2014.04.25.
Megújuló energiaforrások Napelemek Szélturbinák Előadó: Szabó Gergely
1
TARTALOM: Energia igények: fejlődés, következmények Napenergia jellemzői Felhasználási terület: -Napelemes rendszerek -Szélgenerátoros rendszerek Elektronikai hulladékok, környezetvédelem
2
BME - Megújuló energiák - PV és szél
1
2014.04.25.
3
4
BME - Megújuló energiák - PV és szél
2
2014.04.25.
6
BME - Megújuló energiák - PV és szél
3
2014.04.25.
7
Ipari forradalom (18.sz. vége, 19.sz. eleje) : gazdasági, társadalmi, technológiai változás (szénfűtésű gőzgép, gépesítés …) energiafogyasztás növekedése egyre növekvő energiaigények – tüzelőanyag (fosszilis alapú energiahordozók) iránt energiaigények pl. 100, 50 ,20 éve és ma fosszilis energiahordozók – nem tekinthetőek megújuló energia forrásnak, mert: gyorsabb ütemben történik a felhasználása, mint a termelődése jelentős környezeti terhelés a Földre, az élővilágra; éghajlatváltozás Környezetszennyezés, üvegházhatás fenntartható így ez a fejlődés? NEM.
8
BME - Megújuló energiák - PV és szél
4
2014.04.25.
Ipari forradalom (18.sz. vége, 19.sz. eleje) : gazdasági, társadalmi, technológiai változás (szénfűtésű gőzgép, gépesítés …) energiafogyasztás növekedése egyre növekvő energiaigények – tüzelőanyag (fosszilis alapú energiahordozók) iránt energiaigények pl. 100, 50 ,20 éve és ma fosszilis energiahordozók – nem tekinthetőek megújuló energia forrásnak, mert: gyorsabb ütemben történik a felhasználása, mint a termelődése jelentős környezeti terhelés a Földre, az élővilágra; éghajlatváltozás Környezetszennyezés, üvegházhatás fenntartható így ez a fejlődés? NEM.
9
(toe = olajegyenérték)
~8x
forrás:
BME - Megújuló energiák - PV és szél
XVII. évf. 3. sz. 2010. május-június
10
5
2014.04.25.
A szénhidrogén-kibocsátás az Ipari forradalom óta majdhogynem exponenciálisan nő (forrás: Wikipédia) 11
világ népességének növekedésének jelentős gyorsulása
forrás: Wikipedia
BME - Megújuló energiák - PV és szél
12
6
2014.04.25.
világ népességének növekedésének jelentős gyorsulása
forrás: Wikipedia
13
forrás:
BME - Megújuló energiák - PV és szél
XVII. évf. 3. sz. 2010. május-június
14
7
2014.04.25.
+ energiaigény komfortfokozat növelése, életminőség „javulása” (?)
15
BME - Megújuló energiák - PV és szél
8
2014.04.25.
17
megújuló energiaforrások: -nem lehet kimeríteni (szél-, napenergia), -rövid időn belül újratermelődnek (biomassza) földrajzi elhelyezkedésük egyenletesebb, jobban kihasználhatóak helyben, használata során környezeti terhelés nincs vagy minimális életciklus elemzés
18
BME - Megújuló energiák - PV és szél
9
2014.04.25.
Magyarország
VILLAMOSENERGIA TERMELÉS
forrás: http://www.iea.org/stats/surveys/mes.pdf
19
Ausztria
20
BME - Megújuló energiák - PV és szél
10
2014.04.25.
Dánia
21
Norvégia
22
BME - Megújuló energiák - PV és szél
11
2014.04.25.
USA
23
Japán
!
2011-03-11
! 24
BME - Megújuló energiák - PV és szél
12
2014.04.25.
Németország
25
Izland
26
BME - Megújuló energiák - PV és szél
13
2014.04.25.
27
Primer energia fogyasztás 2007-ben (Trillions of BTU)
Lakosság (M.fő)
Magyarország
1114
9,95
111,9598
Ausztria
1507
8,45
178,3432
Dánia
875
5,58
156,81
Norvégia
1917
5,03
381,1133 323,2113
USA
101553
314,2
Japán
22473
127,55
176,1897
Németország
14166
81,85
173,0727
http://en.wikipedia.org/wiki/List_of_countries_by_energy_consumption_and_production
BME - Megújuló energiák - PV és szél
14
2014.04.25.
http://en.wikipedia.org/wiki/World_energy_consumption
BME - Megújuló energiák - PV és szél
29
15
2014.04.25.
http://en.wikipedia.org/wiki/World_energy_consumption
BME - Megújuló energiák - PV és szél
31
16
2014.04.25.
