Ruang Sampel dan Kejadian Perhatikan sekeping mata uang logam dengan sisi-sisi ANGKA dan GAMBAR
Sisi Angka (A)
Sisi Gambar (G)
Maka : Ruang Sampel (S) = { A , G } Titik Sampel = A dan G, maka n(S) = 2 Kejadian = 1. Kejadian muncul sisi Angka 2. Kejadian muncul sisi Gambar
Perhatikan pelemparan sebuah dadu bersisi enam
Kemungkinan Muncul : Maka : Ruang Sampel (S) Titik Sampel Kejadian
= = =
Angka 1
Angka 2
Angka 3
Angka 4
Angka 5
Angka 6
{ 1, 2, 3, 4, 5, 6 } 1, 2, 3, 4, 5, dan 6, maka n(S) = 6 1. Kejadian muncul sisi Angka 1 2. Kejadian muncul sisi Angka 2 3. Kejadian muncul sisi Angka 3 dst. sampai kejadian 6
Pertanyaan : Apa yang dimaksud Ruang Sampel dan Kejadian? Cek Jawaban Anda
Solusi :
Ruang Sampel : Kejadian
:
Kumpulan dari semua hasil yang mungkin dari suatu percobaan Beberapa elemen (hasil) dari ruang sampel yang sedang diamati
Latihan I Tentukan ruang sampel dan banyaknya anggota ruang sampel: a. Pada pelemparan 3 buah mata uang b. Pada pelemparan 2 dadu c. Pada satu set kartu bridge d. Pada keluarga dengan 3 anak
KOIN 1
KOIN 2
KOIN 3
G
G
G
G
G
A
G
A
G
A
G
G
G
A
A
A
A
G
A
A
G
A
A
A
MATA DADU HITAM
n(S) = 62 = 36
MATA D ADU MERAH 1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
n(S) = 23 = 8
Kartu Bridge/Remi
Total Ada 13 x 4 = 52 Kartu, n(S)=52
Jika S adalah ruang sampel dengan banyaknya anggota = n(S) dan E merupakan suatu kejadian dengan banyaknya anggota = n(E), maka peluang kejadian E adalah: P(E) = n(E)/n(S) Kisaran nilai peluang P(E) adalah: 0 P(E) 1 P(E) = 1 disebut kejadian pasti P(E) = 0 disebut kejadian mustahil Contoh Pada pelemparan sebuah dadu, tentukan peluang munculnya sisi berangka ganjil ! Jawab: Ruang sampel S = {1, 2, 3, 4, 5, 6} n(S) = 6 Sisi berangka ganjil = {1, 3, 5} n(E) = 3 sehingga P(E) = n(E)/n(S) = 3/6 = 1/2
Contoh 2 Dalam sebuah kantong terdapat 4 kelereng merah dan 3 kelereng biru . Bila sebuah kelereng diambil dari dalam kantong maka peluang terambilnya kelereng merah adalah…. 8
Jawab: • Kejadian yang diharapkan muncul yaitu terambil nya kelereng merah, ada 4 n(merah) = 4 • Kejadian yang mungkin muncul yaitu terambil 4 kelereng merah dan 3 kelereng biru n(S) = 4 + 3 = 7
• Jadi peluang kelereng merah
yang terambil
adalah P(merah) = P(merah) =
n( merah ) n( S ) 4 7 9
Kejadian Majemuk : Dua atau lebih kejadian yang dioperasikan sehingga membentuk kejadian baru Suatu kejadian E dan kejadian komplemennya E’ memenuhi persamaan : P(E) + P(E’) = 1 atau P(E’) = 1 – P(E) Contoh: Dari seperangkat kartu remi (bridge) diambil secara acak satu lembar kartu. Tentukan peluang terambilnya kartu bukan As ! Jawab: banyaknya kartu = n(S) = 52 banyaknya kartu As = n(E) = 4 P(E) = 4/52 = 1/13 Peluang bukan As = P(E’) = 1 – P(E) = 1 – 1/13 = 12/13
Penjumlahan Peluang: Dua kejadian A dan B saling lepas jika tidak ada satupun elemen A sama dengan elemen B. Untuk dua kejadian saling lepas, peluang salah satu A atau B terjadi, ditulis: P(A B), P(A B) = P(A) + P(B) Jika A dan B tidak saling lepas maka P(A B) = P(A) + P(B) – P(A B)
Contoh Peluang Kejadian Saling Lepas Sebuah dadu merah dan sebuah dadu putih dilempar bersamaan satu kali, tentukan peluang munculnya mata dadu berjumlah 3 atau 10 !
Jawab: Perhatikan tabel berikut ini!
