KOORDINASI KONTROL FACTS MENGGUNAKAN INTERVAL TYPE-2 FUZZY LOGIC UNTUK MEMPERBAIKI DAMPING OSILASI DAYA PADA SISTEM KELISTRIKAN JAWA BALI 500 KV Oleh WAHYUDI
2206 100 135
Dosen Pembimbing : Prof. Dr. Ir. Imam Robandi, MT
Pendahuluan Sistem Multimesin Performansi Sistem
Gangguan
Tidak Stabil UPFC Sistem Stabil
Kontrol Fuzzy
Batas Masalah 1.
2. 3. 4. 5. 6.
Pemodelan sistem nonlinier menggunakan Matlab 7.3. UPFC yang dipasang 2 buah PSS terpasang disetting secara tetap Pengaruh harmonik diabaikan Subsynchronous diabaikan Pengamatan kestabilan transien akibat gangguan hubung singkat tiga phasa 4 cycle.
Tujuan 1.
2.
Mengetahui hasil penerapan interval type-2 fuzzy logic untuk mengkoordinasi 2 UPFC yang dipasang pada sistem kelistrikan Jawa Bali 500 kV Meningkatkan performansi kestabilan sistem kelistrikan Jawa Bali 500 kV ketika terjadi gangguan besar.
Gambar 1. Flowchart penyelesaian Tugas Akhir
Gambar 2. Plant Sistem Jawa Bali 500 kV 1 Slack Bus 7 Generator Bus 15 Load Bus 2 UPFC [7]
z z z z 1. 2.
Suralaya-Gandul Tanjungjati-Ungaran
Gambar 3. Skema UPFC
Gambar 4. Struktur Dasar Fuzzy Logic Controller
Gambar 5. Fungsi keanggotaan input Fuzzy tipe 2 1
0.5
0 -6
-4 -2 0 IBN_UMF=[-5-0.3 -1 -0.2 0.1+0.3]; IBN_LMF=[-5+0.3 -1 -0.2 0.1-0.3]; IMN_UMF=[-1-0.3 -0.15 0.2+0.3]; IMN_LMF=[-1+0.3 -0.15 0.2-0.3]; ILN_UMF=[-1-0.3 -0.065 1+0.3 ]; ILN_LMF=[-1+0.3 -0.065 1-0.3 ]; IZ_UMF =[-1-0.3 0 1+0.3 ]; IZ_LMF =[-1+0.3 0 1-0.3 ]; ILP_UMF=[-1-0.3 0.065 1+0.3 ]; ILP_LMF=[-1+0.3 0.065 1-0.3 ]; IMP_UMF=[-0.2-0.3 0.15 1+0.3 ]; IMP_LMF=[-0.2+0.3 0.15 1-0.3 ]; IBP_UMF=[-0.1-0.3 0.2 1 5+0.3]; IBP_LMF=[-0.1+0.3 0.2 1 5-0.3];
2
4
6
Gambar 6. Fungsi keanggotaan output Fuzzy tipe 2
OBN_UMF=[-1-0.05 OBN_LMF=[-1+0.05 OMN_UMF=[-0.5-0.05 OMN_LMF=[-0.5+0.05 OLN_UMF=[-0.4-0.05 OLN_LMF=[-0.4+0.05 OBZ_UMF=[-0.3-0.05 OBZ_LMF=[-0.3+0.05 OLZ_UMF=[-0.015-0.005 OLZ_LMF=[-0.015+0.005 OLP_UMF=[0-0.05 OLP_LMF=[0+0.05 OMP_UMF=[0.3-0.05 OMP_LMF=[0.3+0.05 OBP_UMF=[0.4-0.05 OBP_LMF=[0.4+0.05
-0.5 -0.5 -0.4 -0.4 -0.3 -0.3 0 0 0 0 0.3 0.3 0.4 0.4 0.5 0.5
-0.4+0.05 -0.4-0.05 -0.3+0.05 -0.3-0.05 0+0.05 0-0.05 0.3+0.05 0.3-0.05 0.015+0.005 0.015-0.005 0.4+0.05 0.4-0.05 0.5+0.05 0.5-0.05 1+0.05 1-0.05
]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ]; ];
