Interaksi antara tumbuhan dan hewan Andrew J. Marshall Kuliah Lapanagan Taman Nasional Gunung Palung 1-10 Juni 2015
Interaksi antara tumbuhan dan hewan • Tipe interaksi antara hewan dan tumbuhan • Fenologi di hutan tropis • Bagaimana habitat mempengaruhi hewan
Interaksi antara tumbuhan dan hewan > Tipe interaksi antara hewan dan tumbuhan • Fenologi di hutan tropis • Bagaimana habitat mempengaruhi hewan
Interaksi antara tumbuhan dan hewan CO2
Daun: sumber energi untuk tumbuhan sumber makanan untuk hewan
O2
Tumbuh-tumbuhan “mau” hindari jadi makanan untuk hewan. Masukkan beberapa tipe racun dalam daunya, jadi pemakan daun perlu adaptasi tertentu untuk melawan rancun-racunan.
Interaksi antara tumbuhan dan hewan Biji: anak pohon makanan hewan Tumbuh-tumbuhan “mau” hindari anaknya jadi makanan untuk hewan. Masukkan beberapa tipe racun dalam biji atau bikin biji keras sekali, jadi pemakan daun perlu adaptasi tertentu untuk melawan rancun-racunan.
Interaksi antara tumbuhan dan hewan
Buah: strategi untuk penyebar biji sumber makanan untuk hewan Tumbuh-tumbuhan “mau” buah dimakan hewan (asal biji tetap utuh). Kerja sama!
Interaksi antara tumbuhan dan hewan • Tipe interaksi antara hewan dan tumbuhan > Fenologi di hutan tropis • Bagaimana habitat mempengaruhi hewan
Fenologi hutan tropis
Jul 91
Apr 91
Jan 91
Oct 90
Jul 90
Apr 90
Jan 90
Oct 89
Jul 89
Apr 89
Jan 89
Oct 88
Jul 88
Apr 88
Jan 88
Oct 87
Jul 87
Apr 87
Jan 87
Oct 86
Jul 86
16 14 12 10 8 6 4 2 0 Apr 86
Jan 86
TFA (patches/ha)
A
16 14 12 10 8 6 4 2 0 # taxa with fruit
Fenologi hutan tropis
Marshall (2004)
% of diet
Jan-Mar 88 (40)
time
Jan-Mar 91 (11)
Oct-Dec 90 (13)
Jul-Sep 90 (13)
Apr-Jun 90 (15)
Jan-Mar 90 (15)
Oct-Dec 89 (25)
Jul-Sep 89 (11)
Jan-Mar 91 (8)
Oct-Dec 90 (13)
Jul-Sep 90 (17)
Apr-Jun 90(27)
Jan-Mar 90 (28)
Oct-Dec 89 (29)
Jul-Sep 89 (26)
Apr-Jun 89 (4)
Jan-Mar 89 (12)
Oct-Dec 88 (21)
Jul-Sep 88 (12)
Apr-Jun 88 (49)
time
Apr-Jun 89 (8)
Jan-Mar 88 (45)
Oct-Dec 87 (57)
Jul-Sep 87 (25)
Apr-Jun 87 (14)
Jan-Mar 87 (28)
time time
Jan-Mar 89 (18)
Oct-Dec 88 (24)
Jul-Sep 88 (24)
Apr-Jun 88 (37)
60%
Oct-Dec 87 (45)
70%
Jul-Sep 87 (71)
80%
Apr-Jun 87 (320)
90%
Jan-Mar 87 (49)
Oct-Dec 86 (35)
30%
Oct-Dec 86 (35)
40%
Jul-Sep 86 (19)
Apr-Jun 86 (36)
Jan-Mar 86 (31)
% %Feeding Observations total feeding observations 50%
Jul-Sep 86 (26)
Apr-Jun 86 (57)
Jan-Mar 86 (38)
% total feeding observations
% of diet
100% 90%
80%
70%
kelempiau
60%
Leaves Figs Fruit pulp+ seeds Flowers
20%
10%
0%
100%
Seeds Leaves Figs Fruit pulp Flowers
kelasi
50%
40%
30%
20%
10%
0%
Fenologi hutan tropis
Perbandingan antara lokasi dan tipe hutan Musim buah raya di Borneo
Fenologi hutan tropis
Perbandingan antara lokasi dan tipe hutan Musim buah raya di Borneo
Sumatra
Borneo Borneo
Marshall et al. (2009); Wich & Marshall (2012)
maps maps
Satsiun Penelitian Cabang Panti, Taman Nasional Gunung Palung
maps
Satsiun Penelitian Cabang Panti % tree species shared with another habitat types max mean min
PS
FS
11 9.5 8
Tujuh tipe hutan
AB LS LG UG MO 19 22 22 15 14 10 15 16.5 16 11.5 10.5 8.5 11 11 10 8 7 7
