BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
BAB IV PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS Pada bab ini akan dibahas cara pendekatan numerik untuk penentuan harga lookback options. Metode yang dipakai adalah metode binomial yang sudah dijelaskan sebelumnya pada subbab 2.13. Pembahasan akan dibagi menjadi dua subbab, yakni floating lookback dan fixed lookback. Tiap-tiap subbab akan mencakup tipe European dan tipe American yang masing-masing terdiri dari call dan put. Subbab 4.3 merupakan aplikasi program pada data riil.
Selain keempat program tersebut, akan dibuat pula program penghitungan nilai eksak dari European lookback options dengan menggunakan formula yang telah diturunkan pada bab III. Program untuk menghitung nilai eksak ini dibuat dengan tujuan sebagai pembanding dengan hasil yang diperoleh dengan menggunakan metode binomial. Tentunya kita menyadari bahwa metode binomial yang kita gunakan hanyalah salah satu metode untuk menaksir harga lookback options sehingga nilai yang kita peroleh nantinya tidak akan sama persis dengan nilai eksaknya namun diharapkan bisa menghampiri nilai eksaknya.
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
37
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Pada bab ini, pemakaian indeks untuk pohon binomial berbeda dengan landasan teori. Perbedaan ini disebabkan agar lebih mudah dalam memahami algoritma program.
S 0u 2 (2,1) (1,1)
( i, j )
(1,2)
letak si titik pada pohon binomial. Indeks i menyatakan posisi si titik pada selang waktu ke –i dan indeks j menyatakan urutan si titik dihitung dari atas.
(2,2)
(0,0)
(2,3)
S0 d
t=0
t=1
t=2
merepresentasikan
Contoh: S0u 2 pada pohon binomial harga saham mempunyai indeks (2,1).
Sekarang kita akan mulai membahas program untuk tipe lookback options yang pertama, yakni floating lookback.
4.1
Program Floating Lookback Pembahasan akan dibagi menjadi dua kasus yakni floating call dan floating put. Masing-masing kasus sudah mencakup tipe European dan American. Adapun pembagian dilakukan karena adanya kesamaan langkah kerja pada program tipe European call (put) dengan tipe American call (put).
Secara umum, variabel yang digunakan dalam keempat program ini adalah harga saham saat ini, harga ekstremum (harga maksimum atau minimum), selang waktu (lookback period), jumlah subselang, suku bunga, dan standar deviasi harga saham (sigma). Keempat program ini menggunakan langkah kerja
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
38
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
yang sama namun berbeda dalam hal penggunaan variabel. Untuk kedua kasus ini akan digunakan suatu variabel baru, yakni Y ( t ) yang merupakan perbandingan nilai ekstremum harga saham sampai dengan saat t dengan harga saham saat t. Pertama-tama, misalkan S ( t ) adalah harga saham saat t dan G ( t ) adalah harga ekstremum saham sampai dengan waktu t. Definisikan
Y (t ) =
G (t ) S (t )
.
Langkah kerja selanjutnya adalah membuat pohon binomial untuk harga saham dengan data-data masukan yang kita miliki. Setelah itu, buatlah suatu pohon binomial untuk Y ( t ) berdasarkan pohon binomial harga saham. Setelah dibuat pohon binomialnya, hitung payoff di tiap titik ( i, j ) pada ujung selang waktu dan lakukan proses mundur.
Untuk floating call, data yang kita perlukan adalah harga saham saat ini, harga saham minimum, selang waktu, jumlah subselang, suku bunga, dan standar deviasi harga saham. Definisikan variabel YC ( t ) dengan S ( t ) adalah harga saham saat t dan G ( t ) adalah harga saham minimum sampai dengan waktu t adalah YC ( t ) =
G (t ) S (t )
.
Pada saat t = 0 (waktu saat ini) maka YC = 1 karena G = S . Jika terjadi kenaikan harga saham senilai u maka nilai G tetap dan YC = 1/ u = d . Sebaliknya, jika harga saham turun sebesar d maka G = S dan YC = 1 . Dari kedua implikasi tersebut maka kita dapat membuat suatu pohon binomial untuk YC ( t ) sampai dengan langkah ke-N seperti yang terlihat pada Gambar 3.
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
39
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS t=0
1
q
t=1
t=2
1
1
t=3
t=4
t=N
1 1
d
p d
d
d2
d d2
d2 (N+1) titik
d3
d3
d4
Gambar 3 Pohon binomial untuk floating call
Payoff dari floating call adalah ( ST − mTT0 , 0) atau dapat juga kita tuliskan dengan S − SYC . Untuk kemudahan, kita akan gunakan payoff-nya adalah 1 − YC dan sebagai akibatnya harga opsi call yang diperoleh nantinya harus dikalikan dengan harga saham saat ini.
