PODZEMNÁ VODA
XV 2/2009
CHANGE OF OLZA’S WATER CHEMISM AS A RESULT OF MINE WATER IMPACT ZMĚNY CHEMISMU VODY V ŘECE OLŠE V DŮSLEDKU VYPOUŠTĚNÍ DŮLNÍCH VOD Andrzej Harat, A rno št Gr me la ABSTRACT In the following article, the assessment of mine water from USCB area on the change of water quality in Olza river in years 2000 – 2007 was presented. The impact in this field is confirmed by surface water tests in Poland and Czech Republic. Presented activity is also a great example of long-term and fruitful cooperation between neighboring countries which comes from international agreement in terms of environmental monitoring. Presented results were obtained from Povodí Odry as well as Wojewódzki Inspektorat Ochrony Środowiska (WIOS). KEY WORDS Mine water, Olza river, Upper Silesian Coal Basin (USCB), environmental monitoring KLÍČOVÁ SLOVA Důlní vody, řeka Olše, hornoslezská kamenouhlená pánev, environmentální monitoring INTRODUCTION The Upper Silesia region is one of the most industrialized areas in Europe, due to a concentration of mineral deposits including coal, coal, ore, gypsum, salt and others. Exploitation of above-mentioned minerals, mainly dynamic development of coal mining, which began at the turn of 18 and 19th century, resulted in number of unfavorable effects for the environment, such as: draining of water-bearing levels, setting and caving of wide areas, and as a consequence increase of surface retention and water pollution. One of the most crucial problems and environmental threats connected with exploitation of coal deposits are mine waters. Mining activity has had a negative impact on natural environment for a long time. Olza as a border river receives mine water from Polish and Czech part of Upper Silesian Coal basin. Exploitation of coal accompanies outflow of mining groundwater which are directed to surface water and caused saltiness. The area of Olza basin totals 117.6 km2, and the river is 86.2 km long (Fig. 1). The above-mentioned area is situated in Oder basin. Olza’s streams are located in Poland – Silesian Beskids. River flows to Czech Republic – near Jasnowice. Next Olza flows through Jablůnkov, Bystřice and ahead of Cieszyn become a border river. Then the river flows to
Czech Republic again below Karviná. Next from Godow to rivers estuary into Oder is border river again. Location of mining activity in upper courses of Vistula and Oder causes saltiness of main polish rivers. For example, we can point out that only in year 2000 coal mines drained to surface water 164 hm3 of sewerage, including 94.3 hm3 of salt mine water (Czerwinska et al., 2003). WATER RESOURCES IN UPPER SILESIAN COAL BASIN AREA The Upper Silesian Coal Basin area is situated in basins of two polish biggest rivers Vistula and Oder. Watershed which divides basins of those rivers is going through central part of USCB area. Dynamic development of coal mining resulted in number of unfavorable effects for local hydrography. It consists of the following elements: • formerly natural rivers, at present as a result of antropopression transformed, • thick system of drain ditches, • natural and anthropological reservoirs which were created as a result of different processes, including hutches which came into existence as a consequence of coal mining.
