SIMULASI TEKANAN DAN TEMPERATUR SERTA PENDUGAAN PERUBAHAN KADAR PROTEIN DAN KEEMPUKAN DAGING SAPI SELAMA PEMASAKAN DALAM PRESSURE COOKER
SAPARUDIN
SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2016
PERNYATAAN MENGENAI TESIS DAN SUMBER INFORMASI SERTA PELIMPAHAN HAK CIPTA Dengan ini saya menyatakan bahwa tesis yang berjudul “Simulasi Tekanan dan Temperatur serta Pendugaan Perubahan Kadar Protein dan Keempukan Daging Sapi Selama Pemasakan dalam Pressure Cooker” adalah benar karya saya dengan arahan dari komisi pembimbing dan belum diajukan dalam bentuk apa pun kepada perguruan tinggi manapun. Sumber informasi yang berasal atau dikutip dari karya yang diterbitkan maupun tidak diterbitkan dari penulis lain telah disebutkan dalam teks dan dicantumkan dalam Daftar Pustaka di bagian akhir tesis ini. Dengan ini saya melimpahkan hak cipta dari karya tulis saya kepada Institut Pertanian Bogor. Bogor, Januari 2016
Saparudin NRP F151130131
RINGKASAN SAPARUDIN. Simulasi Tekanan dan Temperatur serta Pendugaan Perubahan Kadar Protein dan Keempukan Daging Sapi Selama Pemasakan dalam Pressure Cooker. Dibimbing oleh DYAH WULANDANI dan NANIK PURWANTI. Daging adalah semua jaringan hewan yang sesuai untuk dikonsumsi serta tidak menimbulkan gangguan kesehatan bagi yang mengkonsumsinya. Daging yang dimasak dengan menggunakan pressure cooker dapat memberikan tekstur yang lunak dalam waktu yang singkat. Hal ini dikarenakan tekanan di dalam pressure cooker menghasilkan temperatur yang tinggi. Penelitian ini bertujuan untuk memvalidasi model pindah panas yang digunakan pada Polytetrafluoroethylene (PTFE) dengan daging sapi. Setelah itu, menentukan model matematis hubungan antara kadar protein, keempukan, dan waktu pemasakan. Model diselesaikan dengan metode numerik beda hingga Euler dengan menggunakan program Microsoft Excel 2010. Penetapan orde kinetika dan konstanta laju perubahan protein dan keempukan dilakukan dengan metode grafik. Orde kinetika ditentukan berdasarkan nilai koefisien determinasi (R2) yang paling mendekati 1 dan nilai konstanta laju perubahan dapat diperoleh dari kemiringan kurva/slope. Daging yang digunakan adalah daging bagian knuckle pada paha belakang sapi peranakan Ongole (10 jam setelah sapi dipotong). Umur sapi saat pemotongan 2 sampai 3 tahun yang berasal dari Rumah Potong Hewan Kotamadya Bogor. Waktu pemasakan 0, 20, 40, dan 60 menit sebanyak 3 kali ulangan. Waktu pemasakan dihitung mulai dari gas (uap air dan udara) keluar melalui katup sampai alat pemanas dimatikan. Alat yang digunakan adalah pressure cooker volume 8 dan 10 l. Validasi tekanan gas, temperatur air, dan temperatur titik tengah daging selama pemasakan dalam pressure cooker dihitung dengan menggunakan metode MAPE (Mean Absolute Percentage Error). Hasil penelitian menunjukkan bahwa model yang dikembangkan dapat menduga perubahan tekanan gas (uap air dan udara), temperatur air dan temperatur titik tengah daging. Tingkat kesalahan (MAPE) model tekanan uap air untuk volume 10 l dan 8 l adalah 7.1% dan 3.2%. Nilai MAPE untuk temperatur air volume 10 l dan 8 l adalah 7.1% dan 3.2%. Dan nilai MAPE untuk temperatur titik tengah daging dengan tebal 1, 1.5, dan 2 cm pada volume 10 l berturut-turut adalah 2.3%, 3%, dan 2.7%. Sedangkan untuk volume 8 l berturut-turut adalah 4.3%, 2.7%, dan 4.5%. Kinetika perubahan kadar protein pada pressure cooker volume 10 dan 8 l mengikuti orde nol dengan koefisien determinasi 0.96 dan 0.99. Persamaan untuk menduga perubahan kadar protein selama pemasakan dalam pressure cooker volume 10 dan 8 l masing-masing adalah 34.87+0.0949t dan 35.45+0.0932t. Keempukan daging diukur dengan mengunakan WarnerBratzler Shear Force (WBSF). Kinetika penurunan WBSF pada pressure cooker volume 10 l mengikuti orde nol dengan koefisien determinasi 0.93. Untuk pressure cooker volume 8 l dari 0 sampai 20 menit dan 20 sampai 40 menit mengikuti orde 0 dengan koefisien determinasi 1 dan orde dua dengan koefisien determinasi 0.99. Persamaan untuk menduga penurunan WBSF selama pemasakan dalam pressure cooker volume 10 l dan orde nol untuk 8 l masingmasing adalah 7.2-0.055t dan 7.3-0.01t. Persamaan untuk menduga penurunan WBSF orde dua pada volume 8 l adalah 1/(0.095+(0.0023t). Kinetika perubahan
susut masak pada pressure cooker 10 dan 8 l mengikuti orde nol dengan koefisien determinasi 0.97 dan 0.99. Persamaan untuk menduga perubahan susut masak untuk volume 10 dan 8 l masing-masing adalah 35.92+0.2683t dan 36.87+0.2435t. Hasil pengujian warna menunjukkan bahwa lama pemasakan tidak berbeda nyata terhadap perubahan warna daging, begitu juga dengan perbedaan volume pressure cooker. Warna daging hasil pengujian berwarna abu-abu. Kesimpulan penelitian ini adalah model yang dikembangkan dapat menduga perubahan tekanan gas, temperatur air, dan temperatur daging dengan baik. Kadar protein dan keempukan tidak dipengaruhi oleh volume pressure cooker. Daging yang empuk memerlukan waktu pemasakan 50 menit sejak gas (uap air dan udara) keluar melalui katup pengatur tekanan. Kata kunci: daging, keempukan, pressure cooker, protein, simulasi.
SUMMARY SAPARUDIN. Simulation of Pressure and Temperature Change and Prediction of Beef Protein Content and Tenderness for Cooking in A Pressure Cooker. Supervised by DYAH WULANDANI and NANIK PURWANTI.
Beef is abundance food from animal tissue that is consumable without any health problem for its consumers. Beef cooked with a pressure cooker can produce soft texture in a relatively short time due high pressure and temperature inside the cooking chamber. A mathematical model for heat transfer inside pressure cooker previously developed using PTFE (Polytetrafluoroethylene). The aim of present study was to validate previously developed PTFE (Polytetrafluoroethylene) heat transfer model with actual beef and to determine mathematical model relation between beef protein content, beef tenderness and cooking time. A PTFE model was solved with numerical Euler finite difference method using Microsoft Excel 2010. The order of kinetics of protein content and beef tenderness during cooking was determined by graphical method. The order of kinetics was determined base on coefficient of determination (R2) which is close to 1, meanwhile the constants of protein content and tenderness changes were obtained from graphical slopes. A knuckle of 2-3 years Ongole beef (10 h after slaughtering) was obtained from a local slaughtering house. The beef used to replace with PTFE in validating the model. 10 and 8 l in volume Commercial pressure cookers were used and the cooking times were 0, 20, 40, and 60 min starting from released steam. A MAPE (mean absolute percentage error) method was used to validate steam pressure, water temperatur and the temperature of center point of beef. The results showed that the developed model could well predict changes of steam pressure, water temperatur and the temperature of center point of beef. The MAPE for steam pressures were 7.1% (10 l) and 3.2% (8 l); water temperatures were 3.6% (10 l) and 1.4% (8 l). The MAPE of temperature of center point of beef were 2.3%, 3% and 2.7% for 1, 1.5 and 2 cm beef thickness, respectively (10 l). The MAPE were 4.3%, 2.7%, and 4.5% for 8 l volume. The kinetics of beef protein content followed the zeroth order with 0.96 and 0.99 in coefficient of determination for 10 and 8 l, respectively. The mathematical relation beetwen protein content and cooking time inside 10 and 8 l pressure cookers were 34.87+0.0949t and 35.45+0.0932t, respectively. The kinetics of beef tenderness was stated as Warner-Bratzler Shear Force (WBSF) and it followed zeroth order with 0.93 in coefficient of determination for 10 l. The kinetics 8 l in volume followed zeroth order with 1 in coefficient of determination for 0-20 min, and second order with 0.99 in coefficient of determination for 20-40 min. The mathematical relation beetwen beef tenderness and cooking time inside 10 l, 8 l (zeroth order) and 8 l (second order) of pressure cookers were 7.2-0.055t; 7.30.01t; and 1/(0.095+(0.0023t), respectively. The kinetics of cooking loss followed zeroth order with 0.97 and 0.99 in coefficient of determination for 10 and 8 l, volume respectively. The mathematical relation between cooking loss and cooking time inside 10 and 8 l pressure cookers were 35.92+0.2683t and 36.87+0.2435t, respectively. The results also indicated that the cooking time and
volume of the pressure cooker did not affect to the change of beef color significantly. The beef color after cooking process was grey. The results concluded that previously developed PTFE model could well predict steam pressure, water temperature and the temperature of center point of beef. The protein content and the tenderness was not significantly affected by volume of the pressure cookers. In order to get proper beef tenderness cooked in a pressure cooker, 50 min of cooking time is applied. Key words: beef, tenderness, pressure cooker, protein, simulation.
© Hak Cipta Milik IPB, Tahun 2016 Hak Cipta Dilindungi Undang-Undang Dilarang mengutip sebagian atau seluruh karya tulis ini tanpa mencantumkan atau menyebutkan sumbernya. Pengutipan hanya untuk kepentingan pendidikan, penelitian, penulisan karya ilmiah, penyusunan laporan, penulisan kritik, atau tinjauan suatu masalah; dan pengutipan tersebut tidak merugikan kepentingan IPB Dilarang mengumumkan dan memperbanyak sebagian atau seluruh karya tulis ini dalam bentuk apa pun tanpa izin IPB
SIMULASI TEKANAN DAN TEMPERATUR SERTA PENDUGAAN PERUBAHAN KADAR PROTEIN DAN KEEMPUKAN DAGING SAPI SELAMA PEMASAKAN DALAM PRESURRE COOKER
SAPARUDIN
Tesis sebagai salah satu syarat untuk memperoleh gelar Magister Sains pada Program Studi Teknik Mesin Pertanian dan Pangan
SEKOLAH PASCASARJANA INSTITUT PERTANIAN BOGOR BOGOR 2016
Penguji Luar Komisi pada Ujian Tesis: Dr Leopold Oscar Nelwan, STP, MSi
PRAKATA Puji dan syukur penulis panjatkan kepada Allah subhanahu wa ta’ala atas segala karunia-Nya sehingga karya ilmiah ini berhasil diselesaikan. Judul yang penulis pilih dalam penelitian ini adalah Simulasi Tekanan dan Temperatur serta Pendugaan Perubahan Kadar Protein dan Keempukan Daging Sapi Selama Pemasakan dalam Presurre Cooker. Terima kasih penulis ucapkan kepada Ibu Dr Ir Dyah Wulandani, MSi dan Ibu Nanik Purwanti, STP, MSc selaku pembimbing yang telah bersabar dan memotivasi penulis sehingga tesis ini dapat diselesaikan. Penulis ucapkan terima kasih kepada Bapak Dr Ir Y. Aris Purwanto, MSc selaku ketua program studi Teknik Mesin Pertanian dan Pangan, Dr Ir Dewa Made Subrata, MAgr selaku sekretaris program studi Teknik Mesin Pertanian dan Pangan, dan Dirjen DIKTI atas bantuan biaya pendidikan (BPPDN). Penulis ucapkan terima kasih kepada Bapak Dr Leopold Oscar Nelwan, STP, MSi selaku penguji sidang. Di samping itu, ucapan terima kasih penulis sampaikan kepada staf Program Studi dan temanteman Teknik Mesin Pertanian dan Pangan atas bantuanya selama ini. Ungkapan terima kasih yang mendalam penulis sampaikan kepada ayah, ibu, istri, anakku Uwais Alqorny serta seluruh saudara kandung penulis atas segala do’a dan kasih sayangnya. Semoga karya ilmiah ini bermanfaat.