Setelah mendapatkan pohon binomial untuk
YC ( t ) dan menghitung payoff
untuk tiap-tiap kemungkinan nilai opsi, langkah selanjutnya adalah proses mundur. Dengan mengamati pohon binomial untuk YC ( t ) tersebut maka dapat kita simpulkan rumus untuk menghitung nilai opsi floating call di tiap titik adalah
Ci , j = exp ( − r Δt ) ⎡⎣ pCi +1, j +1u + qCi +1, j −1d ⎤⎦ ,
j ≥1
dan C0,0 = exp ( −r Δt ) ⎡⎣ pC1,2u + qC1,1d ⎤⎦ * S0 dengan S0 adalah harga saham saat ini.
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
40
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Untuk tipe American, kita menghitungnya bersamaan dengan proses perhitungan tipe European. Perbedaannya adalah pada tipe American terdapat pengevaluasian di tiap titik sepanjang proses mundur sehingga rumusannya menjadi
{
}
i i , j = maks exp ( − r Δt ) ⎡ pC i i ⎤ C ⎣ i +1, j +1u + qC i +1, j −1d ⎦ ,1 − YC ( i, j ) ,
j ≥1
dan i 0,0 = exp ( − r Δt ) ⎡ p C i i ⎤ C ⎣ 1,2u + q C1,1d ⎦ * S0 .
Meskipun rumusan untuk tipe European dan American berbeda namun hasil yang didapatkan dengan kedua rumusan tersebut selalu sama. Ini membuktikan bahwa suatu opsi American floating call hendaknya tidak di-exercise sebelum maturity date-nya.
Berikut ini (Tabel 1) adalah hasil perhitungan floating call dengan menggunakan program yang telah dibahas sebelumnya untuk beberapa nilai N yang berbeda. S0 = 10 , r = 0.1 , σ = 0.3 , T = 1 Nilai eksaknya adalah 2.5905 Banyaknya selang Harga Floating Call i N C =C 100 2.4829 200 2.5137 300 2.5275 400 2.5358 500 2.5415 600 2.5457 700 2.549 800 2.5517 900 2.5539 1000 2.5557 Tabel 1 Harga taksiran floating lookback call untuk beberapa nilai N yang berbeda
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
41
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Terlihat dari Tabel 1 bahwa nilai floating call selalu sama baik untuk tipe European maupun tipe American. Kejadian ini dapat dijelaskan dengan mudah. Misalkan seseorang memiliki American floating call dan di-exercise pada saat t ( T0 < t < T ) maka payoff yang diperolehnya adalah St − min Sξ dan pada saat T0 <ξ < t
(
)
maturity time T besar keuntungannya menjadi e rτ St − min Sξ . Sekarang kita T0 <ξ
kembali lagi saat t namun kali ini American floating call tidak di-exercise melainkan dilakukan short selling. Dari short selling kita memperoleh pendapatan sebesar St dan pada saat maturity time T pendapatan kita menjadi e rτ St . Karena kita melakukan short selling maka kita harus mengembalikan saham yang tadinya kita pinjam. Adapun harga saham pada saat maturity time akan mempunyai dua kemungkinan, yakni: 1. ST > min Sξ T0 <ξ
yang menyebabkan opsi akan di-exercise sehingga
keuntungan yang kita dapatkan akan bernilai e rτ St − min Sξ . T0 <ξ
2. ST < min Sξ yang menyebabkan opsi tidak akan di-exercise sehingga T0 <ξ
keuntungan yang kita dapatkan akan bernilai e rτ St − ST .
Kedua kemungkinan di atas memberikan keuntungan yang lebih besar dibandingkan jika American floating call di-exercise sebelum waktunya. Dengan demikian, tidak akan ada untungnya untuk meng-exercise American floating call sebelum maturity time sedemikian sehingga payoff dari tipe American akan sama dengan tipe European yang menjelaskan kenapa keluaran
dari program bernilai sama untuk kedua tipe ini.
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
42
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Algoritma 1 Floating Call
Masukan :
Hitung :
r , σ , S0 , T , N Δt = T / N , u, d , p YC (i, j ) = d j −1 , i = 1, 2,..., N , i N , j = 1 − Y ( i, j ) C =C N, j
j = 1, 2,..., i + 1
C
for 0 < i < N for j = 2,3,..., i + 1 Ci , j = exp ( −r Δt ) ⎡⎣ pCi +1, j +1u + qCi +1, j −1d ⎤⎦
{
}
i i , j = maks exp ( − r Δt ) ⎡ pC i i ⎤ C ⎣ i +1, j +1u + qC i +1, j −1d ⎦ ,1 − YC ( i, j )
Ci ,1 = exp ( − r Δt ) ⎡⎣ pCi +1,2u + qCi +1,1d ⎤⎦
{
}
i i ,1 = exp ( − r Δt ) maks ⎡ pC u + qC d ⎤ ,1 − Y ( i,1) C i +1,1 ⎦ C ⎣ i +1,2
C0,0 = exp ( −r Δt ) ⎡⎣ pC1,2u + qC1,1d ⎤⎦ * S0 i 0,0 = exp ( − r Δt ) ⎡ p C i i ⎤ C ⎣ 1,2u + q C1,1d ⎦ * S0 Keluaran :
C0,0 hampiran harga untuk European floating call i 0,0 hampiran harga untuk American floating call C
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
43
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Untuk floating put, data yang kita perlukan adalah harga saham saat ini, harga saham maksimum, selang waktu, jumlah subselang, suku bunga, dan standar deviasi harga saham. Definisikan variabel YP ( t ) dengan S ( t ) adalah harga
l ( t ) adalah harga saham maksimum sampai dengan waktu t saham saat t dan G adalah (Hull, 1997)
YP ( t ) =
l (t ) G
S (t )
.