mgr. inź. Andrzej Harat University of Bielsko-Biala, Institute of Engineering and Environmental Protection,
[email protected] doc. Ing. Arnošt Grmela,CSc. VŠB-TUO, HGF, IGI, 17. listopadu 15, Ostrava-Poruba; Univ. of Bielsko-Biala, Inst. EaEP, Poland,
[email protected]
125
PODZEMNÁ VODA
Fig. 1: Basin of Olza river (Olše by Czech) Obr. 1: Povodí řeky Olše (polsky Olza)
126
XV 2/2009
PODZEMNÁ VODA Water resources of surface water in Upper Silesian Coal Basin area are very limited. As mentioned before, analyzed region is situated in watershed area of Vistula and Oder basins. It can be characterized by little water resources. As a consequence water resources of Silesian region per 1 person is 3 times lower, than average value estimate for whole Poland (Czerwinska et al., 2003). We must remember, that the last-mentioned are reckoned as one of the lowest in Europe. There is no doubt that many years of strong antropopression resulted in decease of local surface water resources. This process was intensified during last 50 years, mainly because of dynamic development of coal mining. In this situation, it is reasonable to reduce negative impact of minerals exploitation on change quality of surface water. MINING ACTIVITY ON ANALYZING AREA Mining activity on Upper Silesian Coal Basin area has had several year traditions, due to a rich concentration of mineral deposits including coal, ore, gypsum, salt and others. Exploitation of abovementioned minerals was performed with both exposure and underground system. Dynamic development of coal mining on analyzing area occurred in 19th century and was connected with dynamic development of industry in those days. Exploitation of pit-coal in Czech part of USCB began in latter part of 18th century. Exploitation reached maximal level of 24 mln t 40 years ago, presently lessen to 15 mln t (Dopita et al., 1997). After Second World War, Czech part of the USCB was divided into 3 parts: • Ostravsko-Karvinský region (OKR), which divides on 3 basins: • Ostrava basin – in the western part of OKR, • Petřvald basin – in the central part of OKR, • Karviná basin – in the eastern part of OKR, • Příborsko-cieszynski region – Paskov coal mine, • Podbeskidzki region – (Frenštát coal mine). In year 1995 exploitation on ODP area was ended. Mine water is pumping up to the surface from depth of - 385 m u.s.l. by specially design installation, which is located at Jeremenko shaft and then drain to Ostravice river in average amount of 140 l·s-1 (Harat et al. 2008). Exploitation of coal in Petřvald basin was ended in year 2000. Mine water is pumping up at Žofie shaft area from depth of -480 m u.s.l. and then drain to Stružka river in average amount of 37 l·s-1 (Schwalbová, 2007). Nowadays, coal exploitation is continued only in Karviná basin at four mines. Three of them (Karviná /before ČSA/, ČSM and Darkov) are draining mine water to Olza river. The oldest mines in polish part of USCB were Murcki (1740), Reden (1785) as well Siemianowice (1788). Nowadays, an average amount of
XV 2/2009 coal extracting in Polish mines is about 100 mln t per year. The biggest polish mines located at USCB area are Borynia, Jas-Mos, Budryk, Krupiński, Pniowek and Zofiowka (Fig 2). MINE WATER Exploitation of minerals accompanies outflow of subsoil water into mines excavations. This water is almost at the same time with minerals extraction pumped up to the surface. Mine water is considered as specific type of waste water. As a consequence of that fact – mine water is not a product of traditionally interpreted technological processes. Mine water is varied as regards its chemical composition and value of mineralization. Above-mentioned features are basic factors in so called mining classification of mine water quality, in which we can divide them in four groups also taking into consideration possibility of potential use or utilization (Pluta, Grmela, 2006): • Sweet water – this group is characterized by dry residue totaling maximum 1 g·dm-3, as well as total max content of Cl- and SO42- ions concentration up to 0.6 mg·dm-3. This water can be used for different purposes. • Industrial water – water of this category is characterized by dry residue from 1 to 3 g·dm-3 as well as Cl- and SO42- ions concentration from 0.6 to 1.8 g·dm-3. This kind of water can be used for some industrial processes. • Water of temperate salinity – this group is characterized by dry residue value from 3 to 70 g·dm-3 as well as Cl- and SO42- ions concentration from 1.8 to 70 g·dm-3. Water which belongs to this group has a limited economic usefulness. • Saline water – water of this category is characterized by dry residue level over 70 g·dm-3 as well as Cl- and SO42- ions contention over 42 g·dm-3. Due to a high mineralization level, that kind of water presents a high threat for surface water. Mine water characterized by lesser saltiness, mainly those mentioned in first two groups (sweet and industrial water), occurs in underground infiltration zone of surface water. Chemical composition is very diverse, because of the fact that such waters were created in different geological formations. From chemical point of view, main hydrochemical types of above-mentioned waters are: HCO3-SO3-Ca, SO4-HCO3-Ca and Cl-HCO3-Na. Water of temperate salinity include as main types Cl-HCO3-Na as well as Cl-SO4-Na and saline water Cl-Na and Cl-Na-Ca. POLISH-CZECH MONITORING OF BORDER RIVERS Cooperation on border rivers between Poland and 127
PODZEMNÁ VODA Czech Republic began in year 1958. In that year international agreement about cooperation on border rivers between Poland and Czechoslovakia was established. After political changes a new agreement in this range was signed in year 1996. According to agreement, tests are realized at the same measurement points located on both neighboring countries. Surface
XV 2/2009 water tests are conducting 24 times per year, apart from profile located in Chalupki, where measurements are conducted every day. Activity in sphere of surface water monitoring in Czech side of the border is concentrating on estimation of Karviná Stream influence on water quality. Karviná Stream is an artificial hydrotechnical system, which drains mine water from Karviná basin.
