Parametric Study on Displacement-Based Design Method Procedures for RC Structures
Master Thesis Abstract
Yoppy Soleman. Parametric Study on Displacement-Based Design Method Procedures for Reinforced Concrete Structures (Supervised by Prof. Ir. Richard Toreh, M.Sc, PhD., and Prof. Dr. Ir. Jonie Tanijaya, M.Sc.). This thesis is based on the facts reported by some researchers in USA, Japan and New Zealand that the conceptual incompatibilty in Force/Strength-Based Method have produced analytical inconsistency in practice of earthquake resistant design and have implicated on lateral deformation excess. It is the displacement-based method, the new conceptual design that determines the structural performance based on deformation or displacement. The literature study covers four displacement based methods, i.e. DDBD (=Direct Displacement-Based Design), PM (=Proportioning Method for RC Structures), IDS (=Inelastic Design Spectra), CSM (=Capacity Spectrum Method), and two case implementations, as follows: (a) an eigth-storey symmetrical concrete ductile moment resistant frame, and (b) an eight-storey vertically unsymmetrical concrete ductile moment resistant frame. The analysis is focused on three aspects of displacement-based methods: 1. The base parameter problems (etiology) 2. The significance of the specific assumption or base parameter used from each procedures in relation to analysis and design results. 3. The verification of parameter consistency (especially for DDBD method) The study determines design spectra response on the maximum quake with an intensity of tremors which equals 0.40g PBA (peak base accelleration) constructed based on Newmark-Hall (1982) procedure and SeismoSignal application (2004). The variability of analysis and design results of all methods investigated is influenced by various level of structural analyst’s assumptions or interpretations, but especially predominant in two methods, i.e. IDS (A.K. Chopra) and CSM (S.A. Freeman).
Of the four methods studied, three procedures (DDBD – JMN Priestley, IDS – A.K. Chopra, CSM – S.A. Freeman) need the calculation of yield moment curvatures as the most important micro-design parameters and two procedures (IDS – A.K. Chopra, CSM – S.A. Freeman) requires the calculation of element detailing (reinforcement area) in early process, while the other two (DDBD – JMN Priestley, PM – J.P. Browning) the calculation of reinforcement area is given as design solution.
i
© Yoppy Soleman, 2006
Parametric Study on Displacement-Based Design Method Procedures for RC Structures
Sinopsis
Yoppy Soleman. Kajian Parameter dalam Beberapa Prosedur Desain Metoda Perpindahan pada Struktur Beton Bertulang (dibimbing oleh Richard Toreh dan Jonie Tanijaya). Thesis ini bertitik-tolak dari fakta-fakta yang dilaporkan oleh beberapa peneliti di USA dan Selandia Baru bahwa inkompatibilitas konseptual dalam metoda berbasis gaya/kekuatan (Force/Strength-Based Design) telah menghasilkan inkonsistensi analisis dalam praktek desain tahan gempa dan berimplikasi pada ekses deformasi lateral. Adalah metoda berbasis perpindahan (Displacement-Based Method), suatu konseptual desain baru, yang menentukan performa struktur berdasar parameter displasemen atau deformasi. Kajian literatur meliputi empat prosedur berbasis perpindahan, yakni: Desain Berdasar-Perpindahan Langsung atau DDBD (=Direct Displacement-Based Design), Metoda Pemroporsian Struktur Beton Bertulang atau PM (=Proportioning Method for RC Structures), Metoda Spektra Desain Inelastik atau IDS (=Inelastic Design Spectra), Metoda Spektra Kapasitas atau CSM (=Capacity Spectrum Method), dan dua implementasi kasus, sbb: (1) Struktur portal beton bertulang tahan momen simetrik berlantai 8, (2) Struktur portal beton bertulang non-simetrik vertikal berlantai 8. Analisis difokuskan pada tiga aspek dari metoda berbasis perpindahan: 1. Problem parameter dasar (etiologi) 2. Signifikansi penggunaan asumsi atau parameter dasar tertentu masing-masing prosedur terhadap hasil-hasil analisis dan desain 3. Verifikasi konsistensi parameter (khusus metoda DDBD).
