Járműelemek I. (KOJHA 172)
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar
Ssz.: A/.
Név: .
. .
Tengelykötés kisfeladat (A típus) Szilárd illesztés
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Neptun kód.: .
Járműelemek és Hajtások Tanszék
. . . . . . . .
SZÁMÍTÁSI EREDMÉNYEK
Ssz.: A/. . . . pmin pmaxt pmaxa
c1
2
c2
2
c3
2
[MPa] [MPa] [MPa] [mm / [mm / [mm / N] N] N]
FV
NF’
KF’
[μm]
[μm]
[μm]
Fs [kN]
J
t
[μm]
[°C]
Tsmin Tsmax [Nm]
[Nm]
gyakorlatvezető
Budapest, 20.....................................
ADATVÁLASZTÉK Ssz.
Tn [Nm]
dt [mm]
d0 [mm]
D [mm]
φ
s2
Tárcsa
Anyag
Szerelés
1
30
20
0
32
1,5
2,5
ékszíj
ac
melegítés
2
70
25
0
40
1,6
2,5
fogaskerék
ac
melegítés
3
45
30
0
48
1,7
2,6
ékszíj
öv
sajtolás
2,7
fogaskerék
ac
melegítés
ac
melegítés melegítés
4
96
32
0
50
2,1
5
225
35
0
55
1,9
2,5
ékszíj
6
325
40
0
60
1,9
2,9
fogaskerék
ac
7
200
42
12
65
1,6
2,5
ékszíj
öv
melegítés
2,6
fogaskerék
öv
melegítés
ac
sajtolás
8
225
45
0
70
1,7
9
185
45
15
70
1,9
2,6
ékszíj
10
450
50
0
75
1,9
3,1
fogaskerék
ac
sajtolás
2,4
ékszíj
öv
melegítés
öv
sajtolás
ac
melegítés
11
400
50
20
75
1,5
12
475
55
0
85
1,6
2,6
fogaskerék
13
625
55
25
85
1,8
2,0
ékszíj
1
14
875
60
0
90
1,8
3,0
fogaskerék
ac
melegítés
öv
melegítés
15
550
60
28
90
1,9
2,6
ékszíj
16
935
65
0
100
1,5
2,8
fogaskerék
öv
melegítés
17
675
65
30
100
1,6
2,8
ékszíj
ac
sajtolás
18
1100
70
0
110
1,7
3,5
fogaskerék
ac
sajtolás
2,6
ékszíj
öv
melegítés
fogaskerék
öv
melegítés
19
825
70
32
110
1,8
20
1175
75
0
125
2,1
2,8
21
1175
75
35
115
1,5
2,9
ékszíj
ac
sajtolás
22
2350
80
0
125
1,6
3,4
fogaskerék
ac
melegítés
23
1390
80
36
125
1,7
2,9
ékszíj
ac
melegítés
24
1725
90
0
140
1,9
2,4
fogaskerék
öv
melegítés
2
A kisfeladat elkészítéséhez szükséges eszközök: - az Általános Formai Követelményeknek megfelelően előkészített számítási lapok; - számológép. TENGELYKÖTÉS KISFELADAT (A típus: Szilárd illesztés) RÉSZLETEZÉSE: Számítsa ki az ábrán látható szilárd illesztésű tengelykötés megadott jellemzőit az adatválasztékból kapott, és az alábbi kiinduló adatok alapján. A kötéssel az adatválasztékban megadott Tn névleges nyomatékot kell átvinni legalább φ-szeres biztonsággal. Tengely acél 315 MPa lásd adatválaszték táblázat
Anyaga: Folyáshatár, ReH Biztonsági tényező, s2 Agy Folyáshatár, ReH (90%-ig kihasználható) acél esetén
275 MPa
öntöttvas esetén Kialakítástól és anyagminőségtől függően az agyvastagság:
335 MPa
Szakítószilárdság, Rm (meg=Rm/3)
v=0,25…0,5dt Kötés Kötéshossz-átmérő viszony acél-acél párosításnál (/dt): acél-öv. párosításnál (/dt):
1,2 1,4
Rugalmassági modulus, E acélra öntöttvasra
2105 MPa 1105 MPa
acélra öntöttvasra
10/3 4
acél-acél párosításnál: acél-öv. párosításnál:
0,12 0,1
Poisson szám, m Súrlódó tényező,