l = S . Jika terjadi Pada saat t = 0 (waktu saat ini) maka YP = 1 karena G l = S dan Y = 1 . Sebaliknya, jika harga kenaikan harga saham senilai u maka G P l tetap dan Y = 1/ d = u . Dari kedua saham turun sebesar d maka nilai G P
implikasi tersebut maka kita dapat membuat suatu pohon binomial untuk YP ( t ) sampai dengan langkah ke-N seperti yang terlihat pada Gambar 4.
u4 u3 u2
u2
u
u
u
1
1
1
u3 (N+1) titik 2
u
u
q 1
1
p t=0
t=1
t=2
t=3
t=4
t=N
Gambar 4 Pohon binomial untuk floating put
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
44
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Payoff dari floating put adalah ( M TT0 − ST , 0) atau dapat juga kita tuliskan dengan SYP − S . Untuk kemudahan, kita akan gunakan payoff-nya adalah YP − 1 dan sebagai akibatnya harga opsi put yang diperoleh nantinya harus dikalikan dengan harga saham saat ini.
Setelah mendapatkan pohon binomial untuk
YP ( t ) dan menghitung payoff
untuk tiap-tiap kemungkinan nilai opsi, langkah selanjutnya adalah proses mundur. Dengan mengamati pohon binomial untuk YP ( t ) tersebut maka dapat kita rumuskan nilai opsi floating put di tiap titik ( i, j ) adalah
Pi , j = exp ( − r Δt ) ⎡⎣ qPi +1, j +1d + pPi +1, j −1u ⎤⎦ ,
j ≥1
dan P0,0 = exp ( − r Δt ) ⎡⎣ qP1,1d + pP1,2u ⎤⎦ * S0 dengan S0 adalah harga saham saat ini.
Untuk tipe American, kita dapat menghitungnya bersamaan dengan proses perhitungan tipe European. Perbedaannya adalah pada tipe American terdapat pengevaluasian di tiap titik sepanjang proses mundur sehingga rumusannya menjadi
{
}
i i , j = maks exp ( − r Δt ) ⎡ qP i i ⎤ P ⎣ i +1, j +1d + pP i +1, j −1u ⎦ , YP ( i, j ) − 1 ,
j ≥1
dan i 0,0 = exp ( − r Δt ) ⎡ qP i i ⎤ P ⎣ 1,1d + pP1,2u ⎦ * S0 .
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
45
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Berikut ini (Tabel 2) adalah tabel hasil perhitungan floating put dengan menggunakan program yang telah dibahas sebelumnya untuk beberapa nilai N. S0 = 10 , r = 0.1 , σ = 0.3 , T = 1 Nilai eksaknya adalah 2.0671 Banyaknya Harga European Harga American selang Floating Put Floating Put i N P P 100 1.8938 2.0915 200 1.943 2.1406 300 1.9652 2.1628 400 1.9786 2.1762 500 1.9877 2.1855 600 1.9945 2.1923 700 1.9998 2.1976 800 2.0041 2.2019 900 2.0076 2.2055 1000 2.0107 2.2085 Tabel 2 Harga taksiran floating lookback put untuk beberapa nilai N yang berbeda
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
46
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Algoritma 2 Floating put
Masukan :
Hitung :
r , σ , S0 , T , N Δt = T / N , u, d , p YP (i, j ) = u i +1− j , i = 1, 2,..., N , i N , j = Y ( i, j ) − 1 PN , j = P P for 0 < i < N for j = 1, 2,..., i
j = 1, 2,..., i + 1
Pi , j = exp ( − r Δt ) ⎡⎣ qPi +1, j +1d + pPi +1, j −1u ⎤⎦
{
}
i i , j = maks exp ( −r Δt ) ⎡ qP i i ⎤ P ⎣ i +1, j +1d + pP i +1, j −1u ⎦ , YP ( i, j ) − 1 Pi ,i +1 = exp ( −r Δt ) ⎡⎣ qPi +1,i d + pPi +1, j +1u ⎤⎦
{
}
i i ,i +1 = exp ( − r Δt ) maks ⎡ qP i i ⎤ P ⎣ i +1,i d + pP i +1, j +1u ⎦ , YP ( i, i + 1) − 1 P0,0 = exp ( −r Δt ) ⎡⎣ qP1,1d + pP1,2u ⎤⎦ * S0 i 0,0 = exp ( −r Δt ) ⎡ qP i i ⎤ P ⎣ 1,1d + pP1,2u ⎦ * S0 Keluaran :
P0,0 hampiran harga untuk European floating put i 0,0 hampiran harga untuk American floating put P
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
47
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
4.2
Program Fixed Lookback
Sama seperti pada floating lookback, jumlah program yang dibuat untuk tipe fixed lookback berjumlah empat dan dibagi menjadi dua kasus, yakni fixed call
dan fixed put. Kedua kasus memakai pendekatan yang serupa namun berbeda dalam hal penggunaan nilai ekstremumnya. Pada tipe ini akan dibuat suatu fungsi yang bergantung terhadap lintasan, sebut F ( S , t ) yang nilainya berbedabeda untuk setiap selang waktu dan harga saham yang berbeda. Perhatikan bahwa M Tt0 = mTt 0 = S0 karena kita menghitung harga opsi pada saat awal lookback period-nya ( t = T0 ).