Tabel 1. Aturan fuzzy
PUPFC1\ PUPFC2
BP
MP
LP
Z
LN
MN
BN
BN
BZ
LN
MN
MN
BN
BN
BN
MN
LP
BZ
LN
MN
MN
BN
BN
LN
MP
LP
BZ
LN
LN
MN
BN
Z
BP
MP
LP
LZ
LN
MN
BN
LP
BP
MP
LP
LP
BZ
LN
MN
MP
BP
BP
MP
MP
LP
BZ
LN
BP
BP
BP
BP
MP
MP
LP
BZ
Gambar 7. Defuzzification (Karnik-Mendel Algorithm)
Gambar 8. Koordinasi kontrol UPFC menggunakan fuzzy [1]
Gambar 9. Model nonlinier sistem Jawa Bali 500 kV 135 MW 40 MVar A B C
PQref double Vdqref UPFC
A
aA
aA
A
B
bB
bB
B
C
cC
cC
30.143 km Line Kembangan-Gandul
Bypass1 Aa
A1
C2
aA
Cc
C1
55.574 km Line Suralaya-Gandul 2
B_UPFC12
UPFC1
A
bB
cC
Load Bekasi 570 MW 150 MVar
A B C
Bb
aA
bB
C
[PQref1]
B1
C
55.574 km Line Suralaya-Gandul 1
Bus Gandul
B
cC
16.84 km Line Bekasi-Cawang
Bus Bekasi
C
48 km Line Cawang-Muaratawar
Bus Cawang
Bus Muaratawar
A B C
Muaratawar
Bus Suralaya
Suralaya
Load Cawang 670 MW 160 MVar
C
Load Gandul 480 MW 160 MVar
37.9 km Line Bekasi-Cibinong
48.158 km Line Muaratawar-Cibatu
53 km Line Muaratawar-Cibinong
A B
Load Cirata 600 MW 216 MVar
aA
Aa
cC
A B C
B
Cc
130.81 km Line Cil egon-Cibi nong
C
81.9 km Line Cibinong-Saguling
Bus Saguling
C
aA
A
bB
cC
C
Bus Cibatu
A1 B1 C1
aA
bB
B Load Cibatu 726 MW 280 MVar
Saguling
cC
46.757 km Line Cibatu-Cirata
Bus Cirata
Cirata
C
Bus Cibinong
A
Bus Cilegon
A
Bb
bB
12.48 km Line Suralaya-Cilegon
B
A
C Load Cilegon 620 MW 200 MVar
B
Load Cibinong 615 MW 190 MVar
21.27 km Line Gandul- Cibinong
25.166 km Line Saguling-Cirata
39 km Line Bandung selatan -Saguling
A
aA
a b
b
C
cC
c
c
A
A
B
B
C
C
19.5 km Line Bandung selatan -Saguling1
Brk1
23.8 km Line Surabaya Barat-Gresik
Bus Gresik
A
19.5 km Line Bandung selatan -Saguling2
A B C
Gresik
C
Brk2
Bus Bandung Selatan
B
119.3 km Line Bandung selatan-Mandirancan
a
B
bB
37.92 km Line -Gandul-Depok
B B
C
A
Load Bandung Selatan 520 MW 310 MVar
B
Fault
C
B
A
A A
Load Gresik 185 MW 80 MVar C
Load Grati 115 MW 170 MVar
aA
aA
bB
bB
cC
254.6 km Line Ungaran-Surabaya Barat
m A2
B
aA
aA bB
bB
bB
cC
cC
C Bus Mandirancan Load Mandirancan 350 MW 120 MVar
230 km Line Mandirancan-Ungaran
Bus Ungaran
Trip double By pass
B_UPFC22
Grati
Bypass2 aA bB
B1 C2
A B C
[PQref2]
A1
B2
cC
67.4 km Line Ungaran-T anjung Jati1
double
[Vdqref2] double
PQref Vdqref UPFC
aA
Bus Grati
Load Surabaya Barat 760 MW 280 MVar