tanah, ketinggian, cuaca -> jenis tumbuhan berbeda UB Ridge Average STDEV 30.13404255 1.454735728 SK 2-max 22.84042553 0.738273871 SK 2-min 143.0340426 118.8802679 SK 2-hujan
DT 5-max DT 5-min DT 5-hujan DR 11-max
% tree DR 20 11-min species DR 11-hujan shared with !&"# UB 15-max other habitats 15-min (max, mean,UB 15 !$%# & min; UB 15-hujan pairwiseDT 5-max !!"# NB13-max comparisons DT 5-min "'%# NB13-min 10 among DTNB13-hujan 5-hujan habitats) DR UB11-max 53-max DR UB11-min 53-min DR UB11-hujan 53-hujan
5 !&"#!"#$
avg rainfall 73-max (10 day UBUB15-max UB UB15-min 73-min !$%# period, mm)
UB UB15-hujan 73-hujan
!!"#
UB 88-max NB13-max UB 88-min"'%# NB13-min min UB 88-hujan NB13-hujan
max, ()# temperature ("# (10 day UB 53-max period, C)UB 53-min $
!+#
UB 53-hujan
"'%#
UB 73-max UB 73-min UB 73-hujan UB 88-max
30.10638298 22.23404255 130.2404255
1.317340682 SC 7-max 3.138836518 SC 7-min 102.4921281 SC 7-hujan
30.26702128 2.364840334 GP 35-max 21.72340426 1.58693336 GP 35-min UB Ridge 143.3744681 128.8278397 GP 35-hujan Average STDEV 30.13404255 1.454735728 SK 2-max 28.00106383 1.373386185 TK 22-max 22.84042553 SK !'%# $'%# 0.738273871 ('%# &'%# %'%# 21.17021277 0.890434948 TK 2-min 22-min 143.0340426 126.7765957 118.8802679 87.91246055 SK TK 2-hujan 22-hujan
30.10638298 28.60957447 1.317340682 9.626065472 SC MR 7-max 2-max 22.23404255 20.91489362 3.138836518 0.722398715 SC MR 7-min 2-min 130.2404255 117.9940426 102.4921281 85.10232875 SC MR 7-hujan 2-hujan
%"#$
&"#$
GP ridge Average STDEV 30.65558621 2.3872342 22.71551724 1.314934689 121.8651724 100.1716091
'"#$
("#$
#"#$
31.23684211 22.66896552 121.4806897
2.232281951 0.855161193 105.3540278
30.60344828 25.6637931 GP ridge 113.3768966 Average 30.65558621 29.37931034 22.71551724 )'%# *'%# 21.56896552 121.8651724 101.96
1.541128035 26.39367746 95.06716228 STDEV 2.3872342 1.897159337 1.314934689 1.95216541 100.1716091 85.65333369
31.23684211 0.922143076 2.232281951 27.69827586 22.66896552 1.490365307 0.855161193 21.73275862 121.4806897 105.3540278 121.477931 93.26856545
)"#$
*"#$
30.26702128 24.9787234 2.364840334 1.929180948 GP 35-max 80-max 21.72340426 1.58693336 GP 35-min 19.28723404 1.025814158 80-min 143.3744681 131.5978723 128.8278397 96.87636705 GP 35-hujan 80-hujan
30.60344828 2.065014805 1.541128035 28.74655172 25.6637931 1.060802753 26.39367746 20.95689655 113.3768966 85.38255683 95.06716228 107.7993103
26.92391304 28.00106383 !'%# $'%# 17.35869565 21.17021277 126.1630435 126.7765957
26.3362069 1.292311716 29.37931034 1.897159337 )'%# *'%# 1.268451238 19.47413793 21.56896552 1.95216541 107.3596552 84.9438494 101.96 85.65333369
2.216020937 TK GP 90-max 1.373386185 22-max ('%# &'%# %'%# 1.319356087 GP 90-min 0.890434948 TK 22-min 91.1153856 TK GP 90-hujan 87.91246055 22-hujan