Kita akan gunakan pohon binomial harga saham dan mencatat nilai ekstremum (maksimum atau minimum) di tiap titik (i, j ) sepanjang perjalanan harga saham hingga maturity time. Setelah sampai di ujung pohon binomial maka kita akan mempunyai
( N + 1)
titik dengan masing-masing titik mempunyai sejumlah
nilai ekstremum tersendiri. Untuk menaksir pola penyebaran jumlah nilai ekstremum per titik maka kita ambil waktu dari awal hingga beberapa saat awal. Dari beberapa langkah inilah dapat kita tentukan polanya.
Pada kasus fixed call, nilai ekstremum yang digunakan adalah nilai maksimum
(
karena payoff-nya adalah maks M TT0 − X , 0
)
dengan X adalah nilai strike
price-nya. Berangkat dari titik awal dan mengikuti pohon binomial harga saham maka kita akan mempunyai pohon binomial yang tampak seperti Gambar 5.
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
48
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
S0u4 u4 S0u3 2
S0u
S0u u
u3 S0u2
u2
S0u
S0
u2|u
u3|u2
(N+1) titik
S0
S0
1
u|1 S0d
u2|u|1
S0d
u|1
1
S0d2
S0d2
u|1
1 S0d3 1
S0d4 1
t=0
t=1
t=2
t=3
t=4
t=N
Gambar 5 Pohon binomial harga saham disertai dengan informasi nilai maksimum harga saham di tiap titik (i, j )
Selanjutnya, catat jumlah nilai maksimum di tiap titik (i, j ) ,yang disusun dari pangkat u yang tertinggi, dimulai dari titik awal dan bergerak ke kanan seiring dengan bertambahnya selang waktu. Catatan yang kita buat akan berbentuk:
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
49
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
1
i=0
1 1
i =1
1 2 1
i=2
1 2 2 1
1 2 3 2 1
1 2 3 3 2 1
1 2 3 4 3 2 1
1 2 3 4 4 3 2 1
i=3
i=4
i=5
i=6
i=7
dst.
"
Tabel 3 Catatan jumlah nilai maksimum di tiap titik (i, j )
Dari Tabel 3 kita dapat menemukan suatu pola, yakni baris pertama diawali oleh angka 1 dan sisanya adalah angka 1. Baris kedua dimulai dari kolom kedua dan diisi oleh angka 1 dan 2 dan sisanya adalah angka 2. Baris ketiga dimulai dari kolom ketiga dan angka 1, 2 , dan 3 muncul berurutan dan sisanya adalah angka 3. Hal ini terus berulang hingga baris ke 8 namun perhatikan jumlah kolom yang tersedia harus disesuaikan dengan suku sisa. Dengan kata lain, pertama-tama kita tuliskan angka berurutan sebanyak jumlah baris jika memungkinkan dan bila masih ada kolom yang kosong maka kolom tersebut diisi dengan angka terbesar yang telah kita tulis sebelumnya.
Untuk menentukan pola, ambil sebagian dari pohon binomial yang telah kita punyai. Misalkan kita mempunyai pohon binomial untuk tujuh langkah beserta dengan nilai-nilai maksimumnya untuk setiap titik. Tulis fungsi F ( S , t ) dengan Fji, k dengan k menunjukkan lokasi nilai maksimumnya berada. Dan buat suatu
catatan mengenai pergerakan nilai maksimum terhadap harga saham yang naik atau turun sebagai suatu koordinat [ ku , kd ] dengan ku menyatakan lokasinya setelah harga saham naik dan kd menyatakan lokasinya setelah harga saham turun. Sebagai contoh, kita ambil i = 6 dan i = 5 . Catat setiap pergerakan nilai saham untuk tiap titiknya sehingga diperoleh:
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
50
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
(1,1) (2,1) (2,1) (2,1) (2,1) (2,1)
(2,2) (3,2) (3,2) (3,2)
(1,1) (2,1) (2,1) (2,1) (2,1) (2,1) (2,1)
(3,3) (4,3)
i=5
(2,2) (3,2) (3,2) (3,2) (3,2)
(3,3) (4,3) (4,3)
(4,4)
i=6
Tabel 4 Koordinat pergerakan nilai maksimum [ ku , kd ] untuk tiap titik pada i = 5 dan i = 6
Jika dilihat sekilas tentunya koordinat-koordinat seperti yang tertera pada Tabel 4 tidak akan begitu berarti. Perhatikan posisi nilai maksimum ketika harga saham turun ( t = i + 1) akan selalu sama dengan posisinya sebelum harga saham turun ( t = i ) . Sekarang, fokus terpusat pada angka-angka yang diwarnai merah dan cocokkan dengan Tabel 3 sehingga kita peroleh: 1 2 3 3 2 1 i=5
1 2 2 2 2 2
2 3 3 3
3 4
1 2 3 4 3 2 1
1 2 2 2 2 2 2
2 3 3 3 3
3 4 4
4
i=6
Tabel 5 Skema pergerakan nilai maksimum akibat kenaikan harga saham ( ku ) yang dicocokkan dengan Tabel 3
Sebut kolom yang tiap elemennya diberi warna hitam dengan indeks. Indeks menyatakan banyaknya nilai maksimum per baris. Perhatikan angka yang diberi warna merah per barisnya. Kita dapat melihat adanya suatu urutan angka dimulai dari angka 2 dengan syarat indeks di barisan tersebut lebih kecil atau sama dengan indeks barisan sebelumnya. Jika masih tersisa kolom kosong maka akan diisi dengan nilai terbesar yang terakhir kita tuliskan. Jika nilai indeksnya Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
51
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
lebih besar dibanding baris sebelumnya maka urutan angka akan dilakukan sebanyak indeks baris sebelumnya.