Kajian ini menentukan tanggap spektra desain gempa maksimum dari intensitas gempa dengan PBA (Peak Base Accelleration) = 0.40g yang dikonstruksi berdasarkan prosedur Newmark-Hall (1982) dan aplikasi Seismosignal (2004). Variabilitas hasil analisis dan desain dalam semua metoda yang diteliti dipengaruhi oleh asumsi dan interpretasi analis struktur pada taraf yang berbeda-beda, tetapi terutama dominan dalam dua metoda, yaitu IDS (A.K. Chopra) dan CSM (S.A. Freeman). Dari keempat prosedur yang diteliti, tiga prosedur (DDBD – JMN Priestley, IDS – A.K. Chopra, CSM – S.A. Freeman) memerlukan perhitungan kurvatur momen luluh sebagai parameter mikro desain yang terpenting. Dari keempat prosedur yang diteliti, dua prosedur (IDS – A.K. Chopra, CSM – S.A. Freeman) mensyaratkan perhitungan pendetailan elemen pada awal proses, sementara dalam dua prosedur lainnya (DDBD – JMN Priestley, PM – J.P. Browning) perhitungan luas tulangan elemen struktural diberikan sebagai solusi desain.
ii
© Yoppy Soleman, 2006
Parametric Study on Displacement-Based Design Method Procedures for RC Structures
Bibliography and References 1. Arzhang Alimoradi. “Performance-Based Seismic Design: Application of New Developments”, West Tennessee Structural Engineers Meeting, May 2004. 2. Aschheim Mark. “Seismic Design Based on the Yield Displacement”. Earthquake Spectra, Vol. 18, No. 4. 3. ATC-40 (1996). SEISMIC EVALUATION And RETROFIT Of CONCRETE BUILDINGS, Volume 1. California Seismic Safety Commission (CSSC), Redwood City, California – USA. 4. ATC-40 (1996). SEISMIC EVALUATION And RETROFIT Of CONCRETE BUILDINGS, Volume 2 - Appendices. California Seismic Safety Commission (CSSC), Redwood City, California – USA. 5. Bentz Evan C., Collins Michael P. Response-2000 ver 1.05: Reinforced Concrete Sectional Analysis Program Manual. University of Toronto, Canada. 6. Budiono Bambang, Gunadi Arif Tjiang. “Performance Based Design using Ductile Displacement Method”, HAKI, Jakarta, 2001. 7. -------------- Chapters 1 & 2, CEE490b. “Review of Modal Analysis Concepts”. 8. Chopra Anil K. DYNAMICS Of STRUCTURES – Theory and Application to Earthquake Engineering (2nd Ed). Prentice Hall., New Jersey, USA, 2001. 9. Chopra Anil K., Goel R.K. “Capacity-Demand-Diagram Methods for Estimating Seismic Deformation of Inelastic Structures: SDF Systems”, PEER Report No. 02/1999. 10. Chopra Anil K., Goel R.K. “Direct Displacement-Based Design: Use of Inelastic Spectra Versus Elastic Design Spectra”. Earthquake Spectra, Vo. 17 No.1, p.47-65.l 11. Clough Ray W., Penzien Joseph. DINAMIKA STRUKTUR (Edisi Pertama). McGraw Hill, New York - USA, 1975. Terjemahan Penerbit Erlangga, 1988. 12. Crowley Helen. PERIOD Of VIBRATION For DISPLACEMENT-BASED ASSESSMENT Of RC BUILDINGS. Master Thesis in Earthquake Engineering, Rose School - European School of Advanced Studies in Reduction of Seismic Risk, University of Pavia, Italy, 2003. 13. Dooley Kara L., Bracci Joseph M. “Effect of Column-to-Beam Strength Ratio on Seismic Performance of RC Moment Frames”. Texas A&M University. 14. EQE International. “The January 17, 1994 Nortridge CA Earthquake”. 15. Freeman Sigmund A. “The Capacity Spectrum Method as a Tool for Seismic Design”. Wilst, Janney, Elstner Associates, Inc. 16. Gabaldon Luis B.F. “Proportioning Reinforced Concrete Buildings Displacement-Based Design”. University of Michigan, Ann Arbor - USA, 2003.
for
17. Garcia Luis E, Sozen Mete A. “Nonlinear Response to EQ Ground Motions”. CE571Earthquake Engineering, 2003.
iii
© Yoppy Soleman, 2006
Parametric Study on Displacement-Based Design Method Procedures for RC Structures
18. Gupta A., Krawinkler H. “Estimation of Seismic Drift Demands for Frame Structures”. Earthquake Engineering and Structural Dynamics, Vol. 29/2000, p. 1287-1305. 19. Habibullah Ashraf, Pyle Stephen. “Practical Three Dimensional Nonlinear Static Pushover Analysis”. Structure Magazine, 1998. 20. Hofmayer, C.H., Park, Y.J., Costello, J.F. Criteria”. K7-A5-US, BNL-NUREG-66448.