A megoldás menete: 1. Határozza meg a szükséges legkisebb felületi terhelést és az ennek megfelelő legkisebb túlfedést! 2. Számítsa ki a megengedhető legnagyobb felületi terhelést az agyban és a tengelyen, majd a mértékadó felületi terhelést alapul véve állapítsa meg a megengedhető legnagyobb túlfedést! 3. a. Hidegen sajtolt zsugorkötésre határozza meg a szükséges sajtolóerőt a fedésveszteség figyelembevételével ( FV 2 0,6 (R z1 R z2 ) ). Az agy és a tengely felületi érdessége Ra1= Ra2=1 μm és R z 4,5 R a . Sajtolásokra súrlódási tényező minden esetben μ=0,1. b. Melegítéssel szerelt zsugorkötésre határozza meg a felmelegítés hőmérsékletet t0=200C környezeti hőmérséklettel számolva. A szereléshez szükséges játékot IT 7 tűrésnagysággal határozza meg J = (0,45 3 d t + 0,001 d t ) 16 m 3
4. Adja meg a kötés várható legkisebb és legnagyobb megcsúszási nyomatékát! 5. A számítási lapokat összetűzve, a Tanszéki Általános Formai Követelményeknek megfelelően készítse el! A kapott eredményeket a Feladatlapon elhelyezett SZÁMÍTÁSI EREDMÉNYEK táblázatban fel kell tüntetni! Megoldási útmutató Adatok: Névleges nyomaték: Tn = 960 Nm Dinamikus tényező: = 1,3 Tengelyátmérő: dt = 60 mm (A tengely tömör): d0 = 0 mm Agy átmérője: D = 90 mm Kötés hossz/átmérő: /dt = 1,2 Súrlódási tényező: = 0,1 Tengely: acél Folyáshatár: ReH,t = 315 MPa Biztonsági tényező: s2,t = 1,11 Agy: acél Szakítószilárdság: Rm,a = 255 MPa, terhelhetősége: Tengely átlagos felületi érdessége: Ra,1=0,8 m Agy átlagos felületi érdessége: Ra,2=0,8 m
90% (acél)
4
Kidolgozás: A tengely hossza: l 1,2 d t 72mm
Átmérőviszonyok: a1
d t 60 0,667 D 90
a2
d0 0 0 d t 60
Az átvinni kívánt minimális nyomaték: Tmin Tn 1,3 960 1248Nm
A rugalmas szilárd illeszkedésű kötésben s2,t biztonsági tényezővel a megengedhető feszültség a tengelyre: R 315 meg,t eH ,t 2835MPa s 2 ,t 1,1 Acél agyra a szakítószilárdság 90%-ig használható ki az anyag. (Öv. agy esetén a szakítószilárdság 1/3-ig). Így a megengedhető feszültség acél agyra:
meg ,a 0,9 R m,a 0,9 255 229,5MPa Az átvihető kerületi erő a felületi terhelés egyenletes eloszlását feltételezve: 2 Tmin Ft d t l p és Fk Ft dt Ft tapadóerőhöz pedig meghatározható a minimálisan szükséges felületi terhelés:
p min
2 Tmin 2 1248 30,65 10 6 Pa 30,7 MPa 2 d l 0,06 0,072 0,1 2 t
Az agy felhúzása után a tengelyben ébredő nyomófeszültség:
pmin 2 30,65MPa Tömör tengely esetén a redukált feszültség (red,t meg,t): 1 3 red ,t pmin 1 30,65 1 39,85MPa m 10 (Csőtengely esetén a mértékadó redukált feszültség a belső szálban (red,t meg,t)): 2 red ,t p min 2 1 a2 A belső nyomásra terhelt agynál a mértékadó redukált feszültség a belső szálban (red,a meg,a): 1 0,667 2 3 1 a12 1 red ,a p min 30 , 65 99,82MPa 2 1 0,667 2 10 1 a1 m Tömör tengely esetén megengedhető maximális felületi nyomás:
5
p max,t
meg ,t 1
1 m
283,5 218,1MPa 3 1 10
(Csőtengely esetén megengedhető maximális felületi nyomás a belső szálban):
p max,t
meg ,t
2 1 a 22
Az agy esetén megengedhető maximális felületi nyomás a belső szálban: meg ,a 229,5 p max,a 79,1MPa 2 1 a1 1 1 0,667 2 3 1 a12 m 1 0,667 2 10 A legnagyobb túlfedés meghatározásakor a pmax,a és pmax,t közül a kisebb felületi nyomást kell figyelembe venni, amely esetünkben: pmax = 79,1 MPa A c1, c2 és c3 tényezők értékei a Kabai: Gépelemek I c. jegyzet 103. oldalán találhatók. Tömör tengely esetén:
m 1 c3 Et m
10 1 mm 2 3 0,35 10 5 10 N 2,1 10 5 3
Csőtengely esetén:
c2
m 1 a22 m 1
Et m 1 a 22
Agy esetén:
10 2 10 1 0,667 1 2 m 1 a m 1 3 3 1,45 10 5 mm c1 10 N E a m 1 a12 2,1 10 5 1 0,667 2 3 2 1
A szükséges tűrések meghatározása (pmax = min[pmax,t , pmax,a]): A legnagyobb túlfedés tömör tengely esetén (NF’): NF ' pmax d t c1 c3 79,2 60 1,45 10 5 0,35 10 5 0,855mm 855m
Csőtengely esetén (pmax,t és pmax,a közül a kisebb): NF ' pmax d t c1 c2
A legkisebb túlfedés tömör tengely esetén (KF’) KF ' pmin d t c1 c3 30,65 60 1,45 10 5 0,35 10 5 0,0331mm 33,1m Csőtengely esetén: KF ' pmin d t c1 c2
Hidegen sajtolt kötés esetében meg kell állapítani az elkenődés miatti fedésveszteség (FV) értékét. Tapasztalat szerint az elkenődés az egyenetlenség magasságokból (Rz) az alábbi úton határozhatók meg: FV 2 0,6 Rz ,1 Rz , 2 ; és Rz 4,5 Ra 6
Felhasználva a Kabai: Gépelemek I c. jegyzet 82. ábrájának jelöléseit, a megkívánt legnagyobb és legkisebb túlfedés már számítható: NF=NF’=855μm (Hidegen történő szerelés esetén: NF=NF’+FV) KF=KF’=33,1 μm (Hidegen történő szerelés esetén: KF=KF’+FV) Hideg sajtolás esetén a szükséges maximális sajtolási erő (pmax,t és pmax,a közül a kisebb): Fs d t l pmax s 60 72 72,9 0,1 107403N ahol s = 0,1, sajtoláskor fellépő súrlódási tényező (nem ua., mint fentebbi !). Amennyiben a kötést melegítéssel szerelt, a szereléshez szükséges felhevítési hőmérséklet számítandó. A szerelés könnyítése érdekében – mérettől függően IT 7…IT 10 tűrésmező szélességű – játékot biztosítunk a szerelendő alkatrészek között. A szerelési játék (IT 7 esetében):
J 0,45 3 d t 0,001 d t 16m 0,45 3 60 0,001 60 16 29,147m A melegítés hőmérséklete:
NF J 855 29,147 t0 20 194C 3 d t 10 11 10 6 60 10 3 – a legnagyobb fedés (NF = 85,5 [m]) – IT 7 szerinti szerelési játék (J = 29,147 m) – az acél hőtágulási együtthatója (= 1110-6 [mm/Cmm]) – az öntöttvas hőtágulási együtthatója (= 1010-6 [mm/Cmm]) – az agyfurat legkisebb átmérője (dt = 60,0 [mm]) – a környezeti hőméréklet (t0 = 20 [C]) t
ahol: NF [m] J [m] [mm/Cmm] [mm/Cmm] dt [mm t0 [C]
A kötés várható minimális megcsúszási nyomatéka: 2 d t2 l p min 60 72 30,65 0,1 Ts ,min 1247916 Nmm 1248 Nm 2 2 és a maximális megcsúszási nyomatéka (pmax = min[pmax,t és pmax,a]): 2 d 2 l p min 60 72 79,1 0,1 Ts ,min t 3220559 Nmm 3220 Nm 2 2
7
Járműelemek I. (KOJHA 172)
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar
Ssz.: B/.
Ssz.:
Név: .
. .
Tengelykötés kisfeladat (B típus) Gyűrűs szorítórugós kötés
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Járműelemek és Hajtások Tanszék
Neptun kód.: .
. . . . . . . .
SZÁMÍTÁSI EREDMÉNYEK
B/. . . . ρ
R1
F1
T1
Ts
q
z
[°]
[N]
[N]
[Nm]
[Nm]
[-]
[-]
At
[mm2]
δ
F0
Fax
[mm]
[N]
[N]
gyakorlatvezető
Budapest, 20.....................................