TARTALOM: Energia igények: fejlődés, következmények Napenergia jellemzői Felhasználási terület: -Napelemes rendszerek (video) -Szélgenerátoros rendszerek (video) Elektronikai hulladékok, környezetvédelem – képek
33
TARTALOM: Energia igények: fejlődés, következmények Napenergia jellemzői Felhasználási terület: -Napelemes rendszerek (video) -Szélgenerátoros rendszerek (video) Elektronikai hulladékok, környezetvédelem – képek
34
BME - Megújuló energiák - PV és szél
17
2014.04.25.
Megújuló energiaforrások Felszínének átlagos teljesítménye: ~ 63 millió W/m2
Napenergia jellemzői:
távolság: kb 150 millió km hőmérséklet a Nap felszínén: ~6000 °C 35
Megújuló energiaforrások Napenergia jellemzői: Magyarországon az éves napsütéses órák száma: 1900-2300 óra > Eu. átlag
~ 1,3 kW/m2 maximális érték; időjárási állapot – befolyásoló tényező 36
BME - Megújuló energiák - PV és szél
18
2014.04.25.
Megújuló energiaforrások
37
Megújuló energiaforrások
38
BME - Megújuló energiák - PV és szél
19
2014.04.25.
Megújuló energiaforrások Napenergia jellemzői: A napból érkező sugárzás mértéke az Egyenlítőn, a felszínen mérve, felhőmentes időjárási körülmények között, amikor a nap a legmagasabb pontján jár (zenit) kb 1300 W/m2 . Az Egyenlítőtől távolodva, és tekintetbe véve, hogy alkalmanként erősen felhős is lehet az égbolt, ez az érték jelentősen lecsökkenhet. Ezeket a módosító tényezőket figyelembe véve alkották meg az átlagos, várható energia eloszlási térképet, mely tájékoztatást nyújt arról, hogy az ideálisan tájolt és elhelyezett napelem modulokat mekkora sugárzás (energia) érheti éves szinten egy négyzet méterre vonatkoztatva. 39
Megújuló energiaforrások Jellemzői: -rendelkezésre állnak korlátok nélkül (helyi viszonyok) -minimális (esetleg nulla) környezetkárosítás -helyben elérhetőek az energiaforrás általában a Napból származik; Felhasználását tekintve: az átalakítás lehet közvetlen vagy közvetett mód -közvetlenül: napkollektorok; napelemek -közvettet módon: szélturbinák; biomassza, hőszivattyúk (levegő) A Nap energiájától független rendszerek: -hőszivattyúk (földhő – geotermikus energia) -ár-apály erőművek háztartási energiatermelésre használhatóak
40
BME - Megújuló energiák - PV és szél
20
2014.04.25.
Megújuló energiaforrások Jellemzői: -rendelkezésre állnak korlátok nélkül (helyi viszonyok) -minimális (esetleg nulla) környezetkárosítás -helyben elérhetőek az energiaforrás általában a Napból származik; Felhasználását tekintve: az átalakítás lehet közvetlen vagy közvetett mód -közvetlenül: napkollektorok; napelemek -közvettet módon: szélturbinák; biomassza, hőszivattyúk (levegő) A Nap energiájától független rendszerek: -hőszivattyúk (földhő – geotermikus energia) -ár-apály erőművek
41
Megújuló energiaforrások Elektromos áram termelése megújuló energiaforrásokból
Kétféle lehetőség: -a napfényt napelemek segítségével, vagy -a szélenergiát szélturbinák segítségével alakítjuk villamos energiává.
42
BME - Megújuló energiák - PV és szél
21
2014.04.25.
Megújuló energiaforrások Elektromos áram termelése megújuló energiaforrásokból
NAPELEMEK:
-a napfényt közvetlenül alakítja elektromos árammá; -Elterjedésének egyik oka: a fosszilis energiahordozók árának drágulása; -bizonyos országokban – politikai nyomásra is – jelentős napelemes rendszerek épülnek -földrajzi adottságok - éves napsütéses órák száma -éves sugárzási hányad a vízszintes síkon – kWh/(m2 *év) (földrajzi szélességi körök) -a napelemes rendszerek kielégíthetik a háztartási berendezések energiaigényét (részben v. egészében) -Világon: összes beépített teljesítmény: > 100 GWp (2013) -Egyes országokban több mint 20 %-át alkotják a napelemes teljesítmények a beépített erőművi teljesítménynek
43
Megújuló energiaforrások Elektromos áram termelése megújuló energiaforrásokból
NAPELEMEK:
Műszaki jellemzése: A napelemek anyaga: félvezető anyagok: -Szilícium (nagyrészt elektronikai termékek újrahasznosításával) -Gallium-arzenid (GaAs) -Kadmium-telurid (CdTe) -Réz-indium-diszelenid (CuInSe2 )
44
BME - Megújuló energiák - PV és szél
22
2014.04.25.