“Displacement Based Seismic Design
21. John Osteraas, Peter Somers. “Northridge Earthquake Reconnaisance Report, Volume 2”. Earthquake Spectra, January 1996. 22. Kusuma Gideon H., Priyan Mendis. “The Performance-Based Seismic Design According to the Asian Concrete Model Code (ACMC) and Building Standard Law (BSL): A Japanese Example”. Civil and Environmental Engineering Melbourne University, Victoria, Australia. 23. Lin Y.Y., Chang K.C., Tsai M.H. “Displacement-Based Seismic Design for Buildings”. Journal of the Chinese Institute of Engineers, No.1 - Vol. 25/2002, p. 89-98. 24. Masanori Hamada. “Lessons Learned from the 1995 Hyogoken-Nanbu (Kobe) Earthquake”. JSCE Proposal on Measures Against Future Earthquakes. 25. Matthews Robert . “Moment Curvature Analysis”. DMJM Harris Consultant, California – USA, 2001. 26. Moehle J.P., Mahin S.A. “Observations on the Behavior of Reinforced Concrete Buildings During Earthquake”. NISEE, University of California at Berkeley, 1998. 27. Monti G., Santini Silvia, Via Giovanni. “Pushover Analysis Procedures for Seismic Assessment: Critical Evaluation and Application to Some Case Studies”, Universita di Roma Tre, Italy. 28. Nakaki S.D., Stanton J.F., Sritharan S. “An Overview of the PRESSS Five-Story Precast Building - Special Report”. PCI Journal, March-April 1999, p. 26-39. 29. Park Honggun, Eom Taesung. “Direct Inelastic Earthquake Design Using Secant Stiffness”. Korea Engineering Research Center - Seoul National University, South Korea. 30. Paulay T., Priestley MJN. SEISMIC DESIGN Of REINFORCED CONCRETE And MASONRY BUILDINGS. John Wiley & Sons, Inc., USA, 1992. 31. Paz Mario. DINAMIKA STRUKTUR – Teori dan Perhitungan (Edisi Kedua). Van Nostrand Reinhold Com. Inc., USA, 1985. Terjemahan Penerbit Erlangga, 1987. 32. Priestley MJN. “Performance Based Seismic Design”. Paper No. 2831, 12th World Conference on Earthquake Engineering (WCEE), 2000. 33. Priestley MJN, Sritharan S., Conley James R., Pampanin S. “Preliminary Results and Conclusions From the PRESSS Five-Story Precast Concrete Test Building – Special Report”. PCI Journal, November – December 1999, p. 42-67. 34. Schueller Wolfgang. STRUKTUR BANGUNAN BERTINGKAT TINGGI. Penerbit Refika, Jakarta, 2001. 35. Schulz, Arturo E. “Approximating Lateral Stiffness in Elastic Frames”, JSE, ASE, Vol. 118-No.1, 1990, p. 243-263.
iv
© Yoppy Soleman, 2006
Parametric Study on Displacement-Based Design Method Procedures for RC Structures
36. SeismoSoft. SeismoSignal ver. 3.1.0 – Computer program to process strong-motion data (online). URL: http://www.seismosoft.com. 37. Smith RSH, Tso W.K. “Inconsistency of Force-Based Design Procedure”. JSEE: Vol. 4 - No. 1, Spring 2002. 38. Sozen Mete A. “The Velocity of Displacement”, Purdue University, School of Civil Engineering, West Lafayette, USA. 39. Sullivan Timothy. The CURRENT LIMITATIONS Of DISPLACEMENT BASED DESIGN. Master Thesis in Earthquake Engineering, Rose School – European School of Advanced Studies in Reduction of Seismic Risk, University of Pavia, Italy, 2002. 40. Sunsuke Otani. “RC Building Damage Statictics and SDF Response with Design Seismic Forces”. 41. Symans Michael D., Shattarat Nasim K., McLean David I., Cofer William F. “Evaluation of Displacement-Based Methods and Computer Software for Seismic Analysis of Highway Bridges”. Washington State Transportation Center (TRAC), March 2003. 42. U. Carlos Andres Blandon. EQUIVALENT VISCOUS DAMPING EQUATION For DIRECT DISLACEMENT BASED DESIGN. Master Thesis in Earthquake Engineering, Rose School - European School of Advanced Studies in Reduction of Seismic Risk, University of Pavia, Italy, 2004. 43. Wang Chu-Kia., Salmon Charles G. DISAIN BETON BERTULANG (Edisi keempat). Harper and Row Inc, 1985. Alih Bahasa: Binsar Hariandja, Erlangga, Jakarta, 1996. 44. Wangsadinata Wiratman. “Standar Perencanaan Ketahanan Gempa untuk Struktur Gedung SNI-1726-2002”. 45. Williams M.S., Albermani F. “Evaluation of Displacement-Based Analysis and Design Mehods for Steel Frame with Passive Energy Dissipators”, CERB No. 24, University of Queensland, Australia, 2003.
v
© Yoppy Soleman, 2006