28.60957447 9.626065472 MR 2-max 27.69827586 0.922143076 20.91489362 0.722398715 MR 2-min 21.73275862 1.490365307 FS 2-hujan AB 121.477931 LS93.26856545 117.9940426 PS 85.10232875 MR Max temp 30.39481438 30.67161254 30.43523478 28.69018709 !'%# $'%# 22.77797139 ('%# &'%# %'%# )'%# *'%# Min temp 23.69359868 24.9787234 1.929180948 GP30.43523478 80-max 28.74655172 21.36958914 2.065014805 19.28723404 1.025814158 GP 80-min 20.95689655 1.060802753 133.9043432 127.1778983 130.7405227 131.5978723 96.87636705 GP 80-hujan 107.7993103 85.38255683 rainfall 132.4496075 125.8605576 128.3756823 114.3682979 130.9948718 122.7217211 -0.452157413 26.92391304 2.216020937 GP 90-max 26.3362069 1.292311716
PS
FS
AB
LS
LG
FOREST TYPES
UG
MO
Jumlah tipe makan yg tersedia per bulan Musim buah raya Bulan dgn banyak buah Bulan dgn sedikit buah
Jul 91
Apr 91
Jan 91
Oct 90
Jul 90
Apr 90
Jan 90
Oct 89
Jul 89
Apr 89
Jan 89
14 12 10 8 6 4 2 0
Oct 88
Pegununungan 4.5 4 3.5 3 2.5 2 1.5 1 0.5 0
Rawa gambut
Musim kelaparan
# taxa with fruit
Jul 91
Apr 91
Jan 91
Oct 90
Jul 90
Apr 90
Jan 90
Oct 89
Jul 89
Apr 89
Jan 89
Oct 88
Jul 88
Apr 88
Jan 88
Oct 87
Jul 87
Apr 87
Jan 87
Oct 86
Hutan dataran rendah
14 12 10 8 6 4 2 0
# taxa with fruit
16 14 12 10 8 6 4 2 0
# taxa with fruit
Jul 91
Apr 91
Jan 91
Oct 90
Jul 90
Apr 90
Jan 90
Oct 89
Jul 89
Apr 89
Jan 89
Oct 88
20 18 16 14 12 10 8 6 4 2 0
Jul 88
Apr 88
Jan 88
Oct 87
Jul 87
Apr 87
Jan 87
Oct 86
Jul 86
Apr 86
Jan 86 A
Jul 88
Apr 88
Jan 88
Oct 87
Jul 87
Apr 87
Jan 87
Oct 86
Jul 86
Apr 86
Jan 86
TFA (patches/ha) 16 14 12 10 8 6 4 2 0
Jul 86
Apr 86
Jan 86
TFA (patches/ha)
TFA (patches/ha)
Jumlah sumber makan kelempiau
Fenologi hutan tropis
Perbandingan antara lokasi dan tipe hutan Musim buah raya di Borneo
1986
Jan 87
Oct 86
Jul 86
1987
Apr 88
1988
Apr 89
Jan 89
Oct 88
Jul 88
1989
Waktu (tahun) Apr 90
1990
0 Apr 91
Jan 91
Oct 90
Jul 90
1991 Jul 91
musim buah raya
Jan 90
Oct 89
Jul 89
6
Jan 88
Oct 87
Jul 87
Apr 87
14
Apr 86
Jan 86
Jumlah pohon makanan per ha
Sumber makanan kelasi, Jan. 1986 - Okt. 91
16
musim buah raya
12
10
8
musim kelaparan
4
2
Marshall 2004
expected across all months is indicated by the solid black line while 95% confidence (b) limitsLetter are shown by the dashed black lines. The thin grey line illustrates a single replicate of random fruiting behaviour. Frequency distribution of reproductive levels by month (n) (d) follow: (h) montane; (i) upper granite; (j) lower granite; (k) lower sandstone; (l) alluvial (c) bench; (m) freshwater swamp; and (n) peat swamp. Barcharts illustrate observed levels of reproduction. Black curves assume a single season, grey curves assume a mixed model with two seasons. (e)
(i)
Landscape lev
(g)
(a) behaviour over (g) (k) 68 months in a Bornean rainforest for different forest types. (a) montane (mean (j) N month)1 = 283, min = 266, max = 301); (b) upper granite (mean N month)1 = 640, min = 504, max = 678); (c) lower granite (mean N month)1 = 673, min = 572, max (b) = 696); (d) lower sandstone (mean (l) Figure)14 =Fruiting N month 1023, minbehaviour = 911, maxover = Gambut rainforest )1for Pegunungan (k) (d) 68 (e) months in bench a Bornean 1049); alluvial (mean N month different forest types.