Baris pertama selalu memiliki koordinat yang sama, yakni (1,1) sehingga i rumusan untuk mencari nilai C1,1 dinyatakan secara tersendiri. Berdasarkan
Tabel 3 maka kita dapat turunkan rumusan untuk fixed call pada proses mundurnya adalah
C ij ,k = exp ( −r Δt ) ⎡⎣ p C ij+,k1u + q C ij++1,1 k ⎤⎦ , i = N − 1, N − 2,...,1,
j = 2,3,..., i + 1,
0 1 1 ⎤⎦ . C0,0 = exp ( − r Δt ) ⎡⎣ p C1,1 + q C2,1
Untuk mengevaluasi tipe American fixed call maka diperlukan suatu tambahan kondisi, yakni pada setiap perhitungan nilai opsi di tiap titik (i, j ) pada saat
t = i dilakukan perbandingan dengan nilai opsi di titik itu. Dengan demikian, rumusan untuk American fixed call adalah
(
)
i ij , k = maks exp ( −r Δt ) ⎡ p C i ij+,1k + q C i ij+−11,k ⎤ , F i − X , C u ⎣⎢ ⎦⎥ j ,k
i = N − 1, N − 2,...,1,
j = 2,3,..., i + 1,
i 00,0 = exp ( −r Δt ) ⎡ p C i 11,1 + q C i 12,1 ⎤ . C ⎢⎣ ⎥⎦
Terlihat bahwa nilai fixed lookback call sama untuk tipe American dan tipe European. Hal ini disebabkan karena tipe American akan menguntungkan jika nilai maksimum pada saat t opsi di-exercise ( T0 < t < T ) adalah nilai maksimum pada lookback period-nya. Jika demikian maka payoff dari tipe European akan sama dengan tipe American sehingga harga European dan American untuk kasus fixed lookback call adalah sama.
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
52
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Berikut adalah beberapa contoh perhitungan harga opsi fixed call menggunakan nilai N yang berbeda-beda. S0 = 10 , X = 8 , r = 0.1 , σ = 0.3 , T = 1 Nilai eksaknya adalah 4.8284 Banyaknya selang Harga Fixed Call i N C =C 100 4.6551 200 4.7043 300 4.7265 400 4.7399 500 4.7490 600 4.7558 700 4.7611 800 4.7654 900 4.7689 1000 4.7720
(
)
Tabel 6 Harga taksiran fixed lookback call M Tt0 > X untuk beberapa nilai N
yang berbeda
S0 = 10 , X = 12 , r = 0.1 , σ = 0.3 , T = 1 Nilai eksaknya adalah 1.5785 Banyaknya selang Harga Fixed Call i N C =C 100 1.4629 200 1.4964 300 1.5109 400 1.5193 500 1.5256 600 1.5299 700 1.5333 800 1.5363 900 1.5387 1000 1.5407
(
)
Tabel 7 Harga taksiran fixed lookback call M Tt0 ≤ X untuk beberapa nilai N
yang berbeda
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
53
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Masukan :
Hitung :
r , σ , S0 , X , T , N Δt = T / N , u, d , p kmaks
Algoritma 3 Fixed Call
FjN,kmax i j ,k = F N − X , k = 1,..., k C jN,k = C j ,k maks N
for 0 < i < N for j = 2,3,..., i + 1 C ij ,k = exp ( −r Δt ) ⎡⎣ p C ij+,k1u + q C ij++11,k ⎤⎦
(
i ij ,k = maks exp ( − r Δt ) ⎡ p C i ij+,1k + q C i ij+−11,k ⎤ , F i − X C u ⎢⎣ ⎥⎦ j ,k
)
i i +1 i +1 ⎤⎦ C1,1 = exp ( −r Δt ) ⎡⎣ p C1,1 + q C2,1
0 C0,0
Keluaran :
i i +1 +1 i 1,1 i 1,1 i i2,1 C = exp ( − r Δt ) ⎡⎢ p C + qC , F1,1i − X ⎤⎥ ⎣ ⎦ 1 1 ⎤⎦ + q C2,1 = exp ( −r Δt ) ⎡⎣ p C1,1
1 i 00,0 = exp ( − r Δt ) ⎡ p C i 1,1 i 12,1 ⎤ C + q C ⎢⎣ ⎥⎦ 0 C0,0 hampiran harga untuk European fixed call
i 00,0 hampiran harga untuk American fixed call C
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
54
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Untuk kasus fixed put, kita akan gunakan langkah yang sama seperti pada fixed call hanya saja nilai yang digunakan adalah nilai minimum harga saham. Usahakan agar nilai minimum diurutkan dari yang terkecil sampai terbesar agar memiliki suatu pola (pangkat d tertinggi) sehingga pohon binomial yang kita miliki untuk fixed put berbentuk seperti Gambar 6.