MATA DADU PUTIH
MATA D ADU MERAH 1 2 3 4 5 6 1 (1,1) (1,2) (1,3) (1,4) (1,5) (1,6) 2 (2,1) (2,2) (2,3) (2,4) (2,5) (2,6) 3 (3,1) (3,2) (3,3) (3,4) (3,5) (3,6) 4 (4,1) (4,2) (4,3) (4,4) (4,5) (4,6) 5 (5,1) (5,2) (5,3) (5,4) (5,5) (5,6) 6 (6,1) (6,2) (6,3) (6,4) (6,5) (6,6)
Kejadian mata dadu berjumlah 3 (warna kuning) A = {(1,2), (2,1)} n(A) =2 Kejadian mata dadu berjumlah 10 (warna biru) B = {(6,4), (5,5), (4,6)} n(B) = 3 A dan B tidak memiliki satupun Elemen yg sama, sehingga: P(A B) = P(A) + P( B) = 2/36 + 3/36 = 5/36
Contoh Peluang Kejadian Tidak Saling Lepas Sebuah kartu diambil secara acak dari satu set kartu remi. Tentukan peluang bahwa yang terambil adalah kartu hati atau kartu bergambar (kartu King, Queen, dan Jack) Jawab: Banyaknya kartu remi = n(S) = 52 Banyaknya kartu hati = n(A) = 13 Banyaknya kartu bergambar = n(B) = 3x4 = 12 Kartu hati dan kartu bergambar dapat terjadi bersamaan yaitu kartu King hati, Queen hati, dan Jack hati), sehingga A dan B tidak saling lepas n(A B) = 3 Peluang terambil kartu hati atau bergambar adalah :
P(A B) = P(A) + P( B) - P(A B) = 13/52 + 12/52 – 3/52 = 22/52 = 11/26
Dua kejadian A dan B saling bebas, jika munculnya kejadian A tidak mempengaruhi peluang munculnya kejadian B. Untuk A dan B saling bebas, peluang bahwa A dan B terjadi bersamaan adalah: P(A B) = P(A) x P(B)
Contoh: Peluang Kejadian Saling Bebas Pada percobaan pelemparan dua buah dadu, tentukan peluang munculnya angka genap pada dadu pertama dan angka ganjil prima pada dadu kedua Jawab:
Mis. A = kejadian munculnya angka genap pada dadu I = {2, 4, 6}, maka P(A) = 3/6 B = kejadian munculnya angka ganjil prima pada dadu II = {3, 5}, maka P(B) = 2/6 Karena kejadian A tidak mempengaruhi kejadian B, maka keduanya disebut kejadian bebas, sehingga Peluang munculnya kejadian A dan B adalah: P(A B) = P(A) x P(B) = 3/6 x 2/6 = 1/6
Contoh lain kej.saling bebas Peluang Amir lulus pada Ujian Nasional adalah 0,90. Sedangkan peluang Badu lulus pada Ujian Nasional 0,85. Peluang Amir lulus tetapi Badu tidak lulus pada ujian itu adalah…. 16
Jawab: • Amir lulus P(AL) = 0,90 • Badu lulus P(BL) = 0,85 • Badu tidak lulus P(BTL) = 1 – 0,85 = 0,15 • P(AL tetapi BTL) = P(AL) x P(BTL) = 0,90 x 0,15 = 0,135 17
Peluang Bersyarat • Peluang bersyarat A bila B diketahui dilambangkan dengan P(A|B) dan didefinisikan sebagai
P( A B) P( A | B) atau P( B) P( A B) P( B) xP ( A | B) jika P(B) > 0
Contoh Diketahui data dari 900 siswa kelas XII SMA suatu sekolah sbb: Melanjutkan ke perguruan tinggi
Tidak melanjutkan ke perguruan tinggi
Laki – laki
450
50
Perempuan
150
250
Bila dipilih satu siswa, berapa peluang yang terpilih Laki-laki dengan syarat bahwa dia melanjutkan ke PT ?
Perhatikan kejadian – kejadian berikut : L : kejadian yang terpilih laki - laki K: kejadian yang terpilih adalah orang yang melanjutkan ke perguruan tinggi Dengan menggunakan ruang contoh yang dipersempit K, maka akan didapatkan
P( L K ) 450 / 900 450 P( L | K ) 3/ 4 P( K ) 600 / 900 600
Contoh Peluang Kejadian Bersyarat Sebuah kotak berisi 5 bola merah dan 4 bola biru. Jika diambil 2 bola satu persatu tanpa pengembalian, tentukan peluang terambil bola merah pada pengambilan pertama dan bola biru pada pengambilan kedua. Jawab Pada pengambilan pertama tersedia 5 bola merah dari 9 bola sehingga P(M) = 5/9. Karena tidak dikembalikan, maka pengambilan kedua jumlah bola yang tersedia sisa 8, sehingga peluang terambilnya bola biru dengan syarat bola merah telah terambil pada pengambilan pertama adalah P(B/M) = 4/8 Jadi, peluang terambilnya bola merah pada pengambilan pertama dan biru pada pengambilan kedua adalah: P(M B) = P(M) x P(B/M) = 5/9 x 4/8 = 5/18