Fig. 2: The area of mining exploitation in Polish and Czech part of the Upper Silesian Coal Basin: 1 – open mines, 2 – exploitation area of closed mines Obr. 2: Dobývací prostory v polské a české části hornoslezské uhelné pánve: 1 – dobývací prostory činných dolů, 2 – dobývací prostory uzavřených dolů
Water quality data are received in following measurement profiles: • Karviná Stream – estuary to Olza river; • Olza river – Darkov Ráj – measurement profile located over Karviná Stream estuary to Olza river; • Olza river over Piotrowka stream – profile located under Karviná Stream estuary; • Olza river estuary – profile situated above Olza river estuary to Oder.
128
In Poland, according to above-mentioned international agreement – measurements profiles are located in following places: • • • •
Oder in Chalupki, Olza river under Kaczyce, Olza river over Piotrowka stream estuary, Olza river estuary to Oder. In accordance to the applied methodology, the range
PODZEMNÁ VODA of tests includes: physical indicators (e.g. temperature, smell, color), oxide indicators (e.g. dissolve oxygen, BOD, COD), as well as nitrates, phosphates and especially crucial for estimation of mine water impact on surface water quality indicators of salinity (RAS, sulphates and chlorines). Analysis was carried out by labs in Poland and Czech Republic. In Poland, surface water tests are mainly realized by WIOS in Katowice, branch Bielsko Biala. In Czech Republic – Povodí Odry in Ostrava. MEASUREMENTS RESULTS During analyze period (2000 – 2007) water quality of Olza’s river improved significantly. Main reason of above-mentioned positive changes is activity on polish side of Upper Silesian Coal Basin. From year 2006 Polish mines which belongs to Jastrzembska Coal Company SA has stopped draining salt mine water into Olza river. In that year the decision about extend of “Olza collector” (artificial mine water drain system) to Oder river was finally realized. Essence if this system is spread of salt mine water from polish mines beyond small rivers basins, were mine water may causes biological degradation (e.g. Olza) and safely drain to Oder river. Retention-dosing system “Olza collector” includes: surface settlers, pumping stations which pipe away mine water into cumulative collector, storage
XV 2/2009 reservoirs and discharge installation. Total length of this system along with mines pipelines is over 100 km. essential effect of this system consists in drain to Oder river mine water in amount which doesn’t causes contravene the regulation on permissible level of pollution. Appropriate dosing of salt mine water allows with over 90 % probability to remain in Oder river total chlorine and sulphates ions concentration below 500 mg·dm-3, according to international agreement between Poland and Czech Republic (Fig. 3). “Olza collector” system could be an example of solution, in which applied suitable development principles allow to join economic effectiveness with environmental protection. Continuation of mine water draining from polish mines into Olza river may result to Olza’s biological degradation. Fig. 4 shows sudden increase in chlorine and sulphate ions concentration, mainly between between 2nd and 3rd measurement profile. Nowadays, only 3 mines from Ostrava-Karviná Coal Basin (Karviná /before ČSA/, ČSM and Darkov) are draining mine water to Olza river, including Karviná Stream (Tab. 1). There is no doubt, that modification of mine water draining in polish mines resulted in significant improvement of water quality in Olza river (Fig. 4).