S0u4 1 3
S0u S0u2
S0u 1
1 S0u2
1
S0u
S0
d|1
d|1
(N+1) titik
S0
S0
1
d|1 S0d
d2|d|1
S0d d2|d
d
S0d2
S0d2
d3|d2
d2 S0d3 d3
S0d4 d4
t=0
t=1
t=2
t=3
t=4
t=N
Gambar 6 Pohon binomial harga saham disertai dengan informasi nilai minimum harga saham di tiap titik (i, j )
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
55
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Adapun jumlah nilai minimum di tiap titik (i, j ) sepanjang perjalanan harga saham akan sama dengan jumlah nilai maksimum di tiap titiknya sehingga kita dapat gunakan Tabel 3 sebagai informasi jumlah nilai minimum di tiap titik. Selanjutnya, lakukan pengamatan pola penyebaran nilai minimum
[ ku , k d ]
berdasarkan Gambar 6. Sekali lagi, amati nilai-nilai minimum pada titik-titik di i = 5 dan i = 6 . Hasil pengamatan kita akan berbentuk:
(1,2) (1,2) (1,2) (1,2) (1,2) (1,1)
(2,3) (2,3) (2,3) (2,2)
(1,2) (1,2) (1,2) (1,2) (1,2) (1,2) (1,1)
(3,4) (3,3)
i=5
(2,3) (2,3) (2,3) (2,3) (2,2)
(3,4) (3,4) (3,3)
(4,4)
i=6
Tabel 8 Koordinat pergerakan nilai minimum [ ku , kd ] untuk tiap titik pada i = 5 dan i = 6
Jika kita memfokuskan pada angka-angka yang diberi warna biru dan mencocokkan dengan Tabel 1 maka kita akan peroleh: 1 2 3 3 2 1 i=5
2 2 2 2 2 1
3 3 3 2
4 3
1 2 3 4 3 2 1
2 2 2 2 2 2 1
3 3 3 3 2
4 4 3
4
i=6
Tabel 9 Skema pergerakan nilai minimum akibat penurunan harga saham ( kd ) yang dicocokkan dengan Tabel 3
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
56
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Dapat kita lihat dengan mudah bahwa koordinat nilai minimum akibat kenaikan harga saham ( ku ) pada fixed put tidak berubah. Pergerakan nilai minimum memiliki pola yang sama dengan pergerakan nilai maksimum hanya saja pengurutan dimulai dari baris terbawah. Pada fixed put, baris terbawahlah yang selalu memiliki pola (1,1) sehingga rumusan untuk mencari nilai opsi di titik tersebut Pi i+1,1 dinyatakan secara terpisah. Dengan demikian rumusan harga opsi fixed put pada proses mundurnya adalah Pji,k = exp ( −r Δt ) ⎡⎣ p Pji,+k1 + q Pji++1,1 kd ⎤⎦ , i = N − 1, N − 2,...,1,
j = i, i − 1,...,1,
0 1 ⎤⎦ . P0,0 = exp ( − r Δt ) ⎡⎣ p P1,11 + q P2,1
Untuk tipe American fixed put, tambahkan satu kondisi pada rumusan di atas sehingga menjadi
(
)
i ij ,k = maks exp ( −r Δt ) ⎡ p P i ij+,1k + q P i ij++11,k ⎤ , X − F i , P d j ,k ⎣⎢ ⎦⎥
i = N − 1, N − 2,...,1,
j = i, i − 1,...,1,
i 00,0 = exp ( −r Δt ) ⎡ p P i 11,1 + q P i 12,1 ⎤ . P ⎢⎣ ⎥⎦
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
57
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Berikut adalah beberapa contoh perhitungan harga opsi fixed put menggunakan nilai N yang berbeda-beda. S0 = 10 , X = 12 , r = 0.1 , σ = 0.3 , T = 1 Nilai eksaknya adalah 3.4486 Banyaknya selang Harga Fixed Put i N P=P 100 3.3410 200 3.3717 300 3.3856 400 3.3939 500 3.3996 600 3.4038 700 3.4071 800 3.4097 900 3.4119 1000 3.4138
(
)
Tabel 10 Harga taksiran fixed lookback put X ≥ mTt 0 untuk beberapa nilai N
yang berbeda S = 10 , X = 8 , r = 0.1 , σ = 0.3 , T = 1 Nilai eksaknya adalah 0.40054 Banyaknya selang Harga Fixed Put i N P=P 100 0.3669 200 0.3761 300 0.3800 400 0.3827 500 0.3847 600 0.3859 700 0.3870 800 0.3877 900 0.3886 1000 0.3892
(
)
Tabel 11 Harga taksiran untuk fixed lookback put mTt 0 < X untuk beberapa
nilai N yang berbeda
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
58
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Terlihat bahwa nilai fixed lookback put sama untuk tipe American dan tipe European. Hal ini disebabkan karena tipe American akan menguntungkan jika nilai minimum pada saat t opsi di-exercise ( T0 < t < T ) adalah nilai minimum pada lookback period-nya. Jika demikian maka payoff dari tipe European akan sama dengan tipe American sehingga harga European dan American untuk kasus fixed lookback put adalah sama.