45
Megújuló energiaforrások Elektromos áram termelése megújuló energiaforrásokból
Szilícium egykristály cellák - A napelemek többségénél ezt alkalmazzák - főbb technológiai lépések: - alapanyag: SiO2 : finomítás
tisztítás
megolvasztás
újrakristályosítás
cellagyártás
46
BME - Megújuló energiák - PV és szél
23
2014.04.25.
Megújuló energiaforrások Elektromos áram termelése megújuló energiaforrásokból
Szilícium egykristály cellák - a nagy tisztaságú Si kristályokat 300 µm-es szeletekre vágják - ezek kis energiatermelésre képesek
összekapcsolnak sokat (moduloknak, panelek)
47
Megújuló energiaforrások Elektromos áram termelése megújuló energiaforrásokból
Szilícium egykristály cellák - a modulok sérülékenyek
üveglap, doboz védelem
48
BME - Megújuló energiák - PV és szél
24
2014.04.25.
49
Megújuló energiaforrások
A napelemek felépítése alapvetően két csoportba sorolható: 1. Kristályos : - monokristályos (egykristályos) - polikristályos 2. Amorf (vékonyréteg) Monokristályos napelem jellemzői: - Szilícium egykristályból vágják ki a szeleteket; - A fényt gyakorlatilag egyáltalán nem ereszti át; - Előállítása során jelentős az anyag és energia felhasználás; Drága - A legjobb hatásfokkal rendelkeznek; hatásfokuk 15-20 % körüli lehet; - Felületük < néhány m2 ; - P=néhány W…<250 W-os telj.; - egyes típusoknál már alacsony megvilágítás esetén is közel 80-90 %-os relatív hatásfok érhető el; - élettartam: „kb 30 év”
50
BME - Megújuló energiák - PV és szél
25
2014.04.25.
Megújuló energiaforrások
A napelemek felépítése alapvetően két csoportba sorolható: 1. Kristályos : - monokristályos (egykristályos) - polikristályos 2. Amorf (vékonyréteg) Polikristályos napelem jellemzői: - Szilícium többkristályból vágják ki a szeleteket; - Előállítása során kisebb energia felhasználás alacsonyabb költséggel gyárthatóak - Hatásfokuk alacsonyabb, mint a monokristályosé (ugyanakkora villamos teljesítmény eléréshez nagyobb felület kell) ; hatásfokuk: kb 13-15 %; ; - Színük többnyire kékes-lila; - P= <200 W
51
Megújuló energiaforrások
A napelemek felépítése alapvetően kettő csoportba sorolható: 1. Kristályos : - monokristályos (egykristályos) - polikristályos 2. Amorf (vékonyréteg) Amorf napelem jellemzői: -Más szerkezet (kevésbé rendezetten elhelyezkedő Si atomok) -Legolcsóbb előállítási technológia -A rétegek vékonyak -Felépítésüknél fogva érzékenyebbek a szórt sugárzásra -Merev v. rugalmas keretre egyaránt helyezhetőek -Hátrányuk: legalacsonyabb hatásfok (jellemzően 5-7 %) -Bár nehezebb és nagyobb felület kell, mégis sok helyen használják szívesen -P általában: 5 … 120 W; -Élettartam 10…15 év; 52
BME - Megújuló energiák - PV és szél
26
2014.04.25.
Megújuló energiaforrások NAPELEMEK:
A napelemek hatásfoka időről időre javul, de még így is a felületére besugárzott energia csupán harmadát, negyedét képesek maximálisan átalakítani villamos energiává.
