Biológiai membránok fizikája, diffúzió, ozmózis Dr. Nagy László
-Az anyagcsere és a transzportfolyamatok. - Makrotranszport : jelentős anyagmennyiségek transzportja : csöveken, edényeken keresztül : nagyobb távolságokban - Mikrotranszport : kis mennyiségben : diffúzió útján : kisebb távolságokban
Transzportfolyamat
Ami áramlik
Potenciál
Folyadékok és gázok transzportja
makroszkopikus anyag
nyomás (Dp)
Diffúzió
molekulák
koncentráció (Dc)
Hőcsere
hő
hőmérséklet (DT)
Elektromos áram
ionok, elektronok elektromos potenciál (DU) DU J Dx
Áramerősség: dm I dt
dt idő alatt egy kijelölt A felületen dm mennyiség áramlik át - a kijelölt A felületre jellemző - m lehet: tömeg, térfogat, elektromos töltés, stb Mértékegység: kg/s; m3/s; C/s (A); J/s…
Áramsűrűség: dI J dA
dI a dA felületen merőleges irányban átfolyó transzport erőssége - vektormennyiség (iránya = az áramlás irányával) - az áramlási tér minden pontján értelmezzük -differenciális jellemző Mértékegység: kg/s/m2; m3/s/m2; C/s/m2 (A/m2); J/s/m2…
Fajlagos vezetőképesség: dU J g dx
potenciálgrádiens fajlagos vezetőképesség áramsűrűség U: - potenciálfüggvény : - negatív grádiense bármely pontban megadja az e pontban ható hajtóerőt (potenciális energia, elektromos potenciál, hőmérséklet, koncentrációkülönbség) g: - általánosított (fajlagos) vezetőképesség
Pl.: Diffúzió esetén a potenciálgrádiens a koncentráció grádiense (dc/dx).
Diffúzió
c2
c1
c1> c2 a) Makroszkópikus megközelítés:
dc J g dx
m c (A v t )
dc J D , dx m2 D s
c és A egységnyi:
b) Molekuláris megközelítés: Az oldott anyag egyetlen molekulájának kémiai potenciálja: A kémiai potenciál gradiense:
f
m = m0 + kTlnc.
m ( x, t ) ln c( x, t ) k T c( x, t ) k T x x c x
Az A keresztmetszeten dt idő alatt áthaladt dn mólok száma: dn = cAū·dt. (ū = átlagsebesség)
c( x, t ) dn c A u dt D A dt x
Fick I. törvénye:
c x
dn c( x, t ) J D A dt x
adott helyen és időben állandó
Az egységnyi felületen átáramlott anyag mennyisége időegység alatt (a diffúzió sebessége) arányos a koncentráció grádiensével. Az arányossági tényező a D diffúziós állandó.
D függ: 1) hőmérséklet 1 3 2 m v k T 2 2
2) viszkozitás 3) tömeg 4) geometria
1 2
3 k T v m
D T m
k BT D 6 r
Einstein-Stokes kB = Boltzmann állandó T = abszolút hőmérséklet = viszkozitás r = a részecske sugara
1 2
Fick II. törvénye
Koncentráció grádiens.
c( x, t ) 2 c( x, t ) c ( x, t ) x D D t x x 2
Adott helyen a koncentráció változása az idővel arányos a koncentráció gradiensének a hellyel való változásával az adott időben.
x dc/dx
x0
x
Dc( x, t ) Dx
Megoldása és az abból származó következtetések:
M c( x , t ) e 2 D t
x2 4Dt
Speciális esetben: x2 M 1 1 c( x, t ) M e 4 Dt e
x(t ) 2 D t
M = a t=0 időpontban az origóban felszabadított anyagmennyiség D = diffúziós állandó x = távolság t = idő
Az agykéreg oxigénellátásnak modellje
x2 x(t ) 2 D t t 4D
Pl.:
D 10-9 m2s-1; x = 5 nm =510-9 m;
5 10 m t 9 2
m2 4 10 s 9
2
25 10 18 s 9 4 10
= 6.25 ns.
D 10-9 m2s-1; x = 50 mm =510-5 m;
= 0.625 s.
D 10-9 m2s-1; x = 1 m;
= 7.9 év.
Kis távolságban nagy hatékonyság!
Gázcsere az alveo-kapilláris membránon keresztül: Doxigén 110-9 m2s-1; DCO2 610-9 m2s-1; x = 1 mm =110-6 m; toxigén = 250 ms; tCO2 = 40 ms; Levegőben: Doxigén 210-5 m2s-1; DCO2 1.610-5 m2s-1
E. coli úszása:
F=m∙a=m(dv/dt)
Fs=6πμrv
dv m 6rv dt dv 6rv dt v m
v(t ) v0 e
t
2 107 s
d v(t )d (t ) v0 0
d=4∙10-10 cm = 0.04Å ≈ H-atom átmérője!