double
n
A
cC
79.41 km Line Surabaya Barat-Grati
C
A
320.304 km Line T anjung Jati-Surabaya Barat
B
Bus Surabaya Barat
cC
C1
67.4 km Line Ungaran-T anjung Jati2
UPFC2
Bus T anjung Jati
A B C
TanjungJati
C
B
A
UPFC2 Load Ungaran 290 MW 320 MVar
88.363 km Line Grati-Paiton
77.1 km Line Ungaran-Pedan
aA
aA
bB
aA
bB
cC
aA
bB
cC
280 km Line Depok -T asikmalaya
Bus Pedan
aA
bB
cC
305 km Line T asikm alaya-Pedan
Bus T asikmalaya
bB
cC
205 km Line Pedan-Kediri
Bus Kediri
cC
205 km Line Kediri-Paiton
Bus Paiton
A B C
Load Pedan 462 MW 215 MVar
Static Load Kediri -193 MVar
Load Kediri 316 MW 182 MVar
Static Load Paiton -96 MVar
C
B
A
C
B
A
C
B
A
C
B
A
Static Load Pedan -158 MVar
C
Data Acquisition1
B
Open this block to visualize generator signals
Data Acquisition
A
Open this block to visualize voltage&Current signals
C
Load Tasikmalaya 244 MW 15 MVar
B
C
B
Paiton A
Bus Depok
A
B
UPFC1
A
Load Kembangan Bus Kembangan 670 MW 230 MVar
B2
A B
double
[Vdqref1 double
C
Trip By pass
A2
B
m
double
A
m
Load Paiton 740 MW 240 MVar
Gambar 10. Sistem koordinasi Fuzzy Vabc_Suralaya
Vabc
Iabc_Suralaya
Iabc
PQ
3-Phase Active & Reactive Power (Phasor T ype)3
2/3
2
UU(E)
100
P1
Vabc_Gandul Subtract
PQ
Q1
Iabc
3-Phase Active & Reactive Power (Phasor Type) 1
Vabc_Kembangan
3
UU(E)
Vabc
Iabc_Gandul
Vabc
UU(E)
P_UPFC12
UU(E)
Q_UPFC12
V PQ
Iabc_Kembangan
Iabc
3-Phase Active & Reactive Power (Phasor T ype)1 UU(E)
Vabc_Cilegon
Vabc PQ
Iabc_Cilegon
UU(E)
Iabc
3-Phase Active & Reactive Power (Phasor T ype)4 Vabc_Cibinong
Vabc
Iabc_Cibinong
Iabc
PQ
3-Phase Active & Reactive Power (Phasor T ype)2 Vabc_Depok
Vabc
Iabc_Depok
Iabc
PQ
3-Phase Active & Reactive Power (Phasor T ype)5 Vabc_Mandirancan
Vabc
abc_Mandirancan
Iabc
PQ
3-Phase Active & Reactive Power (Phasor T ype)6 Vabc_Cawang
Vabc
Iabc_Cawang
Iabc
PQ
3-Phase Active & Reactive Power (Phasor T ype)7
type2
4s
0.01s+1
4s+1
0.02s+1
0.02s+1
Washout
Lead-lag 1
Lead-lag 2
0.01s+1 Limiter
HASIL DAN ANALISIS ¾
¾
Pengamatan terhadap respon variasi frekuensi dan respon variasi sudut rotor saat terjadi hubung singkat 3 phasa 4 cycle. Pada simulasi diamati perbandingan respon sistem berikut: 1. Sistem tanpa koordinasi, 2. Sistem dengan koordinasi fuzzy tipe 1, 3. Sistem dengan koordinasi fuzzy tipe 2.