Az optimálisabb rendszerhatásfok elérése miatt léteznek olyan megoldások is, ahol a panelek ún. napkövető funkcióval ellátott rendszer részeként vannak telepítve. Ilyen rendszer telepítése azonban csak ott gazdaságos – figyelembe véve a komplexitását és árát –, ahol nagyobb energiaigény lép fel (pl.: több 10, vagy több 100 kW teljesítmény értékben). PV rendszereknél kb. 10-15%-ban alkalmaznak napkövetést (+43-50% termelés növekedés) A napelemek energiaátalakítási hatásfokát elsősorban a következő tényezők határozzák meg: - napelemek technológiai felépítése - napelemek elhelyezkedése (földrajzi pozíció) - napelemek tájolása - külső terep viszonyok 53
54
BME - Megújuló energiák - PV és szél
27
2014.04.25.
Megújuló energiaforrások
A napelemek energiaátalakítási hatásfokát elsősorban a következő tényezők határozzák meg: - napelemek technológiai felépítése - napelemek elhelyezkedése (földrajzi pozíció) - napelemek tájolása - külső terep viszonyok
55
Megújuló energiaforrások
A napelemek energiaátalakítási hatásfokát elsősorban a következő tényezők határozzák meg: - napelemek technológiai felépítése - napelemek elhelyezkedése (földrajzi pozíció) - napelemek tájolása - külső terep viszonyok
56
BME - Megújuló energiák - PV és szél
28
2014.04.25.
Megújuló energiaforrások
A napelemek földrajzi elhelyezkedés és tájolása:
57
58
BME - Megújuló energiák - PV és szél
29
2014.04.25.
59
60
BME - Megújuló energiák - PV és szél
30
2014.04.25.
61
62
BME - Megújuló energiák - PV és szél
31
2014.04.25.
Megújuló energiaforrások
A napelemek energiaátalakítási hatásfokát elsősorban a következő tényezők határozzák meg: - napelemek technológiai felépítése - napelemek elhelyezkedése (földrajzi pozíció) - napelemek tájolása - külső terep viszonyok
63
Megújuló energiaforrások
A napelemes termelés jellege: Elvi termelése pontosan számítható, de ezt több tényező befolyásolhatja: Égboltállapotok (fényviszonyok) Hőmérséklet, Páratartalom, Szennyeződés mértéke, Árnyékolás nagysága,. stb.
Azonban: időjárási statisztikai adatok (méréséi adatbázis) állnak rendelkezésre
64
BME - Megújuló energiák - PV és szél
32
2014.04.25.
Megújuló energiaforrások
Villamosenergia-termelés sajátosságai PV rendszerek esetén: a.) szezonális periodicitás (nyáron hosszabb nappalok, többlet energia szezonális szélenergiával)
fordított
b.) napi periodicitás: ez egy szinusz függvénnyel közelíthető (előnyös, mert a napelemek akkor termelnek, amikor az energiaigény amúgy is magasabb)
Megemlítendő még: Időszakos termelés csökkenés (ködös égbolt, felhős égbolt állapotok,…) A napsugárzás „nem ismeri a szabadnapokat, ünnepnapokat”
65
66
BME - Megújuló energiák - PV és szél
33
2014.04.25.
67
Megújuló energiaforrások
A napelemek által termelt villamosenergia-termelés nagyjából egybe esik a villamosenergiafogyasztási csúccsal A PV alkalmas a nappali csúcsigények megtermelésére (részben v. egészében) PV rendszer méretezésénél célszerű a minimum érték feletti részt napenergiával pótolni, termelni.
68
BME - Megújuló energiák - PV és szél
34
2014.04.25.
69
70
BME - Megújuló energiák - PV és szél
35
2014.04.25.
6000 5000
P [MW]
4000 3000 2000 1000 0
órák 2013-02-12 Kedd -5°C
2013-07-29 Hétfő +37°C
71
72
BME - Megújuló energiák - PV és szél
36
2014.04.25.
73
74
BME - Megújuló energiák - PV és szél
37
2014.04.25.
75
76
BME - Megújuló energiák - PV és szél
38
2014.04.25.
Megújuló energiaforrások NAPELEMEK:
Rendszerek felépítése A napelemes rendszerek félvezető alapú cellákat használva alakítják át a ráeső fényt (sugárzást) elektromos árammá. Mivel egy-egy cella által létrehozott elektromos feszültség kb 0,5 V, ami meglehetősen kicsi érték, ezért modulokba kapcsolják azokat, melyeket tovább egymással összekapcsolva egész mezőket hozhatnak létre. A kinyert energia: - eltárolható, - közvetlenül felhasználható (sziget üzemű egységek), - visszatáplálható a kiépített villamos hálózatba, vagy - más energiatermelő egységekkel (pl. benzinüzemű generátor) kombinálva ún. hibrid rendszerekbe bevezethető.