Az oxigén által megtett út:
x(t ) 2 D t x(t ) 2 10 9 m 2 s 1 2 10 7 s 2,8 10 8 m 28nm
Semleges részecskék membránegyensúlya
Ozmózis
Az ozmózis definíciója phydr = rgh = RTc= posm
V=1/c (hígítás)
pV = RT van’t Hoff törvény:
posm = RTc Híg oldatokra!
A víz kémiai potenciálja:
m m0 R T ln x V p Egyensúlyban:
Szemipermeábilis membrán. Desztillált víz. Vizes cukoroldat.
m1 m 2 A két nyomásérték különbsége:
pozm p2 p1
R T x ln 1 V x2
Nem híg oldatokra: 2 ccukor v víz posm RT ccukor 2
Ha ccukor
2 v víz
akkor posm RTc
vvíz: a víz moláris térfogata
Az ozmotikus nyomás additiv:
posm RT ci
1 osmolal 1 molal koncentrációjú anyag ozmózisnyomása. 0.1 molal NaCl → 0.2 osmolal 0.1 molal CaCl2 → 0.3 osmolal
Molalitás
mole oldott anyag 1000 g oldószer
Rault koncentráció; egysége : mole
kg
Becslése: RT20oC 2.44 MPa M-1 ha c = 0.3 molal akkor posm = 2.44 MPaM-1 0.3 M-1 0.73 MPa (7.3 bar) tengervízben: 2.6 MPa 260 m vízoszlop! az autógumikban: 0.2 MPa
Hogyan merhető? 1. Definíció szerint (a van’t Hoff törvény szerint):
Pfeffer féle ozmométer
phydr = rgh = RTc= posm
2. A Rault törvény alapján a forráspontemelkedés mérésével:
G' DT DTm M
G’: g oldott anyag 1000g oldószerben M: molekulatömeg DTm: molalis forráspontemelkedés Az oldószertől függ.
Izoozmotikus ↔ Izotóniás ??? Számolt
↔ Mért
Rejekciós hányados: 0 < s < 1 s = 1: az oldott anyagot nem engedi át ozmolalitás = tonicitás s = 0: az oldott anyagot teljesen átengedi ozmolalitás ≠ tonicitás (pl. biológiai membránoknál inkább tonicitás)
Az ozmózis biológiai jelentősége - keserűsós ( MgSO4) borogatás - iso-, hyper-, hypotóniás oldatok Fiziológiás sóoldat: 0.9 m/m% (~300 mOsm) NaCl (tengervíz: 3.5%) - dialízis, hemodialízis, peritoneal dialízis
-reverz osmózis
hemolízis
-Starling
effektus: ekvilibrium a plazma és az intersticium között
az egyensúly megbomlása → ödémához vezet 25 Hgmm (3,33 kPa) Kolloid ozmotikus nyomás
Artériás vég
8 Hgmm (1,07 kPa)
Eredő nyomás
35 Hgmm Plazma hidrosztatikai (4,67 kPa) nyomás Intersticium 2 Hgmm (0,27 kPa) hidrosztatikai nyomás 0 Hgmm
Intersticium kolloid 3 Hgmm ozmotikus nyomás (0,27 kPa) Intersticium hidrosztatikai nyomás
Plazma hidrosztatikai nyomás
1 Hgmm (0,27 kPa)
15 Hgmm (2,00 kPa)
25 Hgmm (3,33 kPa)
8 Hgmm Eredő nyomás (1,07 kPa)
Vénás vég
Intersticium kolloid ozmotikus nyomás
A különböző, membránon keresztüli transzportfolyamatok összehasonlítása Passzív diffúzió
Facilitált diffúzió
Mediátor
Membrán lipidek
Ionoforok, proteinek (permeázok)
Membrán proteinek
A fluxus iránya
A koncentráció gradiens irányába.
A koncentráció gradiens irányába.
A koncentráció gradiens ellenébe is.
A sejt energiaforrásához való csatoltság
Nincs
Nincs, esetleg közvetett.
Közvetlen kapcsolat.
Specificitás
Nincs
Jelentős
Jelentős
Szaturáció
Nincs
Lehetséges
lehetséges
Specifikus inhibíció
Nincs
Lehetséges
Lehetséges
Reverzibilitás
Reverzibilis
Reverzibilis
Irreverzibilis
Fick-törvények érvényessége
Érvényesek
Nem, MichaelisMenten kinetika szerint
Nem, Michaelis-Menten kinetika szerint
Transzportált anyagok
Lipidoldékony, kis molekulatömegű anyagok
Ionok, poláros anyagok
A legkölünfélébb anyagok (ionok, poláros és apoláros molekulák, fehérjék, stb.
Az összehasonlítás szempontja
Aktív transzport
Jó tanulást!