Bogor, Januari 2016 Saparudin
DAFTAR ISI DAFTAR TABEL
vi
DAFTAR GAMBAR
vi
DAFTAR LAMPIRAN
vi
PENDAHULUAN Latar Belakang Rumusan Masalah Tujuan Penelitian Manfaat Penelitian TINJAUAN PUSTAKA Pressure Cooker Perpindahan Panas Persamaan Tekanan Gas Persamaan Temperatur Air Persamaan Temperatur Titik Pusat Daging Persamaan Temperatur plat Pemanas Pendidihan dan Penguapan Kondensasi pada Dinding Pressure Cooker Daging METODE Waktu dan Tempat Penelitian Alat dan Bahan Penelitian Rancangan Percobaan Tahapan Penelitian Pengukuran Tekanan Gas dan Temperatur Air serta Temperatur Daging Persamaan Laju Gas yang Keluar Melalui Katup Pengatur Tekanan Persamaan Temperatur Gas Persamaan Temperatur Air Persamaan Temperatur Dinding Pressure Cooker Pengujian Kadar Protein Pengujian Warner-Bratzler Shear Force Pengujian Susut Masak Pengujian Warna Penentuan Model Persamaan Matematis Validasi Model HASIL DAN PEMBAHASAN Hasil Pengukuran dan Simulasi Tekanan Gas Hasil Pengukuran dan Simulasi Temperatur Air Hasil Pengukuran dan Simulasi Temperatur Titik Tengah (Pusat) Daging Hasil Pengujian Kadar Protein Hasil Pengujian Keempukan(Warner-Bratzler Shear Force) Hasil Pengujian Susut Masak Hasil Pengujian Warna SIMPULAN DAFTAR SIMBOL
1 1 2 2 2 3 3 4 5 6 6 7 7 7 8 9 9 9 10 11 11 12 13 13 14 14 15 15 15 16 16 16 16 17 18 20 21 23 23 25 25
DAFTAR PUSTAKA LAMPIRAN RIWAYAT HIDUP
26 28 51
DAFTAR TABEL 1 Nilai koefisien pindah panas konveksi 2 Komponen-komponen kimia daging sapi 3 Nilai rata-rata kadar protein (%) daging sapi peranakan ongole yang dimasak di dalam pressure cooker 4 Nilai rata-rata Warner-Bratzler Shear Force (WBSF) daging sapi peranakan ongole yang dimasak di dalam pressure cooker 5 Nilai rata-rata susut masak daging sapi peranakan ongole yang dimasak di dalam pressure cooker 6 Nilai rata-rata warna L, *a, *b daging sapi peranakan ongole yang dimasak di dalam pressure cooker
5 9 20 22 23 24
DAFTAR GAMBAR Skema cara kerja pressure cooker Nama bagian-bagian pressure cooker Skema pindah panas konveksi dalam pressure cooker Diagram alir tahapan penelitian Skema percobaan alat Skema transfer arah panas pada daging Perubahan hasil pengukuran dan simulasi tekanan gas terhadap waktu Perubahan hasil pengukuran dan simulasi temperatur air terhadap waktu Perubahan hasil pengukuran dan simulasi temperatur titik tengah daging terhadap waktu dengan tebal daging 1 cm 10 Perubahan hasil pengukuran dan simulasi temperatur titik tengah daging terhadap waktu dengan tebal daging 1,5 cm 11 Perubahan hasil pengukuran dan simulasi temperatur titik tengah daging terhadap waktu dengan tebal daging 2 cm 12 Grafik pencocokan/fitting kadar protein terhadap waktu 13 Grafik pencocokan/fitting WBSF terhadap waktu 14 Grafik pencocokan/fitting susut masak terhadap waktu 15 Grafik CIE Chromaticity 1 2 3 4 5 6 7 8 9
3 4 5 11 12 12 17 18 19 19 20 21 22 23 24
DAFTAR LAMPIRAN 1 Nilai parameter pada simulasi 2 Nilai pengukuran dan simulasi tekanan gas pada pressure volume 8 l 3 Nilai pengukuran dan simulasi tekanan gas pada pressure volume 10 l 4 Nilai pengukuran dan simulasi temperatur air pada pressure volume 8 l 5 Nilai pengukuran dan simulasi temperatur air pada pressure volume 10 l
28 cooker 30 cooker 32 cooker 34 cooker 36
6 Nilai hasil pengukuran dan simulasi temperatur titik (tebal daging 1 cm) pada pressure cooker volume 8 l 7 Nilai hasil pengukuran dan simulasi temperatur titik (tebal daging 1.5 cm) pada pressure cooker volume 8 l 8 Nilai hasil pengukuran dan simulasi temperatur titik (tebal daging 2 cm) pada pressure cooker volume 8 l 9 Nilai hasil pengukuran dan simulasi temperatur titik (tebal daging 1 cm) pada pressure cooker volume 10 l 10 Nilai hasil pengukuran dan simulasi temperatur titik (tebal daging 1.5 cm) pada pressure cooker volume 10 l 11 Nilai hasil pengukuran dan simulasi temperatur titik (tebal daging 2 cm) pada pressure cooker volume 10 l 12 Nilai hasil perhitungan pengujian warna
tengah daging 38 tengah daging 40 tengah daging 42 tengah daging 44 tengah daging 46 tengah daging 48 50
1
PENDAHULUAN
Latar Belakang Daging sapi merupakan salah satu sumber protein hewani yang disukai oleh konsumen karena rasanya yang lezat. Secara umum, komposisi daging terdiri atas air, lemak, protein, mineral, dan karbohidrat. Kandungan gizi yang lengkap dan keanekaragaman produk olahannya menjadikan daging sapi sebagai bahan pangan yang hampir tidak dapat dipisahkan dari kehidupan manusia (Prasetyo et al. 2013). Biasanya daging selalu dimasak sebelum dimakan (Segovia et al. 2007). Pemasakan merupakan proses termal dengan tujuan utama untuk meningkatkan cita rasa produk pangan. Proses pemasakan yang umum dilakukan pada skala rumah tangga antara lain perebusan, pemanggangan, penggorengan, penyangraian, dan metode lain yang menggunakan panas. Pearson dan Tauber (1984) menyatakan bahwa pemasakan merupakan faktor penting yang dapat memperbaiki palatabilitas daging. Memasak daging sapi membutuhkan waktu yang relatif lama untuk mendapatkan daging yang cukup lunak. Lamanya proses pemasakan ini menyebabkan bertambahnya penggunaan energi dan hilangnya nutrisi yang terkandung di dalamnya. Penggunaan pressure cooker untuk memasak daging sudah meluas bukan saja di kalangan pengusaha tetapi sudah merambah ke masyarakat menengah ke bawah. Pemasakan dengan menggunakan pressure cooker dapat lebih cepat melunakkan atau mengempukkan daging dengan waktu yang relatif singkat. Hal ini dikarenakan tekanan di dalam pressure cooker menghasilkan temperatur yang tinggi (Pearson dan Tauber 1984). Penggunaan pressure cooker dapat mengurangi waktu memasak dan menghemat energi (Flick et al. 2007). Namun disisi lain, pemasakan dengan menggunakan pressure cooker dapat menyebabkan rusaknya tekstur daging. Untuk mencegah rusaknya tekstur daging yang dimasak, maka waktu pemasakan yang diaplikasikan harus diperhatikan (Pearson dan Tauber 1984). Temperatur dan waktu memasak mempunyai pengaruh yang besar pada sifat fisik daging dan kualitas daging (Segovia et al. 2007). Polimeni et al. (2011) mengembangkan model pindah panas dan massa yang terjadi di dalam pressure cooker. Model yang dikembangkan bertujuan untuk mengoptimalkan penggunaan pressure cooker agar dapat mempertahankan nilai gizi dalam produk dan meminimalkan energi yang digunakan. Namun demikian, model ini menggunakan Polytetrafluoroethylene (PTFE) sebagai model produk sehingga kurang merepresentasikan produk yang sebenarnya. Oleh karena itu, penelitian ini bertujuan untuk memvalidasi model yang dikembangkan oleh Polimeni et al. (2011) pada produk yang sebenarnya berupa daging sapi. Polimeni et al. (2011) dalam percobaanya menggunakan pemasakan metode uap dimana PTFE dipanaskan dengan uap (blanching). Sedangkan pada penelitian ini, daging diletakkan di dalam air dan perlu dilakukan modifikasi pada persamaan (model) yang dikembangkan oleh Polimeni et al. (2011) untuk menghasilkan simulasi dengan tingkat kesalahan sekecil mungkin. Selain itu, dilakukan penyesuaian asumsi yang sesuai dengan karakteristik daging sapi. Setelah itu, hubungan antara kadar protein dan tingkat keempukan daging terhadap waktu pemasakan
2` dimodelkan secara matematis. Hasil penelitian ini dapat dijadikan acuan dalam menentukan waktu pemasakan daging dalam pressure cooker sesuai dengan kebutuhan. Selain menjaga dari kerusakan yang berlebihan pada tekstur daging, pemasakan dengan waktu yang tepat akan menghemat penggunaan energi. Perumusan Masalah Produk pangan pada model pindah panas yang dikembangkan oleh Polimeni et al. (2011) dari bahan Polytetrafluoroethylene (PTFE) sehingga belum merepresentasikan produk yang sebenarnya. Oleh karena itu, perlunya validasi model pada produk yang sebenarnya yang dalam penelitian ini berupa daging sapi sehingga model yang dikembangkan dapat diterapkan dalam menduga perubahan tekanan gas, temperatur air dan temperatur titik tengah daging. Selain itu, selama ini masyarakat dalam menggunakan pressure cooker belum memperhatikan pengaruh waktu memasak dengan kadar protein dan keempukan daging yang terjadi selama pemasakan. Hal ini dapat mengakibatkan produk akhir pemasakan kurang terjamin kualitas akhirnya. Dengan demikian diperlukan model matematis untuk menduga perubahan tersebut.
Tujuan Penelitian Penelitian bertujuan memvalidasi model pindah panas yang dikembangkan oleh Polimeni et al. (2011) dari bahan Polytetrafluoroethylene (PTFE) dengan menggunakan daging sapi sebagai bahan uji. Penelitian ini juga bertujuan menetapkan model matematis untuk menduga perubahan kadar protein dan keempukan terhadap waktu pemasakan. Manfaat Penelitian Manfaat penelitian simulasi tekanan dan temperatur serta pendugaan perubahan protein dan keempukan daging sapi selama pemasakan dalam pressure cooker adalah: 1. Memberikan Persamaan matematika perubahan kadar protein dan keempukan terhadap waktu pemasakan kepada para pengguna pressure cooker (masyarakat) yang dapat digunakan sebagai rujukan dalam menentukan waktu memasak daging sapi dalam pressure cooker. 2. Untuk menduga waktu yang dibutuhkan selama pemasakan, sehingga dapat diketahui energi yang dibutuhkan selama pemasakan. 3. Untuk memudahkan penelitian tentang daging yang diberi perlakuan temperatur (karena ruang tertutup sehingga pemasangan thermocouple /termometer akan merusak pressure cooker dan cenderung terjadi kebocoran gas).
3
TINJAUAN PUSTAKA Pressure Cooker Polimeni et al. (2011) menyatakan peristiwa yang terjadi di dalam pressure cooker terdapat tiga periode. Periode pertama, pressure cooker berisi air, produk makanan, dan udara dingin (Gambar 1a). Kemudian pressure cooker dipanaskan sehingga menyebabkan temperatur air dan tekanan gas (udara dan uap air) naik. Selama periode pertama, tekanan di dalam pressure cooker lebih kecil dari tekanan katup pengatur tekanan, sehingga massa dalam jumlah kecil mengalir keluar melalui saluran udara (Gambar 1b). Katup pengatur tekanan Katup udara
(a)
(c)
(b)
(d)
Gambar 1 Skema cara kerja pressure cooker Periode kedua terjadi ketika uap yang dihasilkan bertambah banyak, sehingga tekanan gas (uap dan udara) naik melebihi tekanan katup pengatur tekanan. Katup pengatur tekanan akan terbuka (terdorong ke atas) ketika tekanan gas di dalam pressure cooker melebihi kekuatan tekanan katup pengatur tekanan (Gambar 1c), sehingga gas mengalir keluar. Jika tekanan gas di dalam pressure cooker turun di bawah tekanan katup pengatur tekanan, maka katup-katup
4` pengatur tekanan akan menutup kembali dan jika tekanan gas naik kembali, maka katup pengatur tekanan akan membuka kembali. Hal ini terus terjadi hingga alat pemanas dimatikan. Sehingga pada periode kedua, tekanan gas dan temperatur air dipertahankan konstan. Laju massa gas yang keluar pada periode kedua dapat dituliskan pada Persamaan (22). Periode ketiga terjadi pada saat sumber panas dimatikan dan katup pengatur tekanan dibuka (Gambar 1d). Sehingga, gas mengalir keluar dan terjadi proses pendinginan secara alami dari udara luar. Dengan demikian, tekanan di dalam pressure cooker turun ke tingkat atmosfir dan turunnya tekanan gas diikuti dengan turunnya temperatur air. Selama proses ini disebut decompression (pengurangan/ penghilangan tekanan gas di dalam ruangan). Laju massa yang keluar selama proses decompression dapat dihitung dengan Persamaan (1) (Idel’cik, 1996). Bagian-bagian pressure cooker ditunjukkan pada Gambar 2. 2 g p p atm 2 (1) m max rvalve K Perubahan densitas gas selama pemasakan dapat dihitung dengan Persamaan (2) (Potter dan Somerton 2008). m (2) g g Vg
Tuas pembuka katup pengatur tekanan
Tuas pembuka tutup pressure cooker Katup udara
Katup pengatur tekanan
Gambar 2 Nama bagian-bagian pressure cooker Perpindahan Panas Perpindahan panas terjadi karena terjadinya perbedaan temperatur. Panas akan mengalir dari tempat yang temperaturnya tinggi ke tempat yang temperaturnya rendah. Perpindahan panas terjadi menurut tiga mekanisme, yaitu 1) konduksi; 2) konveksi; dan 3) radiasi. Perpindahan panas konduksi adalah proses perpindahan panas jika panas mengalir dari tempat yang temperaturnya tinggi ke tempat yang temperaturnya rendah tetapi media untuk perpindahan panas tetap. Perpindahan panas secara konduksi tidak hanya terjadi pada padatan saja tetapi bisa juga terjadi pada cairan ataupun gas, hanya saja konduktivitas terbesar ada pada padatan. Perpindahan panas konveksi adalah perpindahan panas yang terjadi antara permukaan padat
5 dengan fluida yang mengalir disekitarnya, dengan menggunakan media penghantar berupa fluida (cairan atau gas), dimana fluida yang temperaturnya lebih tinggi mengalir ke tempat yang temperaturnya lebih rendah. Gambar 3 menunjukkan pindah panas konveksi yang terjadi pada pressure cooker. Keterangan : 1. Pindah panas konveksi dari plat pemanas ke dinding bawah 2. Pindah panas konveksi dari dinding bawah ke air 3. Pindah panas konveksi dari air ke gas 4. Pindah panas konveksi dari gas ke dinding 5. Pindah panas konveksi dari dinding ke udara lingkungan 6. Pindah panas konveksi dari plat pemanas ke udara lingkungan Gambar 3 Skema pindah panas konveksi dalam pressure cooker. Nilai koefisien pindah panas konveksi yang terjadi pada pressure cooker ditunjukkan dengan Tabel 1. Nilai koefisien pindah panas konveksi dari plat pemanas ke udara luar diasumsikan nol atau diabaikan. Pindah panas konveksi dari bagian A ke B dihitung dengan Persamaan umum q AB S h AB TB TA . Tabel 1 Nilai koefisien pindah panas konveksi Koefisien Nilai (W m-2°C-1) 360 hhpb 1500 hbl 6 hlg 4 hgw 12 hwamb Sumber: Polimeni et al. (2011). Persamaan Tekanan Gas Tekanan total adalah jumlah tekanan parsial dari semua unsur pokok pembentuk udara, nitrogen, oksigen, dan uap air. Tekanan total di dalam pressure cooker merupakan jumlah tekanan udara dan tekanan uap air yang dapat dituliskan dalam Persamaan (3) (Polimeni et al. 2011). p pv pa (3) Tekanan udara dan uap air di dalam pressure cooker selama pemasakan dipengaruhi oleh temperatur gas dan massa gas (massa udara dan uap air). Semakin tinggi temperatur gas maka semakin tinggi tekanan gas. Tekanan udara dan uap air selama pemasakan berturut-turut dapat dituliskan dalam Persamaan (4) dan (5) (Polimeni et al. 2011).