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
59
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
Masukan :
Hitung :
r , σ , S0 , X , T , N Δt = T / N , u, d , p kmaks
Algoritma 4 Fixed put
FjN,kmax i j ,k = X − F N , k = 1,..., k PjN,k = P j ,k maks N
for 0 < i < N for j = 1, 2,..., i Pji,k = exp ( −r Δt ) ⎡⎣ p Pji,+k1 + q Pji++1,1 kd ⎤⎦
(
i ij ,k = maks exp ( − r Δt ) ⎡ p P i ij+,1k + q P i ij++11,k ⎤ , X − F i P d j ,k ⎢⎣ ⎥⎦
)
1 ⎤⎦ Pi i+1,1 = exp ( −r Δt ) ⎡⎣ p Pi +i +1,11 + q Pi +i +2,1
i ii +1,1 = exp ( −r Δt ) ⎡ p P i ii ++11,1 + q P i ii ++12,1 , X − F i ⎤ P i +1,1 ⎥ ⎢⎣ ⎦ 0 1 ⎤⎦ P0,0 = exp ( −r Δt ) ⎡⎣ p P1,11 + q P2,1
Keluaran :
i 00,0 = exp ( −r Δt ) ⎡ p P i 11,1 + q P i 12,1 ⎤ P ⎢⎣ ⎥⎦ 0 P0,0 hampiran harga untuk European fixed put i 00,0 hampiran harga untuk American fixed put P
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
60
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
4.3
Aplikasi Program pada Data Riil
Pada subbab ini ingin ditunjukkan penggunaan program dengan data riil. Data yang digunakan adalah data saham Telkom selama 1 tahun (data disertakan pada lampiran). Yang pertama kali harus dilakukan adalah mengecek bentuk distribusi dari harga saham tersebut karena program kita menggunakan asumsi bahwa harga saham berdistribusi lognormal. Dengan data yang kita miliki maka buat suatu rasio harga saham untuk data tersebut. Setelah diperoleh rasionya maka buat pula logaritma dari rasio tersebut kemudian plot logaritma rasio tersebut sehingga diperoleh:
Normal P- plots
2,203
1,203
0,203
-0,797
-1,797
-2,797 -0,1074 -0,0874 -0,0674 -0,0474 -0,0274 -0,0074 0,0126
0,0326
0,0526
ln(S(t)/S(t-1))
Gambar 7 Hasil plot dari logaritma rasio harga saham Telkom
Dari Gambar 7, dapat kita simpulkan bahwa harga saham yang kita miliki memenuhi persyaratan yang kita inginkan (berdistribusi lognormal). Untuk perhitungan selanjutnya, kita butuhkan nilai σ yang bisa langsung dihitung pada Excel, yaitu σ = 0.3865 dan besarnya suku bunga r yang bisa kita lihat
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
61
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
dari situs Bank Indonesia, yaitu sebesar 8.25%. Di samping kedua data tersebut, data yang lainnya, yakni harga saham awal, maturity time, strike price, dan jumlah iterasi dapat kita pilih sesuai dengan yang kita kehendaki.
Pada Tabel 12 dan Tabel 13 berikut akan ditampilkan hasil perhitungan lookback options dengan saham Telkom sebagai underlying asset-nya menggunakan program metode binomial (iterasi=1000) yang telah dijelaskan pada subbab 4.1 dan subbab 4.2. Hasil perhitungan ditampilkan secara bersusun, yaitu European terletak di bagian atas dan American mengikuti di bawahnya. Untuk kemudahan, disertakan pula huruf E dan A pada bagian sebelah kiri dengan E = European dan A = American.
