
C.C. Brauer, A.J. Teuling, A. Overeem, Y. van der Velde, P. Hazenberg, P.M.M. Warmerdam, and R. Uijlenhoet, Anatomy of extraordinary rainfall and flash flood in a Dutch lowland catchment, Hydrology and Earth System Science, 15, 1991-2005, 2011
I
C.C. Brauer, A.J. Teuling, A. Overeem and R. Uijlenhoet, Extreme regenval en overstromingen in het stroomgebied van de Hupselse Beek, H2O, 18, 23-26, 2011
I
Diverse colloquia en scripties
I
www.wageningenur.nl/hwm
Brauer et al., HESS, 15, 1991-2005, 2011
Extra slides
Brauer et al., HESS, 15, 1991-2005, 2011
Neerslag
1015
10 10
10
1005
5
05
10
101 5
10
100
1010
5 101
Rainfall depth [mm] 0.1−8 8−16 16−24 24−32 32−40 40−48 48−56 56−64 64−72 72−80 80−88 88−96 96−104 104−112 112−120
Brauer et al., HESS, 15, 1991-2005, 2011
t[ km
]
7.5
2.5
H ei gh 5 2.5
0
B
0
B' A
A
50 40
B'
B
30 20 10
A'
A'
0
Reflectivity [dBZ]
7.5
5
118 0
Radar
125 9 130 5
138 2 115 0 77 5
58 3
Rainfall depth [mm] 0−10 10−20 20−30 30−40 40−50 50−60 60−70 70−80 80−90 90−100 100−110 110−120 120−130 130−140 140−150
118 0
125 9 130 5
138 2 115 0 77 5
Gauge
58 3
100 50 0
Cumulative rainfall depth [mm]
150
Used time series, automatic rain gauge Used time series, radar Hupsel Radar Hupsel Radar (link path) Microwave link Manual rain gauge
08:00
12:00
16:00 20:00 00:00 Time [UTC]
04:00
146 141 131 115 111
Neerslag-afvoerprocessen
Brauer et al., HESS, 15, 1991-2005, 2011
0
50
15
←saturation
20
44 38
25
32
-20 0
ponding ↓
land surface
26 20
piezometer in local depression
20
piezometer in local elevation
40 60 80 100 120 5
Discharge [m3 s-1]
Groundwater level [cm below land surface]
30
8h
4 3
13 Sep 14:00
27 Aug 13:00
2 1
Se p 03
p Se 02
p Se 01
Au g 31
Au g 30
Au g 29
Au g 28
Au g 27
Au g 26
Au g 25
24
Au g
0
Soil moisture [vol. %]
Rainfall intensity [mm h-1]
5 10
Oppervlaktewateropstuwing
r I
→
I
road →
II
d oa
road →
V Brauer et al., HESS, 15, 1991-2005, 2011
Respons
Fase I: Bodemvochtaanvulling Fase II: Grondwaterstijging I Fase III: Plasvorming en oppervlakte-afvoer ydrological response I Fase IV: Oppervlaktewateropstuwing I I
0
50
15
←saturation
20
44 38
25
32
-20 0
ponding ↓
land surface
26 20
piezometer in local depression
I
20
piezometer in local elevation
40 60 80
road →
100 120 5
Discharge [m3 s-1]
Groundwater level [cm below land surface]
30
Soil moisture [vol. %]
Rainfall intensity [mm h-1]
5 10
8h
4 3
13 Sep 14:00
27 Aug 13:00
2 1
p
p
Se 03
p Se
Au g
Se 02
01
31
Au g 30
Au g
Au g
Au g
Au g
Au g 29
28
27
26
25
24
Au g
0
II Brauer et al., HESS, 15, 1991-2005, 2011
1 Discharge [m3 s−1]
5
2
3
4
a
4
↓
3
↑
2 1
b
0
land surface
20 40
piezometer in local depression
↑
60
↑
Groundwater level [cm below land surface]
0
80 100
µ=0.06
piezometer in local elevation
120 0
20 40 60 80 100 120 Catchment storage [mm above reference]
140
Saturation excess [mm] 45-60 30-45 15-30 0-15 0
Hupsel brook Secondary ditch Tertiary ditch Meteorological station Catchment outlet Sub−catchment outlet
0
800 m
Extreme-waardenanalyse
Brauer et al., HESS, 15, 1991-2005, 2011
●
●
●
1
5 10
50
500
Return period [years]
6000 years
● ●● ● ●● ●● ●● ●● ●● ●●●●● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ● ●
3000 years
50
100
●
0
24−h rainfall depth [mm]
150
Hupsel 2010, excluded Hupsel 2010, included
5000
Hoe extreem was deze afvoer? I
Dagwaarden 1969–2009
I
Maximum: 21 mm d−1 Gumbelverdeling → T = 98 years
I
Voor T = 98 jaar, 95% betrouwbaarsheidsinterval: Q tussen 18 en 25 mm d−1
I
Piek 2010: 42 mm d−1
Niet mogelijk om herhalingstijd te berekenen!
Brauer et al., HESS, 15, 1991-2005, 2011
150 100 50 3 2
Initial Q 0.004 0.301 0.15 0.282 0.161 0.169
Peak Q 4.97 3 2.8 2.06 1.85 1.47
1 0.1
27 Aug 2010 31 Dec 1993 17 Nov 1990
0.01
Q [m3 s−1]
0
1
Q [m3 s−1]
4
0
cum. P [mm]
Total P 163 44 50 29 38 61
−24
−12
0
12
1 Nov 1998 30 Dec 2002 15 Sep 1998
24
Hours before / after peak
36
48