6`
pa
pv
ma RTg 273 M a Vg mv RTg 273
(4)
ma ma mv
(6)
(5) M v Vg Selama pemasakan terjadi perubahan massa udara dan massa uap air. Hal ini terjadi karena adanya gas yang keluar dari katup pengatur tekanan, proses evaporasi, pendidihan, dan pengembunan. Perubahan fraksi massa udara dan uap selama pemasakan dapat dihitung dengan Persamaan (6) dan (7). xa
xv 1 xa
(7) Persamaan Temperatur Titik Pusat Daging
Proses transfer panas pada daging yang sedang direbus terjadi dalam dua cara yaitu transfer panas dari air ke permukaan daging secara konveksi dan transfer panas dalam daging secara konduksi. Kecepatan transfer panas dari air ke daging dipengaruhi oleh temperatur air, konduktivitas termal (k), panas spesifik (Cp), bentuk dimensi, dan ukuran bahan. Simulasi temperatur titik tengah (pusat) daging menggunakan Persamaan umum Fourier satu dimensi (Polimeni et al. 2011) yang dapat dituliskan dalam Persamaan (8). T T 1 f Cp f f n k z n f (8) t z z z n = Koefisien bentuk produk (lempeng tak hingga = 0) Kondisi awal (Initial conditions/IC): T f ( z,0) T f U ( z,0) T f Tl Kondisi batas (Boundary conditions/BC): U (0, t ) 0 U ( X , t) 0
Dimana U = Tf - Tl Solusi khusus Persamaan (8) dapat dituliskan dalam Persamaan (9).
T f 1
2 T f Tl e2nt 1 1 1n sin n z Tl L n n 1
(9)
Selama proses pemasakan pada periode pertama, temperatur air dan daging mengalami kenaikan dan pada periode kedua temperatur air dan daging menjadi konstan. Sedangkan pada periode ketiga terjadi penurunan. Dengan demikian nilai temperatur air (Tl) dan daging (Tf) pada Persamaan (9) berubah-berubah terhadap waktu.
7 Persamaan Temperatur Plat Pemanas Persamaan temperatur plat pemanas dan dinding pressure cooker berdasarkan pada keseimbangan energi yang terjadi pada plat pemanas dan dinding pressure cooker. Keseimbangan energi pada plat pemanas dapat dituliskan dalam Persamaan (10) (Polimeni et al. 2011). dThp qheating qhp amb qhpb (10) dt mhp Cphp Pada saat periode ketiga (decompression), Energi pada plat pemanas dan laju massa pendidihan diasumsikan nol. Pendidihan dan Penguapan Pendidihan atau mendidih dapat terjadi jika temperatur permukaan dinding bawah/dasar pressure cooker lebih tinggi dari pada temperatur saturasi. Penguapan adalah peristiwa yang terkait dengan perubahan wujud, biasanya zat cair ke wujud gas. Sebelum air menjadi uap air seluruhnya, air harus melewati peristiwa yang disebut mendidih (boiling). Persamaan laju massa pendidihan, laju massa penguapan, densitas uap saturasi, densitas uap, dan koefisien pindah massa secara berturut-turut dapat dihitung dengan menggunakan Persamaan (11) sampai dengan (15) (Polimeni et al. 2011). m boil Tw Tvsat p (11) m evap Sb k vsat v (12) 2 Mv 3802 , 7 223426 vsat exp 23,3265 Tl 273 Tl 273 R Tl 273 m v v Vg
k hl g
Dm
(13) (14) (15)
a
Kondensasi pada Dinding Pressure Cooker Kondensasi merupakan kebalikan dari pendidihan. Kondensasi terjadi ketika uap jenuh bersentuhan dengan permukaan yang berada pada temperatur yang lebih rendah. Nelwan et al. (2008) menyatakan bahwa kondensasi terjadi pada saat udara dan uap mengalami kelembapan yang cukup tinggi. Minkowycz dan Sparrow (1966) memprediksi koefisien kondensasi dengan Persamaan (16). k 3 l l g g Hˆ v 4 (16) hcond Kudara SC l T T l l vsat surf Persamaan koefisien koreksi udara, laju massa kondensasi, dan laju pindah panas kondensasi dapat ditulis dalam Persamaan (17), (18), dan (19) (Polimeni et al. 2011). 1
8`
m cond
1 exp 47,7294 xa0,6246 exp 2,8235 xa0,3533 2 S hcond Tdew Tsurf Hˆ
Kudara
v
(17) (18)
cond Hˆ Tg Hˆ l Tsurf qcond m
(19) Persamaan temperatur titik embun dan temperatur jenuh dapat dituliskan dalam Persamaan (20) dan (21) (Nadeau dan Puiggali 1995). 1 (20) Tdew 7,242 105 4,476 106 23,3265 ln pv 8,51 103 273 1 (21) Tsat 5 6 7,242 10 4,476 10 23,3265 ln p 8,51 103 273
Daging Daging adalah semua jaringan hewan yang sesuai untuk dikonsumsi serta tidak menimbulkan gangguan kesehatan bagi yang mengkonsumsinya (Aberle et al. 2001). Sifat fisik daging memegang peranan penting dalam proses pengolahan dikarenakan sifat fisik menentukan kualitas serta jenis olahan yang akan dibuat. Sifat fisik sangat dipengaruhi oleh faktor-faktor sebelum pemotongan dan setelah pemotongan. Faktor penting sebelum pemotongan adalah perlakuan istirahat yang dapat menentukan tingkat stres pada ternak. Aberle et al. (2001) menyatakan bahwa ternak yang tidak diistirahatkan akan menghasilkan daging yang berwarna gelap, bertekstur keras dan kering. Faktor setelah pemotongan yang mempengaruhi kualitas daging adalah metode pelayuan, metode pemasakan, tingkat keasaman (pH) daging, dan bahan tambahan yang diberikan. Kualitas kimia daging dipengaruhi oleh faktor sebelum dan setelah pemotongan. Faktor sebelum pemotongan yang dapat mempengaruhi kualitas daging adalah genetik, jenis kelamin, umur, dan pakan. Faktor setelah pemotongan meliputi kualitas kadar air, kadar lemak, dan kadar protein (Prasetyo et al. 2013). Kualitas daging merupakan karakteristik yang dinilai oleh konsumen dalam memenuhi palatabilitasnya yang berkaitan dengan penilaian sensorik atau organoleptik. Palatabilitas daging meliputi warna, keempukan, flavour dan aroma, kebasahan (juiciness), dan kondisi pemasakan (Aberle et al. 2001). Warna merupakan salah satu indikator kualitas daging meskipun warna tidak mempengaruhi gizi. Umumnya daging yang normal berwarna kemerahan, daging yang berwarna gelap dianggap kurang segar oleh konsumen (Aberle et al. 2001). Keempukan daging merupakan faktor penting penentu kualitas daging (Vasanthi et al. 2006). Faktor yang mempengaruhi keempukan daging digolongkan menjadi faktor antemortem seperti genetik dan faktor postmortem yang diantaranya meliputi metode refrigerasi, pembekuan, dan metode pemasakan. Flavour dan aroma merupakan fenomena yang kompleks berkaitan dengan senyawa-senyawa yang larut dan volatil. Flavour bervariasi berdasarkan atas potongan daging dan tingkat infiltrasi lemak (Aberle et al. 2001). Kebasahan (juiciness) merupakan kemampuan daging untuk melepaskan jus (cairan daging) selama pengunyahan. Juiciness daging berfungsi dalam menentukan kelezatan daging karena
9 mengandung komponen cita rasa dan membantu proses fragmentasi serta pelunakan daging selama pengunyahan (Lawrie dan Ledward 2006). Pemasakan dapat melarutkan jaringan ikat dan mendenaturasi protein-protein miofibril yang terdapat dalam daging. Pemasakan dapat menurunkan kemampuan protein mengikat air sehingga terjadi peningkatan jumlah cairan daging yang keluar dari daging. Temperatur dan lama pemasakan mempunyai pengaruh yang sangat signifikan terhadap sifat-sifat fisik dan kualitas daging (Jamhariet el. 2007). Komponen-komponen kimia daging sapi dapat dilihat pada Tabel 2. Tabel 2 Komponen-komponen kimia daging sapi. Komponen 1. Air 2. Protein - Miofibriler - Sarkoplasmik - Jaringan ikat 3. Lipida 4. Karbohidrat 5. Senyawa bukan protein lainya - Senyawa nitrogen - Senyawa anorganik 6. Vitamin Sumber : Lawrie dan Ledward (2006).
% (berat basah) 75 19 11.5 5.5 2.0 2.5 1.2 2.3 1.65 0.65 Sedikit
METODE Waktu dan Tempat Penelitian Waktu penelitian dimulai pada bulan Desember 2014 sampai dengan bulan Mei 2015. Penelitian dilaksanakan di Laboratorium Teknik Pengolahan Pangan dan Hasil Pertanian, Laboratorium Bangunan Pertanian Fakultas Teknologi Pertanian, Laboratorium Ruminansia Besar Fakultas Peternakan dan Laboratorium Kimia Terpadu Institut Pertanian Bogor. Alat dan Bahan Penelitian Bahan yang digunakan dalam penelitian ini adalah daging bagian knuckle pada paha belakang sapi peranakan Ongole (10 jam setelah sapi dipotong). Umur sapi 2 sampai 3 tahun yang berasal dari Rumah Potong Hewan Kotamadya Bogor. Pemasakan daging dalam pressure cooker menggunakan air mineral. Alat yang digunakan dalam penelitian meliputi: 1. Pressure cooker ukuran 8 dan 10 l dengan tekanan pembukaan katup pengatur tekanan 1.7 bar. Bahan pressure cooker terbuat dari stainless steel. 2. Thermocouple tipe CC.
10` 3. 4. 5. 6. 7. 8. 9. 10. 11.
Thermal recorder Chino Al 3000, Jepang. Pressure Gauge Tekiro 2.5 Bar, Indonesia. Kompor listrik Mitseda 1500 W, Jepang. Stopwatch. Timbangan Digital Metler PM 4800, Swiss. Chromameter Minolta CR 400, Jepang. Warner-Bratzler (WB) Chatillon 14606, USA. Peralatan pengukur kadar protein (metode Kjeldhal). Bahan kimia (selenium mixture, SeO2, K2SO4, CuSO4.5H2O, H2SO4, NaOH, H3BO3, larutan bromocresol green, methyl red, dan HCl) Merck, Jerman. 12. Bor listrik. Rancangan Percobaan Penelitian ini menggunakan rancangan acak lengkap (RAL) yang terdiri dari 2 perlakuan yaitu volume pressure cooker (10 dan 8 l) dan waktu pemasakan 0, 20, 40, dan 60 menit sebanyak 3 kali ulangan. Waktu pemasakan dihitung mulai dari gas keluar melalui katup sampai alat pemanas dimatikan. Air yang digunakan adalah air mineral yang tidak diberi tambahan bumbu dengan jumlah air 1.5 l dengan berat sampel daging setiap satu kali masak 1 kg. Data dianalisis ragam (ANOVA) menggunakan program SPSS 16, selanjutnya apabila ditemukan perbedaan antar perlakuan maka dilanjutkan dengan uji Duncan. Validasi tekanan gas, temperatur air, dan temperatur titik tengah daging selama pemasakan dalam pressure cooker dihitung dengan menggunakan metode MAPE (Mean Absolute Percentage Error).