Fig. 3: Salinity of Odra river in year 2007 Legend: 1 – concentration of chlorides and sulphates in Odra river (measurement profile Bohumín), 2 – concentration of chlorides and sulphates in Odra river after mine water diversion from „Olza collector” (measurement profile Krzyżanowice), 3 – maximal permissible chlorides and sulphates concentration Obr. 3: Mineralizace vod řeky Odra v roce 2007 Legenda: 1 – obsahy chloridů a síranů na hraničním profilu Bohumín, 2 – obsahy chloridů a síranů v Odře za „Kolekotrem Olza" (profil Krzyżanowice), 3 – maximální přípustné obsahy chloridů a síranů ve vodním toku
129
PODZEMNÁ VODA
XV 2/2009
Fig. 4: An average TDS concentration and chlorine ions content in selected measurement profiles in water of Olza river in years 2000 and 2007 Legend: 1 – Olza estuary to Odra, 2 – Olza Věřňovice, 3 – Olza Závada, 4 – Olza over Piotrówka, 5 – Karviná Stream estuary, 6 – Olza Stonávka estuary, 7 – Olza Darkov Ráj, 8 – Olza Czech Těšín, 9 – Olza below Czech Těšín, 10 – Olza Ropničanka estuary, 11 – Olza Tyra estuary, 12 – Olza Lomna estuary Obr. 4: Průměrné hodnoty celkové mineralizace a obsahů chloridů ve vybraných monitorovacích profilech na řece Olše v letech 2000 a 2007 Legenda: 1 – Olše ústí do Odry, 2 – Olše Věřňovice, 3 – Olše Závada, 4 – Olše nad Piotrówkou, 5 – ústí Karvinkého potoka, 6 – Olše ústí Stonávky, 7 – Olše Darkov Ráj, 8 – Olše Český Těšín, 9 – Olše pod Českým Těšínem, 10 – Olše ústí Ropničanky, 11 – Olše ústí Tyry, 12 – Olše ústí potoka Lomná Tab. 1: Amount of mine water [m3] from Czech mines drained in to Karviná Stream in years 2000 – 2007 Tab. 1: Objem důlních vod [m3] z českých dolů vypuštěných do Karvinského potoka v letech 2000 – 2007
Mine
2000
2001
2002
2003
2004
2005
2006
2007
ČSA
1174100
1254600
1229600
1216000
1269200
1277650
1676060
1353270
ČSM
1606300
1852100
1636700
1600900
1424500
1657400
1766760
2043580
Darkov
538900
360000
495400
755800
687800
562200
309180
783520
CONCLUSION Among all factors which caused transformation of natural environment on Upper Silesian Coal Basin Area, mining activity brings about to the biggest and most varied changes. Exploitation of coal accompanies outflow of natural groundwater to mines excavations. This water is pumped up to the surface and caused saltiness of rivers. Olza, as a border river, receives sewage from polish and Czech part of USCB area.
130
In particular, the mine water from OKR coal basin. This water is piped away to Karviná Stream and then to Olza river. In this circumstances, supply of mine water also from mines situated in Polish part of USCB could resulted in Olza`s river biological degradation. In order to minimalize the process, retention-dosing system “Olza collector” was built. As a result salt, mine water from polish mines are passing over beyond small river basins and then safely drain to Oder.
PODZEMNÁ VODA
XV 2/2009
LITERATURE CZERWIŃSKA, B., GŁĄB J., SZAMAŃSKA, L. 2003: Stan środowiska w województwie śląskim w roku 2002. Inspekcja Ochrony Środowiska. Wojewódzki Inspektorat Ochrony Środowiska. Biblioteka Monitorigu Środowiska, Katowice, s. 57-90, IBSN 83-7217-220-X. DOPITA, M. et al. 1997: Geologie české části hornoslezské pánve. Ministerstwo Praga, Środowiska Republiki Czeskiej 1997, s. 278, ISBN 80-7212-011-5. HARAT, A., GRMELA, A., MISTERKA, K., WANATOWICZ, A. 2008: Alternative Sources of Energy (Alternatywne źródła energii). In: Excursion guide – Morava 2008, Ostrava 05/2008, Vyd. VŠB-TU Ostrava, 2008, s. 19. ISBN 978-80-248-1755-2 PLUTA, I., GRMELA, A. 2006: Odprowadzanie wód kopalnianych do Odry w świetle przepisów prawnych w Polsce i Republice czeskiej. In: Materiały VI Konferencji naukowo-technicznej „Ochrona środowiska na terenach górniczich“, Sosnowiec 2006, Vyd. Zarząd Główny SITG, Katowice, 2006, s. 377-392, ISBN 83-87267-71-6 SCHWALBOVÁ, J. 2007: Vliv důlních vod z dolů karvinské dílčí pánve na změny kvality vody v řece Olši v letech 2000 – 2005. Bakalářská práce - Manuskript. VŠB-Technická Univerzita Ostrava, s 47.