ADATVÁLASZTÉK Ssz. 1 2 3 4 5 6 7 8
Tn
dt
[Nm]
[mm]
26 38 40 63 100 150 250 400
18 20 22 25 30 35 40 45
μ
c
pmeg
Tárcsa
[MPa]
0,16 0,13 0,14 0,15 0,16 0,12 0,13 0,14
1,7 1,5 1,7 1,4 1,1 1,2 1,3 1,4
70 75 80 85 90 70 75 80
ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék 8
9 10 11 12 13 14 15 16 17 18 19 20 21
520 800 915 1100 1550 1850 2250 2325 2700 3800 4100 5250 5900
50 55 60 65 70 75 80 85 90 95 100 110 120
0,15 0,12 0,13 0,14 0,15 0,16 0,11 0,12 0,13 0,14 0,15 0,13 0,14
1,4 1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4 1,1 1,2 1,3 1,4
85 90 70 75 80 85 90 70 75 80 85 90 70
ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj
9
A kisfeladat elkészítéséhez szükséges eszközök: - az Általános Formai Követelményeknek megfelelően előkészített számítási lapok; - számológép. TENGELYKÖTÉS KISFELADAT (B típus: Gyűrűs szorítórugós kötés) RÉSZLETEZÉSE: Számítsa ki az ábrán látható gyűrűs szorítókötés megadott jellemzőit az adatválasztékból kapott kiinduló, valamint a következő adatok alapján. A kúpos gyűrűk acélból készülnek, rugalmassági állandójuk E=210 000 MPa. A gyűrűk félkúpszöge: 16,7 Készítsen tárcsafelerősítést az ábra és az adatválaszték alapján. Kialakítástól és anyagminőségtől függően az agyvastagság: v 0,25...0,5 d t A teljes megcsúszást okozó nyomaték Ts c Tn ....... Tn Nm A megoldás menete: 1. Válassza meg az adott tengelyátmérőhöz tartozó kúpos gyűrűket. 2. Határozza meg az egy gyűrűpár által átvitt súrlódó nyomatékot a tengely felületére. 3. Állapítsa meg a szükséges gyűrűpárok számát, figyelembe véve, hogy a tengelyirányú erők a súrlódási veszteség miatt geometriai sort alkotnak (5-nél több gyűrűpár nem használható). 4. Határozza meg a kifejtendő tengelyirányú erő nagyságát. 5. A számítási lapokat összetűzve, a Tanszéki Általános Formai Követelményeknek megfelelően készítse el! A kapott eredményeket a Feladatlapon elhelyezett SZÁMÍTÁSI EREDMÉNYEK táblázatban fel kell tüntetni!
Kiegészítő alapismeretek Adott tengelyátmérő és anyagminőség meghatározza a megengedhető felületi nyomást a gyűrű és a tengely között (1 ábra): pmeg 0,30,6ReH=(Rp0.2)tengely. A kúpos gyűrűk hengeres felületén kialakuló felületi nyomás sugárirányú eredője R 1 és R 2 . R 1,2 p A1,2 ahol p p meg , továbbá A1 D és A 2 d a hengerpalástok felületei. Általában R1> R2, de az egyszerűség kedvéért tételezzük fel a további számításokban, hogy R1 = R2. R1 pmeg d t
F1 R1 tg tg
A súrlódási tényező ismeretében a megengedhető befeszítő erő:
1 ábra A gyűrűs szorítórugópár méretei az alábbi táblázatban találhatók: dtD [mm] 1822 2025
L [mm] 6,3 6,3
[mm] 5,3 5,3
dtD [mm] 3540 3844
L [mm] 7 7
[mm] 6 6
dtD [mm] 56 64 60 68
L [mm] 12 12
[mm] 10,4 10,4
dtD [mm] 85 96 90101
L [mm] 17 17
[mm] 15 15
10
2226 2428 2530 2832 3035 3236
6,3 6,3 6,3 6,3 6,3 6,3
5,3 5,3 5,3 5,3 5,3 5,3
4045 4248 4552 4855 5057 5562
8 8 10 10 10 10
6,6 6,6 8,6 8,6 8,6 8,6
63 65 70 71 75 80
71 73 79 80 84 91
12 12 14 14 14 17
10,4 10,4 12,2 12,2 12,2 15
95107 100114 110124 120134 130148 140158
17 21 21 21 28 28
15 18,7 18,7 18,7 25,3 25,3
1. Táblázat: Kúpos kapcsológyűrűk választéka (Ringfeder Rfn 8006 rendszer)
Az egy gyűrűpár által átvihető maximális (megcsúszási) nyomaték: d d2 T1 p meg d t t p meg t 2 2 A z számú gyűrűpár által átvitt nyomaték: 1 qz tg és q Ts T1 1 q tg 2 tg ahol = 1642’ és = arctg A fenti összefüggésből a gyűrűpárok száma meghatározható. A ténylegesen szükséges befeszítő erő (Fax ) két részből tevődik össze (2 ábra): - a szerelési hézag =1+2 megszüntetéséhez szükséges Fo axiális erőből; - a nyomaték átszármaztatását adó F1 erőből. Így Fax= F0+F1, ahol az F1 erő az előzőekből ismert.