11 Tahapan Penelitian Pelaksanaan penelitian dilakukan dengan tahapan seperti pada Gambar 4.
Mulai Simulasi tekanan gas dan temperatur air terhadap waktu (menggunakan Persamaan (3)dan (26)), simulasi temperatur tengah daging terhadap waktu dengan menggunakan Persamaan (9)
Pemasakan daging sapi selama 60 menit pada Validasi model
Nilai validasi baik > 0.8
Tidak
Ya Pemasakan daging sapi dalam pressure cooker volume 8 dan 10 l dengan waktu 0, 20, 40, dan 60 menit Pengujian kadar protein, WBSF, susut masak, dan warna daging Penetapan orde kinetika perubahan kadar protein, susut masak dengan metode Grafik Persamaan matematika untuk menduga perubahan kadar protein dan keempukan pada daging sapi Selesai Gambar 4 Diagram alir tahapan penelitian Pengukuran Tekanan Gas, Temperatur Air dan Temperatur Daging Tekanan gas diukur dengan menggunakan pressure gauge yang dipasangkan pada tutup pressure cooker. Hasil ukur tekanan ditulis/dicatat setiap dua menit. Thermocouple diletakkan pada gas, air, dan titik tengah daging (Gambar 5). Hasil ukur dari thermocouple disimpan di thermal recorder setiap detik. Daging sapi dibentuk slab dengan dimensi sebagaimana berikut: 1. Panjang = 5 cm, lebar = 3.5 cm, tebal = 1 cm
12` 2. Panjang = 5 cm, lebar = 3.5 cm, tebal = 1.5 cm 3. Panjang = 5 cm, lebar = 3.5 cm, tebal = 2 cm
Gambar 5 Skema percobaan alat. Model transfer panas pada daging diturunkan berdasarkan asumsi-asumsi sebagai berikut (Supriyanto et al. 2006): 1. Daging yang dimasak berbentuk slab, dengan tebal daging lebih kecil dibandingkan dengan panjang dan lebar daging, sehingga transfer panas hanya berlangsung satu arah mengikuti sumbu z yang dapat ditunjukkan pada gambar 6.
Gambar 6 Skema transfer arah panas pada daging. 2. Transfer panas dalam daging terjadi secara konduksi dari permukaan ke dalam daging, transfer panas konveksi dari media ke permukaan daging dianggap konstan. 3. Temperatur air di dalam pressure cooker dianggap seragam. 4. Pemekaran daging diabaikan sehingga perubahan tebal/dimensi daging dapat diabaikan. 5. Perpindahan lemak dan protein terlarut kedalam air diabaikan. Persamaan Laju Gas yang Keluar Melalui Katup Pengatur Tekanan Katup pengatur tekanan berfungsi untuk membatasi tekananan gas di dalam pressure cooker. Tekanan gas dipengaruhi oleh massa uap air yang dihasilkan selama proses pemanasan/pemasakan. Semakin banyak massa gas yang dihasilkan maka semakin tinggi tekanan. Tujuan dibatasinya tekanan gas adalah untuk menghindari kerusakan produk pangan akibat tekanan yang berlebihan. Tekanan
13 dibatasi dengan cara mengeluarkan gas apabila tekanan gas di dalam pressure cooker melebihi tekanan yang dibutuhkan. Laju massa gas yang keluar melalui katup pengatur tekanan dapat dihitung dengan Persamaan (22) (Polimeni et al. 2011) termodifikasi. Persamaan dimodifikasi dikarenakan adanya perbedaan tekanan dan bentuk pressure cooker yang digunakan.
m valve m max 1 exp
p pvalve pvalve
10 10 2
(22)
Persamaan Temperatur Gas Tekanan gas dipengaruhi oleh temperatur gas. Temperatur gas dapat menurun dengan terbukanya katup pengatur tekanan, perpindahan panas dari dinding pressure cooker ke udara luar, dan pengembunan yang terjadi pada dinding pressure cooker. Penurunan temperatur gas menyebakan tekanan gas di dalam pressure cooker menurun. Laju temperatur gas dapat dihitung dengan Persamaan (23) (Polimeni et al. 2011) termodifikasi. dTg dt
1 q q m Cp T m Cp T mv Cpv ma Cpa l g g w evap v w boil v sat m condw cp v Tg ( xa Cpa xv Cpv ) m valve Tg
(23)
Massa udara dan uap air selama pemasakan mengalami perubahan. Hal ini dikarenakan udara dan uap air mengalir keluar ketika katup pengatur tekanan terbuka dan adanya proses pengembunan (uap air mengembun ketika bersentuhan dengan dinding pressure cooker. Hal ini dapat terjadi ketika temperatur dinding pressure cooker lebih rendah dari temperatur uap air). Namun disisi lain, uap air terus bertambah dengan adanya evaporasi dan pendidihan. Persamaan untuk menghitung laju massa udara dituliskan dalam Persamaan (24) (Polimeni et al. 2011) dan Persamaan (25) untuk uap air (Polimeni et al. 2011) termodifikasi. dma m valve xa (24) dt dmv m valve xa m cond w m boil m evap (25) dt
Persamaan Temperatur Air Waktu yang dibutuhkan untuk menaikkan temperatur air dipengaruhi oleh tebal dan jenis bahan dinding bagian bawah pressure cooker. Laju temperatur air ditentukan seberapa besar panas yang ditransfer dari dinding bawah pressure cooker ke air dan yang digunakan untuk menguapkan air. Laju temperatur air dihitung berdasarkan keseimbangan energi pada air yang dapat dituliskan pada Persamaan (26) (Polimeni et al. 2011) termodifikasi. dTl 1 qbl ql g m evap Cpv Tl m boil Cpv Tsat m condw (Cp w Tw Hˆ 0 ) (26) dt
ml Cpl
Pemanasan pada dinding bawah pressure cooker menyebabkan temperatur naik. Jika panas terus ditambahkan, maka uap yang terbentuk akan semakin banyak, namun temperatur air tidak berubah. Hal ini disebabkan energi kalor yang
14` diberikan saat pemanasan digunakan untuk mengubah struktur molekul air atau digunakan untuk merubah fase cair menjadi fase uap. Berubahnya air menjadi uap menyebabkan massa air di dalam pressure cooker berubah. Laju massa air selama pemasakan dapat dihitung dengan Persamaan keseimbangan massa yang dapat dituliskan pada Persamaan 27 (Polimeni et al. 2011) termodifikasi. dml cond w m boil m evap m dt
(27)
Polimeni et al. (2011) dalam percobaanya menggunakan pemasakan metode uap dimana PTFE dipanaskan dengan uap (blanching). Model keseimbangan temperatur gas, temperatur air, massa uap, dan massa air yang dikembangkan terdapat parameter laju pengembunan pada PTFE. Sedangkan pada penelitian ini, daging diletakkan di dalam air, sehingga parameter laju pengembunan pada model keseimbangan temperatur gas, temperatur air, massa uap, dan massa air dihilangkan. Persamaan Temperatur Dinding Pressure Cooker Dinding bawah pressure cooker bersentuhan langsung dengan plat pemanas. Besarnya panas yang diterima dinding bawah pressure cooker ditentukan oleh daya kompor listrik. Temperatur air, tebal, dan jenis bahan pressure cooker mempengaruhi laju temperatur dinding bawah pressure cooker. Temperatur pada dinding vertikal akan meningkat seiring dengan naiknya temperatur gas. Selain itu, temperatur udara luar, tebal, dan jenis bahan dinding pressure cooker mempengaruhi laju temperatur dinding vertikal pressure cooker. Polimeni et al. (2011) mengembangkan model keseimbangan temperatur dinding pressure cooker pada dinding bagian luar dan dalam, sedangkan pada penelitian ini temperatur dinding bagian dalam dan luar diasumsikan sama. Penyederhanaan dilakukan karena tidak adanya perbedaan hasil perhitungan yang signifikan (dikarenakan tebal dinding pressure cooker relatif tipis). Persamaan temperatur dinding pressure cooker bagian bawah (horizontal) dan dinding vertikal dapat dituliskan pada Persamaan (28) dan (29) (Polimeni et al. 2011) termodifikasi. qhpb qbl dTb (28) dt Sb thb b Cpb
dTw qg w qwamb qcondw (29) dt S w thw w Cpw Persamaan (10) dan (23) sampai dengan (29) diselesaikan dengan metode numerik beda hingga Euler, dengan menggunakan program microsoft Excel 2010. Nilai parameter yang digunakan untuk simulasi disajikan pada Lampiran 1.
Pengujian Kadar Protein Kadar protein kasar daging diukur dengan metode Kjeldahl di Laboratorium Kimia Terpadu, Institut Pertanian Bogor. Sampel untuk pengujian protein diambil dari bagian bawah tumpukan. Penentuan kadar protein dengan metode Kjeldahl menurut SNI 01-2891-1992 (Standar Nasional Indonesia cara uji makanan dan minuman). Sampel ditimbang seberat 0.51 g, kemudian dimasukkan kedalam labu
15 Kjeldahl 100 ml dan tambahkan 2 g campuran selenium dan 25 ml H2SO4 pekat. Labu dipanaskan diatas pemanas listrik atau pembakar bunsen sampai mendidih dan larutan menjadi jernih kehijau-hijauan (sekitar 2 jam). Labu didinginkan, kemudian encerkan dan masukkan kedalam labu ukur sampai tanda tera. Larutan sebanyak 5 ml dimasukkan kedalam alat penyuling, kemudian tambahkan 5 ml NaOH 30% dan suling selama kurang lebih 10 menit. Sebagai penampung gunakan 10 ml larutan asam borat 2% dan campuran BCG-MR (bromocresol green dan methyl red). selama proses penyulingan ujung pipa kondensor harus selalu tercelup dalam larutan asam borat dan campuran BCG-MR. Setelah itu, ujung pipa tabung dibilas dengan air suling dan lakukan titrasi dengan larutan HCl 0.01N, kemudian lakukan penetapan blanko. Kadar protein (%) dihitung dengan Persamaan (30). V V2 N 0.014 fk fp 100% Kadar protein 1 (30) W Pengujian Warner-Bratzler Shear Force Keempukan daging diukur dengan Warner-Bratzler Shear Force (WBSF). Sampel daging dibentuk silinder dengan diameter 1.27 cm dan panjang 3-5 cm (Suryati et al. 2008). Sampel kemudian dikenai pisau pengiris pada alat secara melintang sampai terbelah menjadi dua. Nilai Warner-Bratzler Shear Force ditentukan berdasarkan skala yang ditunjukkan alat ukur dalam satuan kg.cm-2 (Suryati et al. 2008). Sampel diambil dari tumpukan paling atas. Pengujian Susut Masak Setelah daging diberi perlakuan waktu memasak dan volume pressure cooker, daging ditiriskan pada temperatur ruang hingga beratnya konstan. Daging ditimbang dengan menggunakan timbangan (Metler PM 4800-0,01, Swiss). Susut masak adalah selisih antara berat sebelum dimasak dan setelah dimasak (Segovia et al. 2007) Pengujian Warna Pengujian warna daging menggunakan chromameter, Prinsip dasarnya, warna daging dapat diukur dengan notasi atau dimensi warna tristimulus. Ketiga notasi warna didefinisikan sebagai hue atau warna (misalnya merah, biru, dan hijau); nilai, yaitu terang atau gelap dan kroma yaitu jumlah atau intensitas warna. Setiap warna dapat dibentuk dari campuran antara ketiga warna utama (merah, biru, hijau) dan jumlah yang dibutuhkan untuk membentuk suatu warna disebut nilai tristimulus. Warna daging (nilai L, *a, b*) yang sudah dimasak diukur menggunakan chromameter (Minolta CR 400, Jepang). Pengukuran dilakukan pada dua sisi permukaan sampel. Notasi L menunjukkan parameter kecerahan (light). Nilai L merupakan parameter untuk menilai terang-gelap gambar. Sedangkan nilai a* merupakan parameter untuk menilai warna dari merah ke hijau. Kemudian, nilai b* untuk menilai warna dari kuning ke biru (De man 1999).