A rendszer típusától függően különböző eszközök, berendezések, kiegészítők szükségesek még a napelemes panelek mellett, hogy egységes rendszerről beszélhessünk. 77
Megújuló energiaforrások NAPELEMEK:
78
BME - Megújuló energiák - PV és szél
39
2014.04.25.
Megújuló energiaforrások NAPELEMES RENDSZEREK: 1.) A sziget üzemű (független) napelemes rendszerek nem állnak összeköttetésben elektromos hálózattal, autonóm módon üzemelnek. Ilyen rendszer lehet egy napelemes számológép, de akár az űrhajók is ebbe a kategóriába sorolhatók. Drágább és összetettebb rendszerek esetén már energia tárolásra alkalmas akkumlátorokkal is elláthatják a berendezést biztosítva így a folyamatos működés feltételeit. 2.) Az elektromos hálózatra kapcsolt napelemes rendszerek egy nagy, független hálózati rendszer elemét alkotják betáplálva az általuk kinyert energia részét vagy egészét. Méretüket tekintve nagyon változóak lehetnek, a lakóépületeken elhelyezett panelektől kezdve (néhány kW teljesítmény) egészen a napelemes állomásokig ( néhány 10 GW-ig). 3.) Hibrid rendszerek (köv. oldal)
80
BME - Megújuló energiák - PV és szél
40
2014.04.25.
Megújuló energiaforrások NAPELEMEK: A napelemes paneloktól az energiát el kell vezetni egy központi egységbe. Ez tartalmazza többek között az ún. invertereket, melyek átalakítják a napcellák által létrehozott egyenfeszültséget és egyenáramot váltakozó árammá és feszültséggé, lehetővé téve, hogy a meglévő elektromos hálózatra lehessen a rendszert kapcsolni. A központi egység felel a megtermelt energia akkumlátorokba történő eltárolásáért, valamint az akkumlátorok túlterhelés elleni védelméért is.
hibrid rendszer 81
Megújuló energiaforrások NAPELEMEK:
A napelem-modulok műszaki adatai:
Az ábra egy napelem- modul három jelleggörbéjének példáját mutatja különböző üzemi feltételek között. Azon a helyen, ahol a jelleggörbék metszik az y tengelyt (napelemes rendszer árama), a legnagyobb az áramerősség és nulla a feszültség. Ezt a maximális áramerősséget rövidzárlati áramnak nevezzük. Ez erősen függ a napsugárzástól. Azon a helyen, ahol a jelleggörbe metszi az x tengelyt (napelemes rendszer feszültsége), a legnagyobb a feszültség, de nulla az áramerősség. Ezt a pontot üresjárati feszültségnek nevezzük.
Y
Jelleggörbék
X
BME - Megújuló energiák - PV és szél
82
41
2014.04.25.
Megújuló energiaforrások NAPELEMEK:
A napelem-modulok műszaki adatai:
áramerősség
A napelem- modul által leadott teljesítmény a pillanatnyi áram és feszültség számtani szorzata. Ezek az elektromos jellemzők üzem közben nem állandóak, hanem a napsugárzás erősségétől és a napelemek hőmérsékletétől függően változnak, ez felismerhető a módosuló jelleggörbéről. Két munkaponton, az „üresjárati feszültségnél” és a „rövidzárlati áramnál” nincs teljesítmény.
83
Megújuló energiaforrások NAPELEMEK:
A napelem-modulok műszaki adatai:
Mivel az elektromos teljesítmény a leírtak szerint közvetlenül a napsugárzás intenzitásától függ, a laboratóriumban szabványosított tesztkörülmények (STC = Standard Test Conditions) között egy úgynevezett villanó (flasher) alatt minden modulnak meghatározzák a csúcsteljesítményét (kWp – kilowatt peak). Standardként ilyenkor az 1000 W/m2 napsugárzást, a 25 °C napelem-hőmérsékletet és az AM 1,5 értéket (AM = Air Mass = levegőmennyiség; ez írja le a beesési szöget és a napsugárzás útját) definiálják.
A napelem, ill. napelem- modul felmelegedése miatt közvetlenül megváltoznak az elektromos tulajdonságok és csökken a teljesítmény. A kristályos moduloknál a teljesítmény egy Kelvin foknak megfelelő hőmérséklet-emelkedéskor kb. 0,5 %-kal csökken (vékonyrétegű moduloknál kb. 0,2 %-kal). Ez azt jelenti, hogy a modul 45 °C elemhőmérséklet esetén 10 %-kal kisebb névleges teljesítménnyel rendelkezik mint az STC körülmények között. Ezeket a hőmérsékleteket nyáron rendszeresen elérik, részben akár 70 °C-ra is emelkedhet a hőmérséklet. A rossz hátsó szellőztetésű moduloknál a hozamcsökkenés még kb. 5 %-kal nagyobb. 84
BME - Megújuló energiák - PV és szél
42
2014.04.25.