2 ábra Az F0 axiális erő közelítéssel számítható:
F0
2 E A t tg D
ahol: =1+2 - az illesztésből adódó legnagyobb játék (NJ), D - a külső gyűrű átmérője, E - a gyűrűk rugalmassági modulusa, At
- a külső vagy belső gyűrű tengelyirányú metszetének területe: A t
D dt . 4
(A RINGFEDER Rfn 8006 típusú gyűrűknél közelítőleg egyforma)
11
Megoldási útmutató Adatok: Névleges nyomaték: Tn = 50 Nm Tengelyátmérő: dt = 30 mm Súrlódási tényező: = 0,12 Meg. felületi nyomás: pmeg = 40 MPa Dinamikus tényező: c = 1,5 A gyűrűk félkúpszöge: 16,7 Kidolgozás: Adott tengelyátmérő és anyagminőség meghatározza a megengedhető felületi nyomást a gyűrű és a tengely között: pmeg 0,30,6ReH = Rp0.2, tengely. A kúpos gyűrűk hengeres felületén kialakuló felületi nyomás sugárirányú eredője R1 és R2.
R 1, 2 p A1, 2 , ahol p p meg , továbbá
A1 D és A 2 d
a hengerpalástok felületei. Általában R1> R2, de az egyszerűség kedvéért tételezzük fel a további számításokban, hogy R1 = R2. R 1 p meg d t , tehát
R 1 40 30 5.3 19981 N
A súrlódási tényező ismeretében a megengedhető befeszítő erő:
F1 R1 tg tg , ahol = 16,7 és arctg = = 6,84º F1 19981 tg 16,7 6,84 tg (6,84) 11103 N A gyűrűs szorítórugópár méretei az alábbi táblázatban találhatók (lásd Kiegészítő alapismeretek 1. Táblázat): dtD [mm] 1822 2025 2226 2428 2530 2832 3035 3236
L [mm] 6,3 6,3 6,3 6,3 6,3 6,3 6,3 6,3
[mm] 5,3 5,3 5,3 5,3 5,3 5,3 5,3 5,3
dtD [mm] 3540 3844 4045 4248 4552 4855 5057 5562
L [mm] 7 7 8 8 10 10 10 10
[mm] 6 6 6,6 6,6 8,6 8,6 8,6 8,6
dtD [mm] 56 64 60 68 63 71 65 73 70 79 71 80 75 84 80 91
L [mm] 12 12 12 12 14 14 14 17
[mm] 10,4 10,4 10,4 10,4 12,2 12,2 12,2 15
dtD [mm] 85 96 90101 95107 100114 110124 120134 130148 140158
L [mm] 17 17 17 21 21 21 28 28
[mm] 15 15 15 18,7 18,7 18,7 25,3 25,3
A gyűrűpár méretei a táblázat alapján (dt = 30 mm): L = 6,3 mm, és = 5,3 mm. Ezzel egy gyűrűpár által átvihető maximális (megcsúszási) nyomaték: d d2 T1 p meg d t t p meg t 2 2 2 30 T1 0.12 40 5.3 35965 Nmm 36 Nm 2 A szükséges súrlódási nyomaték: A z gyűrűpár által átvitt nyomaték:
Ts = cTn = 1,550 = 75 Nm.
Ts T1
1 qz , 1 q 12
q
tg , tehát tg 2 tg
q
tg (16,7) 0,556 tg (16,7) 2 tg (6,84)
Meghatározandó a z - a gyűrűpárok száma, amely a fenti egyenletből kifejezhető: T ln 1 s 1 q T1 , z ln q
tehát
75 ln 1 1 0,556 36 4,4 z ln 0,556
Ezzel a szükséges gyűrűpárok száma: z = 5. A ténylegesen szükséges axiális befeszítő erő (Fax ) két részből tevődik össze: - a szerelési hézag =1+2 megszüntetéséhez szükséges Fo axiális erőből; - a nyomaték átszármaztatását adó F1 erőből. Fax= F0+F1 ,
ahol az F1 erő az előzőekből ismert.