16` Penentuan Model Persamaan Matematis Model matematis hubungan antara kadar protein terhadap waktu, keempukan terhadap waktu, dan susut masak terhadap waktu diduga mengikuti kinetika orde nol, satu, dan dua. Penentuan orde kinetika dan konstanta laju perubahan kandungan protein dan keempukan dilakukan dengan metode grafik (Wright 2004). Orde kinetika ditentukan berdasarkan nilai koefisien determinasi (R2) yang paling mendekati 1 dan nilai konstanta laju perubahan dapat diperoleh dari kemiringan kurva/slope (Wright 2004). Validasi Model Validasi model untuk menghitung kesalahan antara simulasi dengan hasil pengukuran menggunakan metode MAPE (Mean Absolute Percentage Error) yang dapat ditulis dalam Persamaan (31). N Xt Ft Xt MAPE t 1 100 (31) Z
HASIL DAN PEMBAHASAN Hasil Pengukuran dan Simulasi Tekanan Gas Nilai hasil pengukuran dan simulasi tekanan gas (uap air dan udara) disajikan pada Lampiran 2 dan 3. Data hasil pengukuran dan perhitungan simulasi tekanan uap air diplotkan kedalam Grafik sehingga didapatkan kurva perubahan tekanan uap air terhadap waktu ditunjukkan pada Gambar 7. Secara umum kurva hasil simulasi gas dapat mengikuti kurva hasil pengukuran baik pressure cooker volume 10 l (Gambar 7a) dan 8 l (Gambar 7b). Hasil pengukuran pada 8 menit pertama untuk pressure cooker volume 10 l dan 5 menit pertama pada volume 8 l, perubahan tekanan yang terjadi sangat kecil (horizontal). Hal ini dikarenakan panas dari plat pemanas atau kompor listrik masih digunakan untuk memberi panas pada dinding bawah pressure cooker dan pada air yang temperaturnya masih rendah. Selain itu katup udara masih terbuka sehingga uap yang dihasilkan dan udara yang ada dalam pressure cooker mengalir keluar. Ketika uap yang dihasilkan terus bertambah, maka tekanan gas akan mendorong katup udara untuk menutup. Dengan menutupnya saluran udara, maka tekanan naik dengan cepat. Hal ini dikarenakan temperatur air yang terus meningkat, sehingga menghasilkan uap yang lebih banyak. Pada saat tekanan gas di dalam pressure cooker melebihi tekanan katup pengatur tekanan, maka katup pengatur tekanan akan terbuka dan gas akan keluar (awal periode dua atau akhir periode pertama). Ketika gas keluar dan tekanan gas di dalam pressure cooker turun di bawah tekanan katup pengatur tekanan, maka katup pengatur tekanan menutup kembali. Proses ini terus berlangsung sampai plat pemanas dimatikan, sehingga pada periode dua tekanan gas di dalam pressure cooker menjadi konstan. Pada periode ketiga, tekanan gas
17 turun dengan cepat. Hal ini dikarenakan plat pemanas atau kompor listrik dimatikan dan katup pengatur tekanan dibuka, sehingga gas keluar dengan cepat. Untuk pressure cooker volume 10 l katup pengatur tekanan hasil simulasi mulai terbuka pada waktu ke 7.5 menit dengan tekanan 1.7 bar atau lebih awal 5.5 menit dari hasil pengukuran. Sedangkan pressure cooker volume 8 l, katup pengatur tekanan hasil simulasi mulai terbuka pada waktu ke 6.5 menit dengan tekanan 1.75 bar atau lebih awal 4 menit dari hasil pengukuran. Perbedaan ini disebabkan pada periode pertama diasumsikan tidak ada gas yang keluar. Setelah katup pengatur tekanan terbuka, tekanan berfluktuasi dari 1.65-1.72 bar untuk volume 10 l dan 1.7-1.76 bar untuk volume 8 l. Berfluktuasinya tekanan gas dikarenakan kurang sesuainya nilai asumsi koefisien penurunan tekanan (K) dan . Tingkat kesalahan (MAPE) model untuk pressure cooker volume 10 l 7.1% dan 2.9% untuk volume 8 l. Tekanan yang dihasilkan pressure cooker volume 8 l pada hasil pengukuran lebih tinggi 0,05 bar dari pada pressure cooker volume 10 l. Hal ini disebabkan ruang gas yang ditempati pada volume 8 l lebih kecil sehingga menyebabkan densitas gas lebih tinggi dibandingkan pada pressure cooker volume 10 l.
Pengukuran - - Simulasi──
(a) (b) Gambar 7 Perubahan hasil pengukuran dan simulasi tekanan gas terhadap waktu.(a) 10 l, (b) 8 l. Hasil Pengukuran dan Simulasi Temperatur Air Pengukuran temperatur air dilakukan pada periode pertama sampai periode ketiga. Data pengukuran dan simulasi temperatur air dapat dilihat pada Lampiran 4 dan 5. Data yang didapat kemudian diplotkan kedalam Grafik sehingga diperoleh kurva perubahan hasil pengukuran dan simulasi temperatur air terhadap waktu yang ditunjukkan pada Gambar 8. Hasil pengukuran temperatur air pada pressure cooker volume 8 l pada periode pertama lebih cepat dibandingkan volume 10 l. Hal ini dikarenakan jumlah uap yang dibutuhkan pressure cooker volume 10 l untuk mencapai tekanan dan temperatur maksimum lebih banyak dari pada volume 8 l. Hasil pengukuran temperatur air dari 7-9 menit pertama pada volume 10 l, temperatur air terlihat konstan dengan temperatur 100 oC (Gambar 8a). Hal ini terjadi karena tekanan gas di dalam pressure cooker belum mampu menekan katup udara, sehingga katup udara masih terbuka yang menyebabkan gas (udara dan uap) mengalir keluar. Setelah katup udara tertutup, temperatur air naik dengan cepat. Temperatur dan tekanan merupakan properti yang saling terikat pada proses perubahan fase. Sebagai akibatnya, temperatur didih akan tergantung
18`
120
120
100
100 Temperatur (oC)
Temperatur (oC)
pada tekanan. Semakin tinggi tekanan, maka temperatur didih akan menjadi semakin tinggi. Untuk pressure cooker volume 10 l, tekanan gas mencapai 1.7 bar dengan temperatur air maksimum (titik didih) mencapai 115 oC, sedangkan pada pressure cooker volume 8 l tekanan gas mencapai 1.75 bar dengan temperatur air maksimum (titik didih) 116 oC. Jika panas terus ditambahkan, maka uap yang terbentuk akan semakin banyak, namun temperatur air tidak berubah. Hal ini disebabkan energi kalor yang diberikan saat pemanasan digunakan untuk mengubah struktur molekul air atau digunakan untuk merubah fase cair menjadi fase uap (Latent Heat of Vaporization). Dengan tekanan pada periode dua dipertahankan konstan, maka temperatur air akan menjadi konstan. Gambar 8b menunjukkan hasil simulasi dapat mengikuti perubahan hasil pengukuran temperatur air, sedangkan pada pressure cooker volume 10 l, temperatur air hasil simulasi pada periode pertama (0-8 menit) lebih rendah dari pada hasil pengukuran. Hal ini disebabkan oleh nilai parameter-parameter penguapan yang kurang tepat. Adapun tingkat kesalahan model berdasarkan perhitungan dengan metode MAPE adalah 3.7% untuk pressure cooker volume 10 l dan 1.4% untuk pressure cooker volume 8 l. Dengan demikian,model dapat digunakan untuk menduga waktu yang dibutuhkan dalam proses pemasakan, sehingga dapat diketahui kebutuhan energi yang digunakan selama pemasakan.
80 60 40
80
Pengukuran - - Simulasi ──
60 40 20
20
0
0 0
20
40 Waktu (menit)
60
80
0
20
40
60
80
Waktu (menit)
(a) (b) Gambar 8 Perubahan hasil pengukuran dan simulasi temperatur air terhadap waktu. (a) 10 l, (b) 8 l. Hasil Pengukuran dan Simulasi Temperatur Titik Tengah (Pusat) Daging Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (1, 1.5, dan 2 cm) terdapat di Lampiran 6 sampai dengan lampiran 11. Proses transfer panas dari air ke daging menyebabkan temperatur titik tengah daging naik. Dari data hasil pengukuran dan simulasi temperatur titik tengah daging didapat kurva hubungan antara perubahan temperatur pengukuran dan simulasi temperatur titik tengah daging terhadap waktu yang ditunjukkan pada Gambar 9, 10, dan 11. Ketika pressure cooker mulai dipanasi, maka temperatur air naik lebih cepat dari pada temperatur titik tengah daging dan pada akhirnya temperatur titik daging sama dengan temperatur air. Secara umum, hasil simulasi perubahan temperatur titik tengah daging dapat mengikuti perubahan temperatur hasil pengukuran baik untuk ukuran daging tebal 1, 1.5, dan 2 cm (Gambar 9, 10, dan 11). Hasil simulasi (Gambar 10 dan 11) menunjukkan bahwa waktu untuk mencapai temperatur maksimum pada titik tengah daging lebih awal dibandingkan hasil
19
120
120
100
100
Temperatur (°C)
Temperatur (°C)
pengukuran. Hal ini disebabkan karena pemasakan daging dalam pressure cooker menyebabkan susut masak menjadi tinggi. Hal ini sesuai dengan pendapat Pearson dan Tauber (1984) yang menyatakan bahwa daging sapi yang dimasak dalam pressure cooker mengalami susut masak lebih tinggi dibandingkan dengan metode lainya. Tingginya susut masak menunjukkan bahwa air yang keluar dari daging selama pemasakan besar. Selain itu, pemasakan pada temperatur yang tinggi menyebakan perubahan sifat-sifat fisik daging. Tingginya susut masak dan terjadinya perubahan sifat-sifat fisik daging dimungkinkan mempengaruhi proses pindah panas pada daging. Sedangkan dalam simulasi, jumlah air dalam daging dan perubahan sifat-sifat fisik daging selama pemasakan diabaikan. Tingkat kesalahan (MAPE) model untuk daging dengan tebal 1, 1.5, dan 2 cm pada pressure cooker volume 10 l berturut-turut adalah 2.3%, 3%, dan 2.7%, sedangkan untuk pressure cooker volume 8 l berturut-turut adalah 4.3, 2.7 %, dan 4.5%. Dengan demikian, model dapat menduga perubahan temperatur titik tengah daging dengan baik.
80 60 40
80
Pengukuran - - Simulasi ──
60 40 20
20
0
0 0
20
40
60
0
80
20
40
60
80
Waktu (menit)
Waktu (menit)
(a)
(b)
Gambar 9 Perubahan hasil pengukuran dan simulasi temperatur titik tengah daging terhadap waktu dengan tebal daging 1 cm. (a) 10 l, (b) 8 l.
100
100
Temperatur(°C)
120
Temperatur (°C)
120
80 60 40 20
80
Pengukuran - - Simulasi ──
60 40 20
0
0 0
20
40 Waktu (menit)
(a)
60
80
0
20
40 60 Waktu (menit)
80
(b)
Gambar 10 Perubahan hasil pengukuran dan simulasi temperatur titik tengah daging terhadap waktu dengan tebal daging 1.5 cm. (a) 10 l, (b) 8 l.
120
120
100
100
Temperatur (°C)
Temperatur (°C)
20`
80 60 40 20 0
Pengukuran - - Simulasi ──
80 60 40 20 0
0
20
40 60 Waktu (menit)
(a)
80
0
20
40 60 Waktu (menit)
80
(b)
Gambar 11 Perubahan hasil pengukuran dan simulasi temperatur titik tengah daging terhadap waktu dengan tebal daging 2 cm. (a) 10 l, (b) 8 l. Dari hasil-hasil yang telah disampaikan maka model yang dikembangkan oleh Polimeni et al. (2011) dapat digunakan pada penelitian daging yang diberi perlakuan temperatur dan waktu tanpa memasang alat ukur temperatur (thermocouple) pada daging dari luar sistem pressure cooker. Pemasangan alat ukur temperatur (thermocouple) pada daging dari luar sistem pressure cooker akan merusak (melubangi) pressure cooker itu sendiri dan cenderung dapat menimbulkan kebocoran gas. Hasil Pengujian Kadar Protein Hasil pengujian kadar protein (Tabel 3) menunjukkan bahwa nilai kadar protein tidak berbeda antara yang dimasak dalam pressure cooker 8 l dan 10 l. Sedangkan untuk pressure cooker 8 l, lama pemasakan menghasilkan perbedaan kadar protein, namun lama pemasakan dalam pressure cooker 10 l secara populasi tidak berbeda. Perbedaan ini disebabkan temperatur air pada pressure cooker 8 liter lebih tinggi 1° C dibandingkan volume 10 l, sehingga lama pemasakan pada pressure cooker 8 menghasilkan perbedaan kadar protein. Perbedaan temperatur air disebabkan volume ruang gas presurre cooker 8 l lebih kecil sehingga mengakibatkan densitas gas lebih tinggi dari pada volume 10 l. Tabel 3 Nilai rata-rata kadar protein (%) daging sapi peranakan ongole yang dimasak di dalam pressure cooker (Rerata ± SD) Volume pressure cooker 10 l 8l
0 34.87±1.52a 35.45±0.63a
Waktu (menit) 20 40 60 37.91±1.09b 38.87±0.68bc 40.88±0.79cd 37.91±0.56 b 39.04±0.33c 41.06±0.23d
Angka-angka yang diikuti oleh huruf yang berbeda pada baris yang sama menyatakan perbedaan yang nyata (P<0.05)
Pemasakan pada temperatur yang tinggi dapat meningkatkan denaturasi protein-protein miofibril, sehingga menyebabkan terjadinya perubahan sifat-sifat protein tersebut, termasuk daya ikat air (Jamhari et al. 2007). Segovia et al. (2007)
21
50
50
40
40 Protein (%)
Protein (%)
menyatakan bahwa meningkatnya temperatur menyebabkan jumlah air yang diikat menurun. Terjadinya penurunan kemampuan mengikat air tersebut menyebabkan jumlah cairan daging yang keluar selama pemasakan menjadi lebih besar. Hal ini juga terjadi pada peningkatan lama pemasakan (Jamhari et al. 2007). Menurunnya kadar air mempengaruhi persentase kadar protein. Semakin kecil kadar air dalam daging maka semakin tinggi persentase protein yang dikandungnya.Dengan demikian, penurunan kadar air menyebabkan peningkatan persentase kadar protein dalam daging. Kinetika perubahan kadar protein pada pressure cooker volume 10 dan 8 l mengikuti orde nol (Persamaan 32) dengan koefisien determinasi 0.96 dan 0.99. Hal ini menunjukkan bahwa perubahan kadar protein terjadi secara konstan. Persamaan untuk menduga perubahan kadar protein selama pemasakan dalam pressure cooker volume 10 dan 8 l dapat dituliskan pada Persamaan (33) dan (34). Nilai 0.0949 dan 0.0932 merupakan konstanta perubahan kadar protein sebesar 0.0949 dan 0.0932% per menit. Grafik pencocokan/fitting data eksperimen dengan hasil pendugaan perubahan protein ditunjukkan pada Gambar 12. Ct F (C0 , K , t ) C0 Kt (32) F (C0, K, t) adalah fungsi untuk menghitung Ct. Kadar protein 34.87 0.0949t (33) 35 . 45 0 . 0932 t Kadar protein (34)
30 20
30 20 10
10 0
0 0
20 40 Waktu (menit)
(a)
60
0
20 40 Waktu (menit)
60
(b)
Gambar 12 Grafik pencocokan/fitting kadar protein terhadap waktu. (a) 10 l, (b) 8 l, () hasil ukur, (──) model pendugaan. Hasil Pengujian Keempukan (Warner-Bratzler Shear Force) Data hasil pengamatan pada parameter keempukan (Warner-Bratzler shear force) sebagaimana tampak pada Tabel 4, dimana lama waktu pemasakan berakibat pada semakin empuknya daging. Semakin empuknya daging diindikasikan oleh menurunnya nilai rataan Warner-Bratzler shear force untuk setiap penambahan waktu pemasakan. Penurunan WBSF disebabkan kolagen daging larut dalam air. Hal ini sesuai dengan pendapat Vasanthi et al. (2006) yang menyatakan bahwa peningkatan temperatur dan lama pemasakan daging menyebabkan kolagen lebih banyak yang larut. Suryati et al. (2008) menyatakan bahwa daging empuk memiliki WBSF 3.30-5.0 kg.cm-2. Dengan demikian, untuk mendapatkan daging yang empuk membutuhkan waktu pemasakan 50 menit.