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
62
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
1 bulan E
936.84
1324.81
1621.59
1870.84
2089.49
2286.27
Rp. 10.700 A
936.84
1324.81
1621.59
1870.84
2089.49
2286.27
E
954.35
1349.57
1651.90
1905.81
2128.55
2329.01
Rp. 10.900 A
954.35
1349.57
1651.90
1905.81
2128.55
2329.01
E
971.86
1374.34
1682.21
1940.77
2167.60
2371.74
Rp. 11.100 A
971.86
1374.34
1682.21
1940.77
2167.60
2371.74
E
989.38
1399.10
1712.52
1975.74
2206.66
2414.47
Rp. 11.300 A
989.38
1399.10
1712.52
1975.74
2206.66
2414.47
E
1006.89
1423.86
1742.83
2010.71
2245.71
2457.21
Rp. 11.500 A
1006.89
1423.86
1742.83
2010.71
2245.71
2457.21
E
1024.40
1448.62
1773.14
2045.68
2284.77
2499.94
Rp. 11.700 A
1024.40
1448.62
1773.14
2045.68
2284.77
2499.94
1 bulan
HARGA OPSI (dalam Rp.) 2 bulan 3 bulan 4 bulan 5 bulan
6 bulan
MATURITY TIME
E
926.62
1304.42
1591.10
1830.30
2038.98
2225.84
Rp. 10.700 A
936.04
1325.46
1624.98
1877.94
2101.14
2303.19
E Rp. 10.900 A
943.94
1328.80
1620.84
1864.51
2077.09
2267.45
953.54
1350.24
1655.35
1913.04
2140.41
2346.24
E
961.26
1353.18
1650.58
1898.73
2115.20
2309.05
Rp. 11.100 A
971.03
1375.01
1685.73
1948.15
2179.69
2389.29
E
978.58
1377.56
1680.32
1932.94
2153.31
2350.66
Rp. 11.300 A
988.53
1399.79
1716.10
1983.25
2218.96
2432.34
E
995.90
1401.95
1710.06
1967.15
2191.43
2392.26
Rp. 11.500 A
1006.02
1424.56
1746.47
2018.35
2258.24
2475.39
E
1013.22
1426.33
1739.80
2001.36
2229.54
2433.87
Rp. 11.700 A
1023.52
1449.34
1776.85
2053.45
2297.51
2518.44
FLOATING PUT
HARGA SAHAM AWAL
6 bulan
FLOATING CALL
HARGA SAHAM AWAL
MATURITY TIME
HARGA OPSI (dalam Rp.) 2 bulan 3 bulan 4 bulan 5 bulan
Tabel 12 Harga taksiran floating lookback options saham Telkom dengan nilai S0 dan T yang berbeda
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
63
BAB IV : PENDEKATAN NUMERIK UNTUK LOOKBACK OPTIONS
HARGA OPSI (dalam Rp.) 2 bulan 3 bulan 4 bulan 5 bulan
6 bulan
E
2191.70
2634.15
2985.03
3287.99
3559.99
3809.74
A
2191.70
2634.15
2985.03
3287.99
3559.99
3809.74
E
1695.13
2140.98
2495.24
2801.56
3076.89
3329.95
Rp. 10.000 A
1695.13
2140.98
2495.24
2801.56
3076.89
3329.95
E
1198.56
1647.81
2005.44
2315.12
2593.78
2850.16
Rp. 10.500 A
1198.56
1647.81
2005.44
2315.12
2593.78
2850.16
E
734.98
1179.00
1636.12
1846.64
2127.19
2385.56
Rp. 11.000 A
734.98
1179.00
1636.12
1846.64
2127.19
2385.56
E
414.04
813.03
1150.99
1451.31
1725.46
1980.25
Rp. 11.500 A
414.04
813.03
1150.99
1451.31
1725.46
1980.25
E
216.41
543.21
846.78
1126.63
1387.43
1632.69
Rp. 12.000 A
216.41
543.21
846.78
1126.63
1387.43
1632.69
HARGA OPSI (dalam Rp.) 2 bulan 3 bulan 4 bulan 5 bulan
6 bulan
MATURITY TIME
STRIKE PRICE
Rp. 9.500
1 bulan
MATURITY TIME
141.45
344.55
518.72
667.79
797.63
912.46
A
141.45
344.55
518.72
667.79
797.63
912.46
E Rp. 10.000 A
338.89
612.84
820.76
990.16
1133.26
1257.09
338.89
612.84
820.76
990.16
1133.26
1257.09
E
680.93
993.50
1217.50
1395.34
1543.30
1669.94
Rp. 10.500 A
680.93
993.50
1217.50
1395.34
1543.30
1669.94
E
1161.48
1474.60
1697.04
1872.46
2017.79
2141.75
Rp. 11.000 A
1161.48
1474.60
1697.04
1872.46
2017.79
2141.75
E
1658.05
1967.77
2186.83
2358.90
2500.90
2621.55
Rp. 11.500 A
1658.05
1967.77
2186.83
2358.90
2500.90
2621.55
E
2154.63
2460.94
2676.63
2845.33
2984.00
3101.34
Rp. 12.000 A
2154.63
2460.94
2676.63
2845.33
2984.00
3101.34
STRIKE PRICE
Rp. 9.500
FIXED PUT
E
FIXED CALL
1 bulan
Tabel 13 Harga taksiran fixed lookback options saham Telkom dengan S0 = 10700 untuk nilai X dan T yang berbeda
Penentuan Harga Lookback Options secara Analitik dan Numerik Yohanna (10103030)
64