Az F0 axiális erő közelítéssel számítható: F0
D
2 E At tg
0,149 2 2,1 10 5 6,63 tg (16,7) 0,12) 15630 N 35
ahol: - (= 1+2), az illesztésből adódó legnagyobb játék (NJ), = 0,149 mm (lásd a tűréstáblázatot) D - a külső gyűrű átmérője, D = 35 mm. E - a gyűrűk rugalmassági modulusa, E = 2,1105 MPa At - a külső vagy belső gyűrű tengelyirányú metszetének területe: D dt 35 30 At 5,3 6,63 mm 2 4 4 Az illesztésekhez javasolt értékek: Tengelyátmérő (dt) 0 – 36 mm-ig 36 mm felett
Gyűrűk Javasolt tűrés tűrése tengelyre furatra E7/f7 h6 H7 E8/e8 h8 H8
Tűrések értékei (NJ-hoz szükséges értékek): dt
E7,E8 h6,h8 H7,H8 f7,e8
D
[mm] [mm] [mm]
[mm]
[mm]
dt D
E7,E8 h6,h8 H7,H8 f7,e8
[mm] [mm] [mm] [mm]
[mm]
[mm]
dt D
E7,E8 h6,h8 H7,H8 f7,e8
[mm] [mm] [mm] [mm]
[mm]
[mm]
[mm]
18
22
0,050 -0,011 0,021 -0,041
45
52
0,089 -0,039 0,046 -0,106
80
91
0,106 -0,046 0,054 -0,126
20
25
0,061 -0,013 0,021 -0,041
50
57
0,089 -0,039 0,046 -0,106
85
96
0,126 -0,054 0,054 -0,126
22
26
0,061 -0,013 0,021 -0,041
55
62
0,106 -0,046 0,046 -0,106
90 101
0,126 -0,054 0,054 -0,126
25
30
0,061 -0,013 0,021 -0,041
60
68
0,106 -0,046 0,046 -0,106
95 107
0,126 -0,054 0,054 -0,126
30
35
0,061 -0,013 0,025 -0,050
65
73
0,106 -0,046 0,046 -0,106 100 114
0,126 -0,054 0,054 -0,126
35
40
0,075 -0,016 0,025 -0,050
70
79
0,106 -0,046 0,046 -0,106 110 124
0,126 -0,054 0,063 -0,148
40
45
0,089 -0,039 0,039 -0,089
75
84
0,106 -0,046 0,054 -0,126 120 134
0,126 -0,054 0,063 -0,148
13
Járműelemek I. (KOJHA 172)
BUDAPESTI MŰSZAKI ÉS GAZDASÁGTUDOMÁNYI EGYETEM Közlekedésmérnöki Kar
Ssz.: C/.
Név: .
. .
Ssz.:
C/. . . .
l [mm]
Tmax [Nm]
Tengelykötés kisfeladat (C típus) Kúpos kötés
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Járműelemek és Hajtások Tanszék
Neptun kód.: .
. . . . . . . .
SZÁMÍTÁSI EREDMÉNYEK pmax [MPa]
α [°]
k [kúpossá g]
α [rad]
d1 [mm]
rk [mm]
Fa [N]
Tsmax [Nm]
gyakorlatvezető
Budapest, 20.....................................
