1 ERWIN ROMMEL-LUKITO PRASETYO2 Perilaku Struktur Balok Baja, Kayu atau Beton sbl. retak Distribusi Tegangan pada Potg. Lintang di tengah bentang3 Per...
Perilaku Struktur Balok Baja, Kayu atau Beton sbl. retak
Distribusi Tegangan pada Potg. Lintang di tengah bentang
Perilaku Struktur Balok Beton (retak)
Distribusi Tegangan pada Potg. Lintang di tengah bentang
Perilaku Struktur Balok Beton (retak)
Distribusi Tegangan pada Potg. Lintang di tengah bentang
Perilaku Struktur Balok Beton Bertulang
Distribusi Tegangan pada Potg. Lintang di tengah bentang
Baja Tulangan
Retak
Retak
Retak
Perilaku Struktur BETON PRATEGANG Distribusi Tegangan pada Potg. Lintang di tengah bentang
Distribusi Tegangan pada Potg. Lintang di tengah bentang
+ DsS
Konsep sistem Prategang
Prinsip beton prategang, gaya prategang berupa gaya
aksila tekan diberikan pada bagian-bagian beton untuk mengimbangi sebagian tegangan tarik yang timbul akibat beban-beban yang bekerja.
Dalam bidang rekayasa jembatan, pengenalan beton
prategang telah digunakan untuk mengatasi pembangunan jembatan beton bentang panjang. Biasanya jembatan tipe ini disusun dari unit-unit pracetak kemudian disambungkan dan dikencangkan dengan kabel prategang, ditempatkan pada posisi tumpuan jembatan.
Untuk jembatan pendek, pemakaian balok prategang sederhana telah terbukti ekonomis
Range penampang balok standar telah diberikan untuk menyederhanakan desain dan pelaksanaan konstruksi jembatan.
BOX GIRGER
DOUBLE T-BEAM
SILO STRUCUTRE
EQUIPMENT AND MATERIAL PRESTRESSING
ANCHORAGE & STRESSING JACK (1)
ANCHORAGE & STRESSING JACK (2)
STRESSING JACK (1)
STRESSING JACK (2)
STRESSING JACK (3)
TENDON (1)
TENDON (2)
STRAND
MTW
METODE DAN SISTEM PRATEGANG
Pre-tensioning is used to describe a method of
prestressing in which the tendons are tensioned before the concrete is placed, and the prestress is transferred to the concrete when a suitable cube strength is reached.
Post-tensioning is a method of prestressing in which the tendon is tensioned after the concrete has reached a suitable strength. The tendons are anchored against the hardened concrete immediately after prestressing.
Stage 1 Tendons and reinforcement are positioned in the beam mould.
Stage 2
Stage 3
Tendons are stressed to about 70% of their ultimate strength.
Concrete is cast into the beam mould and allowed to cure to the required initial strength.
Stage 4 When the concrete has cured the stressing force is released and the tendons anchor themselves in the concrete.
Stage 1 Cable ducts and reinforcement are positioned in the beam mould. The ducts are usually raised towards the neutral axis at the ends to reduce the eccentricity of the stressing force.
Stage 2
Stage 3
Stage 4
Concrete is cast into the beam mould and allowed to cure to the required initial strength.
Tendons are threaded through the cable ducts and tensioned to about 70% of their ultimate strength.
Wedges are inserted into the end anchorages and the tensioning force on the tendons is released. Grout is then pumped into the ducts to protect the tendons.
*In contrast to reinforced concrete, the design of
prestressed concrete members is initially based upon the flexural behaviour at working load conditions. *The ultimate strength of all members in bending, shear and torsion is then checked, after the limit states of serviceability have been satisfied. *The prime function of prestressing is to ensure that only limited tensile stresses occur in the concrete under all conditions within the working range of loads. *To satisfy the limit state of cracking it is necessary to satisfy the stress limitations for the outermost fibres of a section.
*In general the stress limitations adopted for bridges are identical to BS8110 : Part 1: Clause 4.1.3. When considering the serviceability limit state of cracking of prestressed concrete members, three classifications of structural members are given : *Class 1 : No tensile stresses; *Class 2 : Flexural tensile stresses, but no visible cracking; *Class 3 : Flexural tensile stresses, but surface crack widths not exceeding a maximum value (0.1mm for members in aggressive environments and 0.2mm for all other members)
The allowable compressive and tensile stresses for bonded Class 1 and Class 2 members at transfer and service load are provided by BS8110 and summarised as follows :
Compression Tension : Class 1 Class 2: Pretensioned Postensioned
Transfer Condition 0.50 fci
Service Condition 0.33fcu
1.0 N/mm2 0.45 fci
0 0.45 fcu
0.36 fci
0.36 fcu
Stresses at transfer condition Pi Pi e M i ' f min Ac Zt Zt Pi Pi e M i ' Bottom fibre f max Ac Zb Zb Top fibre
Stresses at service condition Top fibre
Pi Ac
Pi e Zt
Ms f max Zt
Bottom fibre
Pi Ac
Pi e Zb
Ms f min Zb
Re-arranging the above inequalities by combining, the expressions for Zt and Zb can be obtained. These two inequalities may be used to estimate the preliminary section for design.