Gambar 11. Respon Variasi Frekuensi PLTU Suralaya
Tabel 2. Data settling time frekuensi pembangkit Jawa Bali 500 kV (detik) Pembangkit
T anpa koordinasi
PLT U Suralaya PLT U Muaratawar PLT A Cirata PLT A Saguling PLT U Paiton PLT U Grati
> 10
PLT U Gresik PLT U T anjungjati
Dengan De ngan koordinasi koordinasi fuzzy tipe 1 fuz z y tipe 2 7.1 3.5
> 10
10
5.9
> 10
9.1
4.5
> 10
8.5
4.8
> 10
7.9
4.5
> 10
6.8
3.9
> 10
6.7
4.1
> 10
5.8
4.4
Tabel 3. Data overshoot frekuensi pembangkit Jawa Bali 500 kV (pu) Pembangkit
T anpa koordinasi
PLT U Suralaya PLT U Muaratawar PLT A Cirata PLT A Saguling PLT U Paiton PLT U Grati
0.000265
PLT U Gresik PLT U T anjungjati
Dengan De ngan koordinasi koordinasi fuzzy tipe 1 fuz z y tipe 2 0.000235 0.000215
0.000262
0.000241
0.000222
0.000263
0.000235
0.000195
0.000262
0.000231
0.000198
0.000295
0.000238
0.000218
0.000265
0.000231
0.000205
0.000258
0.000239
0.000182
0.000265
0.000225
0.000202
Gambar 12. Respon Variasi Sudut Rotor PLTU Suralaya
Tabel 4. Data settling time sudut rotor pembangkit Jawa Bali 500 kV (detik)
Tabel 5. Data overshoot sudut rotor pembangkit Jawa Bali 500 kV (pu)
Tanpa koordinasi
Dengan koordinasi fuzzy tipe 1
Dengan koordinasi fuzzy tipe 2
Pembangkit
T anpa koordinasi
PLTU Suralaya
>10
7.2
3.8
0.121
PLTU Muaratawar
>10
10
6.8
PLTA Cirata
>10
8.2
5.5
PLTA Saguling
>10
8.3
5.8
PLTU Paiton
>10
8.2
4.8
PLTU Grati
>10
6.3
4.2
PLT U Suralaya PLT U Muaratawar PLT A Cirata PLT A Saguling PLT U Paiton PLT U Grati
PLTU Gresik
>10
7.3
3.8
PLTU Tanjungjati
>10
6.2
4.4
PLT U Gresik PLT U T anjungjati
Pembangkit
Dengan De ngan koordinasi koordinasi fuzzy tipe 1 fuz zy tipe 2 0.109 0.105
0.117
0.11
0.102
0.116
0.109
0.091
0.118
0.107
0.093
0.119
0.109
0.105
0.122
0.108
0.103
0.121
0.109
0.096
0.124
0.111
0.106
KESIMPULAN 1.
2.
3.
4.
Penerapan Interval Type2 Fuzzy Logic dapat digunakan untuk mengkoordinasi parameter gain UPFC, sehingga diperoleh parameter gain UPFC optimal yaitu sebesar 0.1268. Penerapan metode Interval Type2 Fuzzy Logic terhadap gain UPFC dapat mempercepat settling time respon variasi frekuensi dan respon variasi sudut rotor ketika terjadi gangguan hubung singkat. Penerapan Interval Type2 Fuzzy Logic dapat mempercepat settling time respon frekuensi PLTU Suralaya sebesar 3.6 detik dibanding menggunakan fuzzy tipe 1. Penerapan Interval Type2 Fuzzy Logic juga dapat mempercepat settling time respon sudut rotor PLTU Suralaya sebesar 3.4 detik dibanding menggunakan fuzzy tipe 1.
SARAN 1.
2.
Optimisasi Parameter waktu UPFC dapat dilakukan dengan metode kecerdasan buatan, sehingga diperoleh parameter UPFC yang lebih optimal. Optimisasi parameter waktu UPFC dapat dilakukan secara bersamaan dengan proses koordinasi gain UPFC menggunakan Fuzzy.
REFERENSI 1.
2.
3. 4.