ADATVÁLASZTÉK Ssz. 1 2 3 4 5 6 7 8 9 10
Tn
dt
pmeg
[Nm]
[mm]
[MPa]
63 110 95 110 155 245 350 475 640 945
25 28 30 32 35 40 45 50 55 60
60 60 35 40 55 65 40 45 65 70
c
Tárcsa
Agy anyaga
2,9 2,1 2,1 2,4 2,9 3,1 2,1 2,5 3,1 3,1
ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék
acél acél öntöttvas öntöttvas acél acél öntöttvas öntöttvas acél acél 14
11 12 13 14 15 16 17 18 19 20 21 22 23 24
1000 1000 2000 1875 1800 2375 3150 4750 3300 4200 1650 1900 1650 2400
65 70 75 80 85 90 95 100 105 110 75 80 80 90
45 35 70 55 40 40 55 70 35 40 55 55 40 45
2,5 2,5 2,7 2,9 2,9 2,5 2,9 2,7 2,5 2,7 2,7 2,7 2,5 2,9
ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék ékszíj fogaskerék
öntöttvas öntöttvas acél acél öntöttvas öntöttvas acél acél öntöttvas öntöttvas acél acél öntöttvas öntöttvas
15
A kisfeladat elkészítéséhez szükséges eszközök: - az Általános Formai Követelményeknek megfelelően előkészített számítási lapok; - számológép. TENGELYKÖTÉS KISFELADAT (C típus) RÉSZLETEZÉSE: Számítsa ki az ábrán látható kúpos kötés megadott jellemzőit az adatválasztékból kapott, és az alábbi kiinduló adatok alapján. acél c=… v=0,25...0,5dt /dt=1,2 /dt=1,6 Súrlódási tényező acél-acél párosításnál: =0,12 acél-öv. párosításnál: =0,1
Tengely anyaga: Biztonsági tényező: Kialakítástól és anyagminőségtől függően az agyvastagság: A kötéshossz/átmérő viszony acél-acél párosításnál: acél-öv. párosításnál:
A vázlaton a kúppalást legnagyobb átmérője megegyezik a tengelyátmérővel. A kötéssel a táblázatban megadott Tn névleges nyomatékot kell átvinni legalább c-szeres biztonsággal. Az agy acélból vagy öntöttvasból készül, a felületi terhelés megengedett legnagyobb értéke a táblázatban található. A kúposság szabványos (1:3, 1:4, 1:5, 1:6, 1:7, 1:8, 1:10, 1:12, 1:15, 1:20). A megoldás menete: 1. Határozza meg a kúposság értékét, amellyel a megengedett felületi terelés legjobban kihasználható. Ez esetenként iterációs számítást igényel: kúposság
félkúpszög
kis átmérõ
felületi terhelés
2. Határozza meg a kifejtendő tengelyirányú erő nagyságát. A tengelyirányú befeszítéshez 10.9 minőségű, finommenetű csavarokat használjon, adja meg ezek méretét és meghúzási nyomatékát. A számításhoz használhatóak az alábbi táblázatok (2.1/a és b), lineáris interpolációval. 3. Határozza meg a kötés várható legnagyobb (megcsúszási) nyomatékát, ha a felületi terhelés a megengedhető legnagyobb értéket veszi. 4. A számítási lapokat összetűzve, a Tanszéki Általános Formai Követelményeknek megfelelően készítse el! A kapott eredményeket a Feladatlapon elhelyezett SZÁMÍTÁSI EREDMÉNYEK táblázatban fel kell tüntetni! A 2.1/a és 2.1/b táblázatok megkönnyítik a befeszítő csavarok kiválasztását. A táblázatban szereplő jelölések: Tm [Nm] - a csavar meghúzási nyomatéka; Fe [N] - a csavarban a meghúzási nyomaték hatására keletkező húzóerő, adott anyagminőség és menetátmérő esetére.
16
Befeszítő csavarok meghúzási nyomatékai és előfeszítő erői (normál menet) 6.8 M4 M5 M6 (M7) M8 (M9) M10 M12 M14 M16 M18 M20 M22 M24 M27 M30
Tm 2,4 5 8,5 14 21 30 41 72 115 180 245 345 465 600 890 1200
8.8 Fe Tm 3250 2,9 5350 6 7550 10 11100 16 13900 25 18600 36 22100 49 32400 86 44300 135 61500 210 74000 290 96000 410 119000 550 138000 710 181000 1050 221000 1450
10.9 Fe Tm Fe 3900 4,1 5450 6350 8,5 8950 9000 14 12600 13200 23 18500 16500 35 23200 22000 51 30900 26200 69 36900 38300 120 54000 52500 190 74000 73000 295 102000 88000 405 124000 114000 580 160000 141000 780 199000 164000 1000 230000 215000 1500 302000 262000 2000 368000
2.1/a táblázat 12.9 Tm Fe 4,9 6550 10 10700 17 15100 28 22200 41 27900 61 37100 83 44300 145 64500 280 88500 355 123000 485 148000 690 192000 930 239000 1200 276000 1800 363000 2400 442000
Befeszítő csavarok meghúzási nyomatékai és előfeszítő erői (finom menet) 6.8 M81,00 M101,25 M121,25 M121,50 M141,50 M161,50 M181,50 M201,50 M221,50 M242,00 M272,00 M302,00
Tm 23 44 76 80 125 190 275 385 520 650 970 1350
8.8 Fe Tm 15300 27 23900 52 34300 90 36500 95 49500 150 66500 225 87000 325 110000 460 136000 610 154000 780 201000 1150 253000 1600
10.9 Fe Tm 18100 38 28300 73 40700 125 43300 135 58500 210 79000 315 103000 460 130000 640 161000 860 183000 1100 238000 1600 300000 2250
Fe 25500 39800 57000 61000 82500 111000 145000 183000 226000 257000 335000 422000
2.1/b táblázat 12.9 Tm Fe 45 30600 88 47700 150 68500 160 73000 250 99000 380 133000 550 174000 770 220000 1050 271000 1300 309000 1950 402000 2700 506000
Megjegyzés: A táblázat értékei =0,14 értékkel kerültek meghatározásra.