22` Tabel 4 Nilai rata-rata Warner-Bratzler Shear Force (WBSF) (kg.cm-2) daging sapi peranakan ongole yang dimasak di dalam pressure cooker (Rerata ± SD) Volume pressure Cooker 10 l 8l
0 7.3±0.25a 7.3±0.87a
Waktu (menit) 20 40 7.0±0.68ab 5.6±1.15b 7.1±0.50a 5.3±1.02b
60 4.1±0.47c 4.3±1.11c
Angka-angka yang diikuti oleh huruf yang berbeda pada baris yang sama menyatakan perbedaan yang nyata(P<0.05)
Kinetika penurunan WBSF pada pressure cooker volume 10 l mengikuti orde nol (Persamaan 35) dengan koefisien determinasi 0.93. Untuk pressure cooker volume 8 l dari 0 sampai 20 menit dan 20 sampai 40 menit mengikuti orde 0 dengan koefisien determinasi 1 dan orde dua dengan koefisien determinasi 0.99. Persamaan untuk menduga penurunan WBSF selama pemasakan dalam pressure cooker volume 10 l dan orde nol untuk 8 l dapat dituliskan dalam Persamaan (36) dan (37). Grafik pencocokan/fitting data eksperimen dengan hasil pendugaan perubahan WBSF ditunjukkan pada Gambar 13. Ct F (C0 , K , t ) C0 Kt (35) WBSF 7.2 0.055t (36) WBSF 7.3 0.01t (37) Persamaan untuk menduga penurunan WBSF orde dua (Persamaan 38) pada volume 8 l dapat dituliskan dalam Persamaan (39).
1 1 F (C 0 , K , t ) Kt Ct C0
(38)
F(C0, K, t) adalah fungsi untuk menghitung Ct.
1 0.095 (0.0023t )
8 7 6 5 4 3 2 1 0
(39)
(WBSF (kg cm-2)
WBSF (kg. cm-2)
WBSF
0
20
40
Waktu (menit)
(a)
(a) (b)60
8 7 6 5 4 3 2 1 0 0
20 40 Waktu (menit)
60
(b)
Gambar 13 Grafik pencocokan/fitting WBSF terhadap waktu. (a) 10 l, (b) 8 l, () hasil ukur, (──) model pendugaan. Nilai 0.055 dan 0.01 pada Persamaan (36) dan (37) menunjukkan penurunan WBSF sebesar 0.055 dan 0.01 kg.cm-2 per menit. Sedangkan nilai 0.0023 pada Persamaan (39) menunjukkan penurunan 1/WBSF sebesar 0.0023 (kg.cm-2)-1 setiap menit.
23 Hasil Pengujian Susut Masak Data hasil pengukuran susut masak ditunjukkan pada Tabel 5, dimana lama waktu pemasakan berakibat pada semakin meningkatnya persentase susut masak pada daging. Pearson dan Tauber (1984) menyatakan bahwa daging sapi yang dimasak di pressure cooker mengalami susut masak lebih tinggi dibandingkan metode pemasakan lainya. Peningkatan susut masak menyebabkan persentase kadar protein naik. Kinetika perubahan susut masak pada pressure cooker 10 dan 8 l mengikuti orde nol (Persamaan 32) dengan koefisien determinasi 0.97 dan 0.99. Persamaan untuk menduga perubahan susut masak selama pemasakan dalam pressure cooker untuk volume 10 dan 8 l dapat dituliskan dalam Persamaan (40) dan (41). Grafik pencocokan/fitting data eksperimen dengan hasil pendugaan perubahan susut masak ditunjukkan pada Gambar 14. Tabel 5
Nilai rata-rata susut masak(%) daging sapi peranakan ongole yang dimasak di dalam pressure cooker (Rerata ± SD)
Volume pressure cooker 10 l 8l
Waktu (menit) 0 20 35.92±1.16a 43.50±1.43b 36.87±1.30a 42.90±1.09b
40 46.60±0.93c 46.35±0.80c
60 52.77±1.07d 51.95±1.56d
60
60
50
50
Susut masak (%)
Susut masak (%)
Angka-angka yang diikuti oleh huruf yang berbeda pada baris yang sama menyatakan perbedaan yang nyata(P<0.05)
40 30 20 10 0
40 30 20 10 0
0
20
40
60
0
Waktu (menit)
20 40 Waktu (menit)
60
(a) (b) Gambar 14 Grafik pencocokan/fitting susut masak terhadap waktu. (a) 10 l, (b) 8 l, () hasil ukur, (──) model pendugaan. Susut masak 35.92 0.2683t (40) Susut masak 36.87 0.2435t (41) Penurunan kadar air pada daging yang dimasak dalam pressure cooker menyebabkan susut masak mengalami peningkatan sebesar 0.2683 dan 0.2435% per menit. Hasil Pengujian Warna Proses pemasakan menyebabkan perubahan warna daging. Berdasarkan Tabel 6, meningkatnya lama pemasakan tidak berbeda nyata terhadap perubahan
24` warna daging, begitu juga dengan perbedaan volume pressure cooker. Hal ini dapat ditunjukkan dari nilai rata-rata L, *a, dan *b. Hasil pengujian (Tabel 6) dihitung dengan menggunakan Persamaan (42) dan (43) (De Man 1999).
x y
a 1, 75L 5, 645L a 3, 012b
(42)
a 1, 786L 5, 645L a 3, 012 b
(43)
Tabel 6 Nilai rata-rata warna L, *a, *b daging sapi peranakan ongole yang dimasak di dalam pressure cooker (Rerata ± SD). Volume pressure cooker 10 (L) 8 (L) 10 l (*a) 8 l (*a) 10 l (*b) 8 l (*b)
Waktu (menit) 0 54.28±1.96 54.33±2.66 6.63±0.45 6.48±0.73 8.60±0.09 8.42±0.38
20 52.60±3.22 53.62±2.66 6.53±0.69 6.11±1.00 8.68±1.37 9.26±1.28
40 55.99±2.85 55.74±2.72 6.65±0.61 6.85±0.83 11.32±1.70 11.04±0.88
60 53.94±4.12 54.49±4.21 6.71±0.42 6.59±0.50 9.49±1.49 9.98±1.74
Gambar 15 Grafik CIE Chromaticity Hasil perhitungan sebagaimana tampak pada Lampiran 12 diplotkan pada Grafik CIE Chromaticitiy (Gambar 15) dan didapatkan warna daging abu-abu. Hal ini sesuai dengan pendapat Pearson dan Tauber (1984) yang menyatakan bahwa perubahan pertama yang terjadi pada fisik daging yang dimasak adalah perubahan warna dari warna merah menjadi warna abu-abu atau abu-abu kecoklatan.
25
SIMPULAN Secara umum model yang dikembangkan oleh Polimeni et al. (2011) dapat menduga perubahan tekanan gas, temperatur air, dan temperatur daging di dalam pressure cooker dengan baik. Waktu yang dibutuhkan pressure cooker volume 8 l untuk mencapai tekanan dan temperatur maksimum (1,75 bar dan 116 °C) lebih cepat dari pada pressure cooker volume 10 l (1,7 bar dan 115°C). Kinetika perubahan kadar protein daging mengikuti orde nol. Hal ini menunjukkan perubahan terjadi secara konstan dan tidak adanya perbedaan diantara volume pressure cooker. Kinetika perubahan keempukan daging untuk pressure cooker dengan volume 10 l mengikuti orde nol. Sedangkan untuk volume 8 l, 0 sampai 20 menit mengikuti orde nol dan 20 sampai 40 menit mengikuti orde dua. Daging yang empuk memerlukan waktu pemasakan 50 menit. Kadar protein dan keempukan tidak dipengaruhi oleh volume pressure cooker.
DAFTAR SIMBOL Cp Dm Ft f fk fp Ĥ h K k Kudara L l M m ṁ N p q R r S SC T t th U
panas spesifik (J kg-1 K-1) difusivitas massa ( m2 s-1) data simulasi ke-t fungsi faktor konversi untuk protein dari makanan secara umum (6.25) faktor pengenceran spesific enthalpy (J kg-1) koefisien pidah panas konveksi (ms--1) konstanta penurunan tekanan koefisien pindah massa (W m-1 K-1) faktor koreksi udara nilai kecerahan panjang massa molar (kg mol-1) massa (kg) laju massa (kg s-1) normalitas (0.1035) tekanan (Pa) pindah panas (W) konstanta gas ( 8,31 J K-1 mol -1) jari-jari (m) luas permukaan (m2) koefisien bentuk temperatur (°C) waktu (s) tebal pressure cooker (m) selisih antara temperatur daging dan temperatur air (°C) fraksi massa (kg kg-1)
26` V W X Xt
Z z *a *b ΔĤv ΔĤ0 ρ λ μ Indeks ɑ amb atm b boil cond dew evap f g hp l sat surf v valve w 1 2
volume (m3) bobot sampel (g) tebal daging (m) data aktual periode t sumbu absis kromatik sumbu koordinat kromatik jumlah data Jarak dari permukaan daging ke titik tengah daging(m) nilai kemerahan atau kehijauan nilai kekuningan atau kebiruan (J kg -1) panas laten penguapan pada ( -1 panas laten penguapan pada (J kg ) -3 densitas (kg m ) difusivitas (m2s-1) konduktivitas termal (Wm-1K-1) viskositas dinamik (Pa s) faktor proporsional udara udara luar atmosfir bawah pendidihan kondensasi pengembunan penguapan daging gas plat pemanas air uap jenuh permukaan uap air katup pengatur tekanan dinding volume HCL 0.01 yang dipergunakan pada penitaran contoh volume HCL 0.01 yang dipergunakan pada penitaran blangko
DAFTAR PUSTAKA Aberle ED, Forrest JH, Gerrard DE, Mills EW. 2001. Principles of Meat Science. USA (US): Kendall/Hunt Publishing Company. BSN Badan Standardisasi Nasional. 1992. Standar Nasional Indonesia Cara Uji Makanan dan Minuman. Jakarta (ID): BSN. De man JM. 1999. Principles of Food Chemistry. 3th ed. Maryland (US): Aspen Publishers.