= (a) montane (mean = 646, min =)1 578, max 671); (f) freshwa)1 = 301); = 283, min = 266, max N month ter swamp (mean N month )1= 870, (b) upper granite (mean month =in640, reproductive prolowN(g) variability reproductive productivity as the and in reproductive (c) granite climbers (Fig. S3),mean variability prolow variability in reproduct min = 676, max = 922); and peat swamp min = 504, max = 678); (c) lower granite )1 andstone, climbers maximum values foris the lowland are (mean N month = 688, minproductivity = 610, ductivity quite high.sandstone In the lowland sandstone, climbers maximum productivity valu (mean N month)1 = 673, min = 572, max ,max ranking substanquite are low.shown The freshwater swamp (f) climber community was = 701). Observed values in consistently reproductive, ranking substanquite low. The(m) freshwater = 696); (d) lower sandstone (mean were the most (e) (l) the second most consistently reproductive of the seven cross the observa)1 The average level of fruiting thickNgrey line. the second most consiste month = 1023, min = 911, max = tially higher than all other forest types across the observaforest types examined. ely due to the very )1 expected across all months is indicated by 1049); (e) alluvial bench (mean N month forest types examined. tion period. This high relative rank is largely due to the very the = solid 646,black min =line 578,while max =95% 671);confidence (f) freshwaFigure 4 Fruiting behaviour over )1 lines. limitsterare swamp shown by(mean the dashed black N month = 870, (d) ! months 2007 Blackwell 68 in aPublishing BorneanLtd/CNRS rainforest for The min thin =grey illustrates a single replicate 676,line max = 922); and (g) peat swamp ! different forest types. (a) montane (mean )1 (mean fruiting N monthbehaviour. = 688, Frequency min = 610, of random )1 = 283, min = 266, max = 301); N month(g) (f) (m) (n) max = 701). Observed values are shown in distribution of reproductive levels by month (b) upper granite (mean N month)1 = 640, thick(h) greymontane; line. The (i) average of fruiting follow: upperlevel granite; (j) min = 504, max = 678); (c) lower granite expected across all months is indicated lower granite; (k) lower sandstone; (l) alluvialby (mean N month)1 = 673, min = 572, max the (m) solidfreshwater black line swamp; while 95% bench; and confidence (n) peat = 696); (d) lower sandstone (mean (e) limits are shown by the dashed black lines. N month)1 = 1023, min = 911, max = swamp. Barcharts illustrate observed levels The thin grey line illustrates a single replicate 1049); (e) alluvial bench (mean N month)1 of reproduction. Black curves assume a of random fruiting behaviour. Frequency = 646, min (g)= 578, max = 671); (f) freshwa= % pohon dengan (n) buah single season, grey curves assume distribution of reproductive levels abymixed month )1 ter swamp (mean N month = 870, model with (h) twomontane; seasons. (i) upper granite; (j) follow:
Figure 4 Fruiting
lower granite; (k) lower sandstone; (l) alluvial bench; (m) freshwater swamp; and (n) peat
min = 676, max = 922); and (g) peat swamp Dataran rendah (mean N month)1 = 688, min = 610,
Cannon, Curran, Marshall & Leighton 2007 Ecol. Lett.