17
Megoldási útmutató Kiinduló adatok: Névleges nyomaték: Tengelyátmérő: Meg. felületi nyomás: Dinamikus tényező: Kötés hossz/átmérő: Súrlódási tényező: Tengely anyaga: Agy anyaga: Választható kúposság:
Tn = 1450 Nm dt = 70 mm (= d2) pmeg = 40 MPa c = 1,4 /dt = 1,2 = 0,12 Fe 590-2 Fe 490-2 1:20, 1:15, 1:12, 1:10, 1:8, 1:7, 1:6, 1:5, 1:4, 1:3
Kidolgozás: A kötés hossza: = 1,2dt = 1,270 = 84 mm Maximális nyomaték (Tmax Ts): Tmax =C Tn =1,41450 = 2030 Nm Ts A súrlódási nyomaték:
d 23 d13 Ts p , ahol p≤pmeg 12 sin A felületi nyomás értékét iteráció útján tudjuk kiszámítani. Keresendő az a szabványos kúposság, amelynél a felületi nyomás még éppen kisebb, mint a megengedett. Kiindulásképpen válasszuk az 1:8 kúposságot. Ekkor ha a félkúpszöget -val jelöljük, akkor: d d1 c 1 : 8 0,125 2 2 tan l innen: 0,125 1:8 arctan 3,58 2 Ezzel a kisebbik átmérő: d1,1:8 d 2 2 l tan 1:8 70 2 84 tan 3,58 59,49mm
Most már számítható a felületi terhelés:
p1:8
12 sin 1:8 Ts 12 sin 3,58 2030000 30,5MPa 3 3 d 2 d1,1:8 0,12 703 59,493
Ez az érték túl sokkal van a megengedett érték (40 MPa) alatt, így végezzük el a számítást az 1:3 kúpossággal: Az új félkúpszög:
1:3 arctan
0,333 9,46 2
És a kisebbik átmérő: d1,1:3 d 2 2 l tan1:3 70 2 84 tan 9,46 42mm
Ezzel újra a felületi terhelés: 18
p1:3
12 sin 1:3 Ts 12 sin 9,46 2030000 39,5MPa 3 3 d 2 d1,1:3 0,12 703 423
Mivel ez az érték éppen kisebb a megengedettnél, így a továbbiakban az 1:3 kúpossággal számolunk, azaz: pmax = 39,5 MPa,
= 9,46,
d1 = 42 mm.
A Tmax = Ts csavarónyomaték átviteléhez szükséges axiális erő: T sin 1:3 cos 1:3 2030000 sin 9,46 0,12 cos 9,46 Fa s 167351 N rk 0,12 28,58 ahol a közepes sugár: 3 3 1 d 23 d13 1 70 42 rk 2 28,58mm 3 d 2 d12 3 70 2 42 2
Az Fa axiális szorítóerő létrehozásához 10.9 minőségű finommenetű csavarokat használunk (2.1/b táblázat). A d1 tengelyátmérőt figyelembe véve pl. 3db M121,25 csavarral oldható meg. A csavar maximális előfeszítő ereje: Fe,cs = 57000 N, a hozzá tartozó meghúzási nyomaték: Tm,cs = 125 Nm. A szükséges meghúzási nyomaték (lineáris interpolációval): Fa 167351 T1 Tm,cs 125 122,3 Nm n Fe,cs 3 5700 A kötés várható legnagyobb (megcsúszási) nyomatéka, ha a felületi terhelés a megengedett legnagyobb értéket veszi fel (a korábban meghatározott 1:3 kúpossággal): d 3 d13 703 423 Ts. max pmeg 2 0,12 40 2055,6 Nm 12 sin 1:3 12 sin 9,46
19