5.
6.
7.
Lijun Cai dan István Erlich, "Fuzzy Coordination of FACTS Controllers for Damping Power System Oscillations", IEEE Transactions On Fuzzy Systems, Vol. 15, No. 1, February 2008 Imam Robandi dan Bedy Kharisma,"Design of Interval Type-2 Fuzzy Logic Based Power System Stabilizer",Proceedings Of World Academy Of Science, Engineering And Technology Volume 31 July 2008 Imam Robandi, “Desain Sistem Tenaga Modern”, Andi Yogyakarta, 2006 A.J.F.Keri, X.Lombard, dan A.A.Edris, "Unified Power Flow Controller (UPFC): Modeling and Analysis",IEEE Transactions on Power Delivery, Vol.14,No.2,April 1999 Phumin Kirawanich dan Robert M. O’Connell,"Fuzzy Logic Control of an Active Power Line Conditioner",IEEE Transactions On Power Electronics, Vol. 19, No. 6, November 2004 Mendel dan Robert I. Bob John,"Type-2 Fuzzy Sets Made Simple Jerry", IEEE Transactions On Fuzzy Systems, Vol. 10, No. 2, APRIL 2002 Mochamad Ashari,"An Overview of FACTS Controllers", surabaya,Department of Electrical Engineering, Faculty of Industrial TechnologyInstitut Teknologi Sepuluh Nopember (ITS), 2000
8.
9.
10.
11. 12. 13. 14.
Julio Romero Agüero dan Alberto Vargas,"Calculating Functions of Interval Type-2 Fuzzy Numbers for Fault Current Analysis",IEEE Transactions On Fuzzy Systems, Vol. 15, No. 1, February 2007. S. Limyingcharone, U. D. Annakkage, and N. C. Pahalawaththa, “Fuzzy logic based unified power flow controllers for transient stability improvement”, IEE Proc. vol. 145, No. 3, 1998, pp. 225–232 Mark Gordon and David J. Hill, “ Flexible Nonlinear Voltage Control Design for Power Systems” IEEE International Conference on Control Applications Part of IEEE Multi-conference on Systems and Control Singapore, 1-3 October 2007 ……, “Fuzzy Logic Toolbox for Use with MATLAB”, The Mathworks, 2002. ……, MATLAB help version 7.3, 2006. ……, Fuzzy Logic Toolbox for use with MATLAB user’s guide, version 2, 1998. P. Kundur, “Power System Stability and Control”, McGraw-Hill,1993.
15. 16.
17. 18. 19.
20.
21.
P.M. Anderson & A.A. Fouad, Power System Control and Stability, The Iowa State University Press: 1977. Jerry M.Mendel, Feilong Liu, “Super-Exponential Convergence of the Karnik–Mendel Algorithms for Computing the Centroid of an Interval Type-2 Fuzzy Set”, IEEE, April 2007 QilianLiangand, Jerry M. Mendel, “Interval Type-2 Fuzzy Logic System Theory and Design”, IEEE, October, 2000. Jerry M. Mendel, Robert I.Bob John, “Type-2 Fuzzy Sets Made Simple”, IEEE, April, 2002. Xuzheng Chai, Xidong Liang, "Flexible Compact AC Transmission System - a New Mode for Large-capacity and Long-distance Power Transmission",IEEE 2006 Joseph Mutale and Goran Strbac, "Transmission Network Reinforcement Versus FACTS: An Economic Assessment",IEEE Transactions On Power Systems, VOL. 15, NO. 3, August 2000 John J. Paserba, "How FACTS Controllers Benefit AC Transmission Systems",IEEE 2004
22.
23.
Swakshar Ray and anesh K.Venayagamoorthy, “A wide area measurement based neuro control for generation excitation systems”, Engineering Applications of Artificial Intelligence, 2008 D. Menniti, A. Pinnarelli and U. De Martinis,A. Andreotti, Modelling of Unified Power Flow Controller into Power Systems using P-Spice, IEEE, 2005
Sekian Terima Kasih