SHRNUTÍ Region Slezska z polské i české strany patří mezi silně industrializované oblasti Evropy díky koncentraci nerostných surovin – uhlí, rudy, sádrovec, sůl aj. Exploatace těchto nerostných surovin, hlavně pak dynamický rozvoj těžby uhlí v polovině minulého století, se negativně odrážel v dopadech na životní prostředí – drenáží a propojením přípovrchových a hlubokých zvodní, poklesy povrchu, zátopy rozsáhlých oblastí apod. Jedním z nejkritičtějších problémů, spojených s těžbou uhlí, je likvidace důlních vod. Do hraniční řeky Olše jsou (resp. do roku 2006 byly) likvidovány důlní vody jak z českých, tak polských dolů. V článku jsou posuzovány změny kvality vod v řece Olše (= Olza) vlivem vypouštění důlních vod z přilehlých uhelných dolů z české a polské části hornoslezské uhelné pánve za období 2000 – 2007. V průběhu posledních let se kvalita vody v řece Olše výrazně zlepšila. Hlavní příčinou zmiňovaných pozitivních změn bylo řešení ochrany vodního toku Olše z polské strany hornoslezské pánve. Od roku 2006 polské důlní podniky Jastrzembské uhlené společnosti (Jastrzębska Spółka Węglowa SA) zastavily vypouštění slaných důlních vod do řeky Olše. V tomto roce byl zprovozněn tzv. „Kolektor Olza” (umělý drenážní systém) odvádějící důlní vody z této příhraniční těžební oblasti až do toku řeky Odra na polském území. Cílem tohoto sytému je odvést slané důlní vody z polských dolů přímo do hlavního toku Odry a nezatěžovat tak malé říční toky, jejíž vody byly mnohdy kvalitativně degradovány vypouštěnými vodami a to jak z dolů (důlní vody), tak i vodami komunálními, průmyslovými i balneologickými (např. Lázně Darkov aj.). Řízené dávkování slaných vod umožňuje s vice jak 90 % pravděpodobností dodržení stanoveného limitu zatížení řeky Odry, zejména chloridy a sírany tak, aby podle mezinárodní dohody mezi Polskem a Českou republikou na hraničním profilu v Bohumíně a na následném toku Odry v Polsku splňovala její voda podle polské klasifikace povrchových vod II. třídu čistoty. “Kolektor Olza” je příkladem řešení, ve kterém aplikace vhodných technických prostředků dovoluje spojit ekonomickou efektivnost s ochranou životního prostředí. Spolupráce ve sféře monitoringu kvality hraničních toků Odry a Olše z polské i české strany započala v roce 1958, kdy byla podepsána mezinárodní dohoda o ochraně těchto vodních toků. Politické změny si vyžádaly renovaci původní smlouvy a nová smlouva byla podepsána v roce 1996. Podle této nové smlouvy testování kvality je prováděno na vybraných bodech, situovaných na obou březích řeky, tj. na polské i české straně hraničního toku Olše. Monitoring kvality hraničního toku Olše a jeho vyhodnocování je zároveň významným příkladem dlouhotrvající a plodné spolupráce mezi sousedícími státy, která vychází z oboustranně zodpovědného dodržování mezinárodní smlouvy v oblasti ochrany kvality hornickou činností postiženého životního prostředí. Prezentované údaje byly poskytnuty jak z příslušných příhraničních dolů české i polské části pánve, tak zejména z podniků Povodí Odry v Ostravě a Wojewódzkého Inspektorátu Ochrony Środowiska (WIOS) v Katowicích, pobočka Bielsko – Biała.
131