Ficus
Liana
(rata-rata) tidak
Pohon kecil
berbuah raya
Pohon besar
Cannon, Curran, Marshall & Leighton 2007 Ecol. Lett.
Marshall & Leighton (2006)
time
Porterandia sessiliflora Aug 91
May 91
Feb 91
Nov 90
Aug 90
May 90
Feb 90
Nov 89
Aug 89
May 89
Feb 89
Nov 88
20
Aug 88
25
Aug 91
May 91
Feb 91
Nov 90
Aug 90
May 90
Feb 90
Nov 89
Aug 89
May 89
Feb 89
Nov 88
Aug 88
May 88
Feb 88
Nov 87
time
Neoscortechinia kingii
Aug 91
May 91
Feb 91
Nov 90
Aug 90
May 90
Feb 90
Nov 89
Aug 89
May 89
Feb 89
Nov 88
Aug 88
May 88
Feb 88
Nov 87
Aug 87
20
May 88
time Aug 87
May 87
Feb 87
Nov 86
Aug 86
May 86
Feb 86
Food/ha 25
Feb 88
May 87
Feb 87
Nov 86
Aug 86
May 86
Feb 86
Food/ha 20
Nov 87
Aug 87
May 87
Feb 87
Nov 86
Aug 86
May 86
Feb 86
Food/ha
30
Musim buah raya
15
10
5
0
30
25
15
Musim berbuah biasa
10
5
0
Rourea major
30
Musim buah sedikit
15
10
5
0
Berbuah raya v. musim-musim tertentu
Average rainfall, Davis, CA 1930–2010 weather.com
Konjup, Southwest Australia Hill & Donald 2003
musim-musim tertentu
New South Wales, Australia
Berbuah raya v. musim-musim tertentu musim-musim tertentu
Average rainfall, Davis, CA 1930–2010 weather.com
tidak bermusim
Average rainfall, Ann Arbor, MI 1930–2010 weather.com
Berbuah raya v. musim-musim tertentu
Figure S1. Annual reproductive behavior of all woody plants. Monthly observations are plotted for each year of the percentage of the reproductive stems. Each year is indicated by a different type of line, as shown in the legend.