27 Flick D, Richard R, Christophe D, Jean V. 2007. Modeling Heat Transfer and Fluid Flow Inside a Pressur Cooker. 17th European Symposiumon Computer Aided Process Engineering- ESCAPE17 V. Idel’cik IE.1996. Handbook of Hydraulic Resistance. 3th ed. Redding: Begell House Inc. Jamhari, Suryanto E, Rusman. 2007. Pengaruh temperatur dan lama pemasakan terhadap keempukan dan kandungan kolagen daging sapi. Buletin Peternakan.31(2):94-100. Lawrie RA, Ledward DA. 2006. Lawrie’s Meat Science. 7th ed. New York (US): CRC Press. Minkowycz WJ , Sparrow EM. 1966. Condensation heat transfer in the presence of noncondensables, interfacial resistance, superheating, variable properties, and diffusion. Int J of Heat and Mass Transfer. 9:1125–1144. Nadeau JP, Puiggali JR. 1995. Sechage Des Processus Physiques Aux Procedes Industriels.Paris (FR):Lavoisier. Pearson AM, Tauber. 1984. Processed Meats. Connecticut (US): AVI Publishing Company. Polimeni RR, Flick D, Jean V. 2011. A model heat and transfer inside a pressure cooker. J Food Eng. 107: 393-404. Potter MC, Somerton CW. 2008. Termodinamika. Jakarta (ID): Erlangga. Prasetyo H, Padaga MC, Sawitri. 2013. Kajian kualitas fisiko kimia daging sapi di pasar kota malang. Jurnal Ilmu dan Teknologi Hasil Ternak. 8(2):1-8. Segovia G, Bello AA, Monzo JM. 2007. Effect of cooking method on mechanical properties, color and structure of beef muscle (M. pectoralis). J Food Eng. 80:813-821. Singh RP, Heldman DR. 1984. Introduction to Food Engineering. USA (US): Academic Press. Supriyanto, Rahardjo B, Marsono Y, Supranto. 2006. Pemodelan matematik transfer panas dan massa pada proses penggorengan bahan makanan berpati. J Teknologi dan Industri Pangan. 17(1):28-37. Suryati T, Arief II, Polii BN. 2008. Korelasi dan kategori keempukan daging berdasarkan hasil pengujian menggunakan alat dan panelis. Animal Prod. 10(3):188-193. Vasanthi C, Venkataramanujam V, Dushyanthan K. 2006. Effect of cooking temperature and time on the physico-chemical, histological and sensory properties of female carabeef (buffalo) meat. J Food Eng. 76:274–280. Wright MR. 2004. An Introduction to Chemical Kinetics. England (NL): J Wiley.
27 °C 27 °C 27 °C 27 °C 27 °C 115 °C 27 °C Stainless steel 0.25 0.21 0.2 0.23 0.001 0.002 19 0.003 1 1.33×10-7 1×105 1.7×105 1.7×105 6.3×103
Dimensi Pressure Cooker Matrial/bahan pressure cooker Diameter pressure cooker volume 10 liter Diameter pressure cooker volume 8 liter Tinggi pressure cooker volume 10 liter Tinggi pressure cooker volume 8 liter Tebal dinding vertikal pressure cooker 8 dan 10 liter Tebal dinding dasar pressure cooker 8 dan 10 liter Konduktivitas bahan pressure cooker Diameter katup/valve
Daging Berat daging Difusivitas daging
Tekanan Tekanan udara luar Tekanan pembukaan katup pengatur tekanan volume 10 liter Tekanan pembukaan katup pengatur tekanan volume 8 liter Δp valve
Nilai
Temperatur Temperatur plat pemanas Temperatur udara luar Temperatur dinding dasar pressure cooker Temperatur dinding vertikal pressure cooker Temperatur air Temperatur uap jenuh Tempertur awal titik tengah daging
Parameter
Lampiran 1 Nilai parameter pada simulasi.
Pa Pa Pa Pa
Kg m2s-1
m m m m m m Wm-1K-1 m
Satuan
Polimeni et al.(2011)
Singh dan Heldman (1984)
Pitts dan Sissom (2008)
Sumber
28`
10 1×105 1.5 1.5 0.613(27°C) 4232 (115 °C) 0.0258 (115°C) 2080 0.018 0.03003 10090 0.029 2502 (27 °C) 2225 (115 °C) 113250 (27 °C) 2437600 0.85 2
Air, Uap, dan Udara Volume air pressure cooker 10 liter Volume air pressure cooker 8 liter Konduktivitas panas air Panas spesifik air Konduktivitas panas uap Panas spesifik uap Massa molar uap Konduktivitas panas udara Panas spesifik udara Massa molar udara
Parameter lain Panas laten temperatur referensi Panas laten temperatur saturasi Entalphi air Enthalpi gas Faktor bentuk (SC) Faktor proporsional laju pendidihan (ϒ)
Nilai
Tekanan Koefisien penurunan tekanan (K) Tekanan awal dalam pressure cooker
Parameter
Lampiran 1 Nilai parameter pada simulasi (lanjutan)
kJ kg-1 kJ kg-1 J kg-1 J kg-1
liter liter Wm-1K-1 Jkg-1K-1 Wm-1K-1 Jkg-1K-1 Kg mol-1 Wm-1K-1 Jkg-1K-1
Pa
Satuan
Incropera et al. (2002) Incropera et al. (2002) Moran (2007) Moran (2007) Polimeni et al.(2011) Polimeni et al.(2011)
Incropera et al. (2002) Incropera et al. (2002) Pitts dan Sissom (2008) Pitts dan Sissom (2008) Moran (2007) Pitts dan Sissom (2008) Pitts dan Sissom (2008) Moran (2007)
Polimeni et al.(2011)
Sumber
29
30` Lampiran 2 Nilai pengukuran dan simulasi tekanan gas pada pressure cooker volume 8 liter. Waktu (menit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Hasil pengukuran (Xt) (Pa) 100000 100000 100000 100000 100000 100000 110000 130000 145000 160000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000
Hasil simulasi (Ft) (Pa) 101313 102626 114814 126094 138000 150476 162312 174440 174914 174892 174776 174445 175058 175053 173530 174799 175050 175040 176069 174869 172909 171260 174368 176517 174852 173802 173081 174977 174634 176067 176089 175894 175068 174348 175840 176086 173531
(Xt-Ft)/Xt 0.013 0.026 0.129 0.207 0.275 0.335 0.322 0.255 0.171 0.085 0.001 0.003 0.000 0.000 0.008 0.001 0.000 0.000 0.006 0.001 0.012 0.022 0.004 0.009 0.001 0.007 0.011 0.000 0.002 0.006 0.006 0.005 0.000 0.004 0.005 0.006 0.008
31 Lampiran 2 Nilai pengukuran dan simulasi tekanan gas pada pressure cooker volume 8 liter (lanjutan). Waktu (menit) 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
Hasil pengukuran (Xt) (Pa) 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 175000 150000 100000
Hasil simulasi (Ft) (Pa) 175050 175161 175993 175689 175058 175053 173530 174799 175050 175040 176069 174864 174932 175988 176098 175995 175994 175051 176023 173871 175038 176084 171502 174881 175053 175061 175695 174864 174997 176103 176083 175353 175061 174482 140374 100423 MAPE (%)
(Xt-Ft)/Xt 0.000 0.001 0.006 0.004 0.000 0.000 0.008 0.001 0.000 0.000 0.006 0.001 0.000 0.006 0.006 0.006 0.006 0.000 0.006 0.006 0.000 0.006 0.020 0.001 0.000 0.000 0.004 0.001 0.000 0.006 0.006 0.002 0.000 0.003 0.069 0.004 2.926
32` Lampiran 3 Nilai hasil pengukuran dan simulasi tekanan pada pressure cooker 10 liter Waktu (menit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36
Hasil pengukuran (Xt) (Pa) 100000 100000 100000 100000 100000 100000 100000 100000 100000 110000 120000 140000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000
Hasil simulasi (Ft) (Pa) 101313 102070 114522 126187 138392 151075 163072 170007 169503 170014 169443 169481 170934 167848 165396 165507 167847 168893 170339 170943 167846 165336 165507 167976 168840 170627 170747 170747 170747 170747 170747 170747 170747 170747 170747 170747 170747
(Xt-Ft)/Xt 0.013 0.021 0.145 0.262 0.384 0.511 0.631 0.700 0.695 0.546 0.412 0.211 0.005 0.013 0.027 0.026 0.013 0.007 0.002 0.006 0.013 0.027 0.026 0.012 0.007 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.004
33 Lampiran 3 Nilai hasil pengukuran dan simulasi tekanan pada pressure cooker 10 liter (lanjutan). Waktu (menit) 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
Hasil pengukuran (Xt) (Pa) 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 170000 150000 140000 120000 100000
Hasil simulasi (Ft) (Pa) 170747 170747 170747 170747 170747 170747 170747 167770 168895 170334 170934 167846 169325 165508 169824 168895 170334 170934 167846 171325 169508 167825 168895 170334 170934 169846 170325 168508 167825 168895 170334 170934 167846 150675 120978 101641 101041 MAPE (%)
(Xt-Ft)/Xt 0.004 0.004 0.004 0.004 0.004 0.004 0.004 0.013 0.007 0.002 0.005 0.013 0.004 0.026 0.001 0.007 0.002 0.005 0.013 0.008 0.003 0.013 0.007 0.002 0.005 0.001 0.002 0.009 0.013 0.007 0.002 0.005 0.013 0.005 0.076 0.153 0.016 7.054
34` Lampiran 4 Nilai hasil pengukuran dan simulasi temperatur air pada pressure cooker volume 8 liter. Waktu (menit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Hasil pengukuran (Xt) (Pa) 28.9 41.9 51.1 59.4 66.1 74.2 88 95.7 100.7 106.3 112.9 116.1 116.7 116.3 116.6 116.6 116.6 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7
Hasil simulasi (Ft) (Pa) 27 35.3 44.15 52.98 61.83 70.63 79.32 88 96.7 105.42 113.95 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6
(Xt-Ft)/Xt 0.070 0.187 0.157 0.121 0.069 0.051 0.109 0.088 0.041 0.008 0.009 0.004 0.001 0.003 0.000 0.000 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
35 Lampiran 4 Nilai hasil pengukuran dan simulasi temperatur air pada pressure cooker volume 8 liter (lanjutan). Waktu (menit) 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
Hasil pengukuran (Xt) (Pa) 116.7 116.7 116.7 116.7 116.7 116.7 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.9 116.9 116.9 116.9 116.9 116.9 116.9 116.9 116.9 115.9 100.6
Hasil simulasi (Ft) (Pa) 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 116.6 112.45 99.99 MAPE (%)
(Xt-Ft)/Xt 0.001 0.001 0.001 0.001 0.001 0.001 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.002 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.003 0.031 0.006 1.415
36` Lampiran 5 Nilai hasil pengukuran dan simulasi temperatur air pada pressure cooker volume 10 liter. Waktu (menit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Hasil pengukuran (Xt) (Pa) 27.3 40.8 69.8 82 88.3 93 97.2 100.7 101 101.1 105.8 109.2 113.4 114.7 115.1 115.2 115 115.2 115.3 115.1 115.1 114.8 115 115.4 115.1 115.1 115.2 115.2 115.2 115.5 115.3 115.8 115.5 115.6 115.9 115.6 115.3 115.4
Hasil simulasi (Ft) (Pa) 27 34.24 42.34 50.23 58.1 69.9 73.69 81.44 89.15 96.82 104.57 112.05 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57
(Xt-Ft)/Xt 0.032 0.437 0.393 0.387 0.342 0.248 0.242 0.191 0.117 0.042 0.012 0.026 0.019 0.008 0.004 0.003 0.005 0.003 0.002 0.004 0.004 0.007 0.005 0.001 0.004 0.004 0.003 0.003 0.003 0.001 0.002 0.002 0.001 0.000 0.003 0.000 0.002 0.001
37 Lampiran 5 Nilai hasil pengukuran dan simulasi temperatur air pada pressure cooker volume 10 liter (lanjutan). Waktu (menit) 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 23 74
Hasil pengukuran (Xt) (Pa) 115.3 115.4 115.5 114.9 115.4 115.5 115.1 115.4 115.4 115.2 115.7 115.3 115.5 115.5 115.9 115.5 115.8 115.8 116 116 116.7 115.4 115.8 115.6 116 115.8 115.6 115.6 115.6 115.7 116 116.3 115.7 113.3 102.1 101.1 100.3
Hasil simulasi (Ft) (Pa) 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 114.09 100.49 99.6 MAPE (%)
(Xt-Ft)/Xt 0.002 0.001 0.001 0.006 0.001 0.001 0.004 0.001 0.001 0.003 0.001 0.002 0.001 0.001 0.003 0.001 0.002 0.002 0.004 0.004 0.010 0.001 0.002 0.000 0.004 0.002 0.000 0.000 0.000 0.001 0.004 0.006 0.001 0.020 0.117 0.006 0.007 3.763
38` Lampiran 6 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 1 cm) pada pressure cooker volume 8 liter. Waktu (menit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Hasil pengukuran (Xt) (Pa) 27,5 34.1 39 43.9 48.2 57.3 68.8 79.3 86.8 92.3 100.4 107.6 113.8 115.2 115.5 115.5 115.4 115.5 115.5 115.5 115.5 115.6 115.6 115.8 115.8 115.7 115.6 115.4 115.4 115.6 115.6 115.7 115.8 115.7 115.7 115.7 115.6 115.7
Hasil simulasi (Ft) (Pa) 27 41.9 51.1 59.4 66.1 74.2 88 95.7 100.7 106.3 112.9 116.1 116.7 116.3 116.6 116.6 116.6 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7 116.7
(Xt-Ft)/Xt 0.046 0.229 0.310 0.353 0.371 0.295 0.279 0.207 0.160 0.152 0.125 0.079 0.025 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.010 0.008 0.008 0.009 0.010 0.011 0.011 0.010 0.010 0.009 0.008 0.009 0.009 0.009 0.010 0.009
39 Lampiran 6 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 1 cm) pada pressure cooker volume 8 liter (lanjutan). Waktu (menit) 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68
Hasil pengukuran (Xt) (Pa) 115.7 115.6 115.5 115.3 115.4 115.7 116 116 115.8 115.7 115.6 115.6 115.5 115.7 115.6 115.6 115.6 115.6 115.8 115.9 116 115.9 116.5 116.5 116.4 116.3 116.3 116.3 116.3 116.2 116.3
Hasil simulasi (Ft) (Pa) 116.7 116.7 116.7 116.7 116.7 116.7 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.8 116.9 116.9 116.9 116.9 116.9 116.9 116.9
(Xt-Ft)/Xt 0.009 0.010 0.010 0.012 0.011 0.009 0.007 0.007 0.009 0.010 0.010 0.010 0.011 0.010 0.010 0.010 0.010 0.010 0.009 0.008 0.007 0.008 0.003 0.003 0.004 0.005 0.005 0.005 0.005 0.006 0.005
40` Lampiran 7 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 1.5 cm) pada pressure cooker volume 8 liter. Waktu (menit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Hasil pengukuran (Xt) (Pa) 27.3 32.15 42.75 50.55 57.95 65.75 79.35 86.7 91.8 97.05 103.45 107.85 110.85 111.1 112.4 113.25 114.01 114 114.05 114.45 115.8 115.15 115.35 115.75 114.95 115.05 115.1 115.1 115.2 115.35 115.4 115.55 115.7 115.7 115.7 115.75 115.7 115.8
Hasil simulasi (Ft) (Pa) 27 41.4 50.6 58.9 65.6 73.7 87.5 95.2 100.2 105.8 112.4 115.6 116.2 115.8 116.1 116.1 116.1 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2
(Xt-Ft)/Xt 0.044 0.288 0.184 0.165 0.132 0.121 0.103 0.098 0.092 0.090 0.087 0.072 0.048 0.042 0.033 0.025 0.018 0.019 0.019 0.015 0.003 0.009 0.007 0.004 0.011 0.010 0.010 0.010 0.009 0.007 0.007 0.006 0.004 0.004 0.004 0.004 0.004 0.003
41 Lampiran 7 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 1.5 cm) pada pressure cooker volume 8 liter (lanjutan). Waktu (menit) 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
Hasil pengukuran (Xt) (Pa) 115.8 115.8 115.7 115.55 115.6 115.8 115.9 115.85 115.7 115.65 115.6 115.6 115.55 115.7 115.6 115.6 115.7 115.7 115.9 115.9 115.95 115.8 116.15 116.15 116.1 115.95 116 115.95 115.95 116 116 116 116 113.4 102.4
Hasil simulasi (Ft) (Pa) 116.2 116.2 116.2 116.2 116.2 116.2 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.3 116.4 116.4 116.4 116.4 116.4 116.4 116.4 116.4 116.4 113.9 100.1 MAPE (%)
(Xt-Ft)/Xt 0.003 0.003 0.004 0.006 0.005 0.003 0.003 0.004 0.005 0.006 0.006 0.006 0.006 0.005 0.006 0.006 0.005 0.005 0.003 0.003 0.003 0.004 0.001 0.001 0.003 0.004 0.003 0.004 0.004 0.003 0.003 0.003 0.003 0.004 0.022 2.772
42` Lampiran 8 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 2 cm) pada pressure cooker volume 8 liter. Waktu (menit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Hasil pengukuran (Xt) (Pa) 27 27.9 37.1 45.4 52.1 60.2 74 81.7 86.7 92.3 98.9 102.1 104.9 106 108.3 109 110.4 111.6 112.6 113.4 114.1 114.7 114.9 115.2 115.4 114.4 114.6 114.8 115 115.1 115.2 115.4 115.6 115.7 115.7 115.8 115.8 115.9
Hasil simulasi (Ft) (Pa) 27 41.2 50.4 58.7 65.4 73.5 87.3 95 100 105.6 112.2 115.4 116 115.6 115.9 115.9 115.9 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116 116
(Xt-Ft)/Xt 0.044 0.477 0.358 0.293 0.255 0.221 0.180 0.163 0.153 0.144 0.134 0.130 0.106 0.091 0.070 0.063 0.050 0.039 0.030 0.023 0.017 0.011 0.010 0.007 0.005 0.014 0.012 0.010 0.009 0.008 0.007 0.005 0.003 0.003 0.003 0.002 0.002 0.044
43 Lampiran 8 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 2 cm) pada pressure cooker volume 8 liter (lanjutan). Waktu (menit) 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72
Hasil pengukuran (Xt) (Pa) 115.9 116 115.9 115.8 115.8 115.9 115.8 115.7 115.6 115.6 115.6 115.6 115.6 115.7 115.6 115.6 115.8 115.8 116 115.9 115.9 115.7 115.8 115.8 115.8 115.6 115.7 115.6 115.6 115.8 115.7 115.6 115.8 111.9 103
Hasil simulasi (Ft) (Pa) 116 116 116 116 116 116 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.1 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 116.2 113.7 99.9 MAPE (%)
(Xt-Ft)/Xt 0.477 0.001 0.001 0.000 0.001 0.002 0.002 0.001 0.003 0.003 0.004 0.004 0.004 0.004 0.004 0.003 0.004 0.004 0.003 0.003 0.001 0.002 0.002 0.003 0.003 0.003 0.003 0.005 0.004 0.005 0.005 0.003 0.004 0.005 0.003 4.464
44` Lampiran 9 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 1 cm) pada pressure cooker volume 10 liter. Waktu (menit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Hasil pengukuran (Xt) (Pa) 27.2 36.4 50.3 62.6 72.9 79.5 85.5 91.3 96 99.6 100.7 105.6 110.2 113.3 113.7 114 113.8 113.9 114.1 114.7 114.7 114.8 114.7 114.9 114.8 114.8 114.7 114.8 114.9 115 114.9 114.8 114.8 114.9 115.1 115.1 115.1 115.1
Hasil simulasi (Ft) (Pa) 27 34.24 42.34 50.23 58.1 69.9 73.69 81.44 89.15 96.82 104.57 112.05 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57
(Xt-Ft)/Xt 0.082 0.059 0.158 0.198 0.203 0.121 0.138 0.108 0.071 0.028 0.038 0.061 0.049 0.020 0.016 0.014 0.016 0.015 0.013 0.008 0.008 0.007 0.008 0.006 0.007 0.007 0.008 0.007 0.006 0.005 0.006 0.007 0.007 0.006 0.004 0.004 0.004 0.004
45 Lampiran 9 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 1 cm) pada pressure cooker volume 10 liter (lanjutan). Waktu (menit) 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
Hasil pengukuran (Xt) (Pa) 115.1 115.1 114.8 114.8 115 115.2 115.3 115 115.1 114.8 115.1 115.3 115.1 115.2 115 115.2 115.3 115 114.8 114.9 115.2 114.9 115 115 115.1 115.2 115.1 115.3 115.4 115.3 115.2 115.3 115.6 115.6 112.3 102.2 101.8
Hasil simulasi (Ft) (Pa) 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 115.57 114.09 100.49 100.1 MAPE (%)
(Xt-Ft)/Xt 0.004 0.004 0.007 0.007 0.005 0.003 0.002 0.005 0.004 0.007 0.004 0.002 0.004 0.003 0.005 0.003 0.002 0.005 0.007 0.006 0.003 0.006 0.005 0.005 0.004 0.003 0.004 0.002 0.001 0.002 0.003 0.002 0.000 0.000 0.016 0.017 0.017 2.280
46` Lampiran 10 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 1.5 cm) pada pressure cooker volume 10 liter. Waktu (menit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Hasil pengukuran (Xt) (Pa) 27.2 32.1 44.8 55.2 64.9 73.9 79.7 83.8 89.3 92.7 94.3 98.1 102.8 107.2 108.6 109.2 109.5 109.9 110.2 110.3 111 111.1 111.5 112 112.2 112.4 112.5 112.8 113 113.2 113.3 113.4 113.4 113.4 113.5 113.6 113.7 113.7
Hasil simulasi (Ft) (Pa) 27 33.74 41.84 49.73 57.6 69.4 73.19 80.94 88.65 96.32 104.07 111.55 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07
(Xt-Ft)/Xt 0.050 0.051 0.066 0.099 0.112 0.061 0.082 0.034 0.007 0.039 0.104 0.137 0.119 0.073 0.060 0.054 0.051 0.047 0.044 0.043 0.037 0.036 0.032 0.027 0.026 0.024 0.023 0.020 0.018 0.017 0.016 0.015 0.015 0.015 0.014 0.013 0.050 0.051
47 Lampiran 10 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal 1.5 cm) pada pressure cooker volume 10 liter (lanjutan). Waktu (menit) 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
Hasil pengukuran (Xt) (Pa) 113.8 113.8 113.7 113.7 113.8 113.8 113.8 113.9 113.8 113.8 113.8 114 114.2 114.2 114.1 114 114 114.1 114 114 113.9 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.8 113.3 110.8 109.2 103.1
Hasil simulasi (Ft) (Pa) 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 115.07 113.59 99.99 99.1 MAPE (%)
(Xt-Ft)/Xt 0.066 0.012 0.012 0.011 0.011 0.012 0.012 0.011 0.011 0.011 0.010 0.011 0.011 0.011 0.009 0.008 0.008 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.011 0.016 2.929
48` Lampiran 11 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 2 cm) pada pressure cooker volume 10 liter. Waktu (menit) 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37
Hasil pengukuran (Xt) (Pa) 27 30.9 38.5 49.6 58.8 67 74.9 79.5 86.1 90.9 94.1 97.2 101.6 105.7 107.5 108.6 109.3 109.7 110.1 110.4 110.7 111.2 111.1 112 112.4 112.6 112.7 112.9 112.9 112.8 112.2 112.1 112.7 113.2 113.2 113.3 113.4 113.5
Hasil simulasi (Ft) (Pa) 27 33.44 41.54 49.43 57.3 69.1 72.89 80.64 88.35 96.02 103.77 111.25 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77
(Xt-Ft)/Xt 0.044 0.082 0.079 0.003 0.026 0.031 0.027 0.014 0.026 0.056 0.103 0.145 0.130 0.086 0.068 0.057 0.050 0.046 0.042 0.040 0.037 0.032 0.033 0.025 0.021 0.019 0.018 0.017 0.017 0.017 0.023 0.024 0.018 0.014 0.014 0.013 0.012 0.011
49 Lampiran 11 Nilai hasil pengukuran dan simulasi temperatur titik tengah daging (tebal daging 2 cm) pada pressure cooker volume 10 liter (lanjutan). Waktu (menit) 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74
Hasil pengukuran (Xt) (Pa) 113.5 113.3 113.5 113 113.5 113.5 113.6 113.6 113.6 113.6 113.6 113.7 113.9 114 113.8 113.8 113.8 113.8 113.8 113.8 113.6 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.4 113.5 113.4 113.4 113.8 111.5 110.5 103.5
Hasil simulasi (Ft) (Pa) 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 114.77 113.29 99.69 98.8 MAPE (%)
(Xt-Ft)/Xt 0.011 0.013 0.011 0.016 0.011 0.011 0.010 0.010 0.010 0.010 0.010 0.009 0.008 0.007 0.009 0.009 0.009 0.009 0.009 0.009 0.010 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.012 0.011 0.012 0.012 0.009 0.016 0.098 0.045 2.682
50` Lampiran 12 Nilai hasil perhitungan pengujian warna. Volume pressure cooker (liter) 10
8
Waktu (menit) 0 20 40 60 0 20 40 60
L
*a
*b
x
54.28 52.60 55.99 53.94 54.33 53.62 55.74 54.49
6.63 6.53 6.65 6.71 6.48 6.11 6.86 6.59
8.60 8.68 11.32 9.49 8.42 9.26 11.04 9.98
0.353 0.355 0.362 0.357 0.353 0.356 0.362 0.359
y 0.337 0.339 0.346 0.341 0.337 0.341 0.345 0.342
51
RIWAYAT HIDUP SAPARUDIN Lahir pada tanggal 29 Desember 1981 di Sekincau Provinsi Lampung. Penulis anak ketiga dari 6 saudara, anak dari pasangan suami-istri Saibidi dan Emayati. Penulis mengawali pendidikan di SDN 1 Sekincau sampai 1994. Pada tahun 1994, Penulis melanjutkan pendidikan di SMPN 3 Belalau dan lulus pada tahun 1997. Pada tahun 1997 melanjutkan pendidikan di SMK Muhammadiyah 2 Metro dengan jurusan Otomotif dan lulus tahun 2000. Berbekal dengan ilmu dari SMK penulis berkerja di PT Lautan Berlian (Mitsubishi) sebagai pembantu mekanik. Sembari berkerja penulis melanjutkan pendidikan di Universitas Muhammadiyah Metro dengan jurusan Teknik Mesin dan lulus tahun 2006. Dari tahun 2006-2009 penulis berkerja sebagai kepala mekanik Dealer Nissan di Bandar Lampung. Pada tahun 2009-2011 penulis berkerja sebagai instruktur mekanik pada CV Lampung Utama. Setelah keluar dari CV Lampung Utama, kegaitan penulis berkerja/merawat kebun kopi. Tahun 2013, Penulis melanjutkan S2 di Institut Pertanian Bogor, Program Studi Teknik Mesin Pertanian dan Pangan dengan sponsor BPPDN 2013.