persen tumbuhan yg berbuah
4%
1991
1987
1990
1986
3%
1990
1989 1986 1987
1988
2% 1991 1989 1988
Feb
Apr
Jun
Aug
Oct
Dec
Monthly observations (excluding masts)
tidak begitu bermusim
Landscape level Bornean plant reproduction, Cannon et al. figures
Cannon, Curran, Marshall & Leighton (2007) Ecology Letters
Seed exports (millions of kg of dry mass)
El Niño Southern Oscillation (ENSO) years
Year
June–Sept rainfall (mm)
Data hutan dari Pontianak, Kalimantan Barat
Non- ENSO
ENSO
Year
Interaksi antara tumbuhan dan hewan • Tipe interaksi antara hewan dan tumbuhan • Fenologi di hutan tropis > Bagaimana habitat mempengaruhi hewan
Kelempiau
(Hylobates albibarbis)
• Berat badan 5-6 kg • Menjaga wilayah sebesar 30-40 ha
T. Laman
• 2-7 individu per kelompok • satu laki-laki kawin sama satu betina
T. Laman
Kelasi
(Presbytis rubicunda rubida)
• Berat badan 5.5-7 kg • Wilayah sebesar 70-85 ha
T. Laman T. Laman • 2-11 individu per kelompok • satu laki-laki bisa kawin sama lebih dari satu betina
Dua jenis ini merupahkan contoh bagus untuk meneliti pertanyaan ekologi karena: • banyak informasi tentang jenis2 binatang ini sudah tersedia dari SPCP dan tempat lain • hewan2 tersebut mentempati beberapa macam hutan • berat badan hampir sama, tapi makanan dan sistem sosial jauh beda • hewan2 ini menjaga wilayah, dan tidak merantau ke tempat lain untuk cari makanan (seperti orangutan), jadi efek-efek kwalitas habitat lebih jelas dan mudah dilihat • kepadatan cukup tinggi, berarti dapat ambil sampel yang cukup besar untuk analisa statistik
kepadatan kelempiao log (indiv/km2)
Kepadatan kelempiau tergantung kepadatan Ficus 1.4 1.2 1 0.8 0.6 0.4 0.2 0 0
0.25
0.5
0.75
Kepadatan Ficus log (fig stems per ha) R2 = 0.70, p = 0.01, n = 7 habitats
1
Studi banding telah konfirmasikan ini juga benra di beberapa lokasi di seluruh Asia
Gibbon biomass log (kg/km2)
2.4 2.2 2
n= 11 sites, r2 = 0.82 p= 0.0001
1.8 1.6 1.4 1.2 1 0
0.25 0.5 0.75
1
1.25 1.5 1.75
Kepadatan Ficus log (fig stems per ha)
Dinamika populasi sumber-saluran (“source-sink”) • Variasi antara tipe hutan dan angka perkembangan populasi (“r”) tergantung populasi, sehingga: r > 0 = sumber r < 0 = saluran
• Dalam daerah dengan beberapa tipe hutan, populasi dapat bertahan di saluran jika ada immigrasi dari sumber
Group density score (individuals/km2)
FIGURE 3.
10 9
B
Dinamika populasi sumber-saluran di Gunung Palung? A
Kwalitas wilyah
(# individuals/km2)
(# individuals/km2 dalam wilayah)
A
10 9
6 5 4 3 2 1
Jumlah individu 0 200 600 800 1000 per400 kelompok Altitude midpoint of territory (m asl) n = 33 groups, R2 = 0.50, p < 0.0001
n = 33 groups, R2 = 0.81, p < 0.0001
6
B
C
8 7
5
6 5 4 3
4
3
2 1 0
2
0 200 400 600 800 1000 Altitude midpoint of territory (m asl)
0
200
400 600 Altitude (m asl)
800
1000
37
10 9
7
0
Group size
n = 7 forest types, R2 = 0.72, p = 0.02
Group density score (individuals/km2)
Kepadatan
8
B
6
C
Marshall 2009 Biotropica
Kelasi juga? 9 Effect of Habitat Quality on Primate Populations in Kalimantan
169
r2 = 0.77, p < 0.0004, n=11
Kwalitas wilayah (# individuals/km2 in territory)
tipe hutan lain rawa gambut
Fig. 9.5 Territory-specific population density (individuals/km2, defined as the territory specific Marshall 2010 habitat-quality, as in Fig.9.3) of gibbons (a) and leaf monkeys (b)inplotted altitudeIndonesian (meters Primates Supriatnaagainst & Gursky-Doyen’s 2
Dinamika populasi sumber-saluran (“source-sink”)
1,000
– “r” (reprod uctive rate)
r < 0 = saluran
meters apl
0 +
r > 0 = sumber 0