Játék
Egyszerűsített feladat: Határozza meg, hány m2 napelem kell ahhoz, hogy az otthoni elektromos energiafogyasztását fedezni tudja.
Kiindulási adatok: -éves villamos energia igény -napelem (típus, hatásfok) -„bonyolult” matematikai összefüggések
86
BME - Megújuló energiák - PV és szél
43
2014.04.25.
87
88
BME - Megújuló energiák - PV és szél
44
2014.04.25.
Háztartási méretű kiserőmű Háztartási méretű kiserőműnek nevezzük azokat a kisfeszültségű hálózatra csatlakozó kiserőműveket, melyek csatlakozási teljesítménye nem haladja meg az 50 kVA-t. Kiserőműnek minősül az 50 kVA-nél nagyobb, de 50 MW-nál kisebb teljesítményű erőmű.
A háztartási méretű kiserőművek mérőhely kialakításában nincs eltérés a hagyományos mérőhelyekhez képest. A 273/2007. (X. 19.) Korm. rendelet 4. § alapján a háztartási méretű kiserőmű üzemeltetője által termelt villamos energiát az üzemeltető kérésére az adott csatlakozási ponton értékesítő villamosenergia-kereskedő vagy egyetemes szolgáltató volt köteles átvenni. 2008. évtől nem a területileg illetékes áramszolgáltatók vásárolják meg a hálózatokba a kiserőművek által termelt villamos energiát, hanem a Magyar Villamos Rendszerirányító Zrt. (MAVIR Zrt.).
89
Háztartási méretű kiserőmű Napjainkban leginkább a napelemmel történik az ilyen jellegű kiserőművek létesítése, melyek félvezető anyag alkalmazásával közvetlenül a fény energiájából képesek villamos energiát előállítani. Az így előállított egyenfeszültség már egy áramirányítón (inverteren) keresztül kapcsolódik a hálózatra, és képes arra, hogy a hálózattal szinkron villamos energiát biztosítson a felhasználó-berendezések részére. Abban az esetben, ha a termelt villamos energia pillanatnyilag nagyobb a felhasználási helyen belüli felhasználásnál, akkor a termelt többlet energia a csatlakozási ponton keresztül a közcélú hálózatba áramlik. A hálózathoz csatlakoztatásnak feltételei vannak, melyet az áramszolgáltató specifikál. Abban az esetben, ha a feltételek teljesítésével a közcélú hálózatba is történt betáplálás, akkor a felhasználónak érdeke, hogy a közcélú hálózatból általa vételezett és betáplált energia mennyiséggel történjen elszámolás. 90
BME - Megújuló energiák - PV és szél
45
2014.04.25.
Háztartási méretű kiserőmű Az elszámolásra szerződést kell kötni a hálózati engedélyessel. Az elszámolási mérésre vonatkozóan háztartási méretű kiserőművek esetén egyszámsoros / kétszámsoros ad-vesz (oda-vissza) mérés vagy idősoros (terhelési görbét tároló) ad-vesz mérés kerül kialakításra. Az ad-vesz mérést fogyasztáscsökkentő jelleggel alkalmazza az ELMŰ, mely esetben a vonatkozó feltételek teljesülése esetén a mérést éves szinten célszerű szaldózni. A szaldó mérés leolvasási ciklusra vonatkozik, tehát egy év a célszerű választott idő, ami alatt a termelt energiát az időjárás tényezői miatt el képes fogyasztani a rendszer. A leolvasási ciklusban keletkezett esetleges többlet energia lemondható, vagy az adózási előírások, szabályok teljesülése esetén értékesíthető az érvényben lévő rendeletben meghatározott áron (jelenleg az évi átlagos termékár és RHD 85 %áért).
91
BME - Megújuló energiák - PV és szél
46
2014.04.25.
Háztartási méretű kiserőmű
www.elmu.hu
93
Megújuló energiaforrások Elektromos áram termelése megújuló energiaforrásokból
Kétféle lehetőség: -a napfényt napelemek segítségével, vagy -a szélenergiát szélturbinák segítségével alakítjuk villamos energiává.
94
BME - Megújuló energiák - PV és szél
47
2014.04.25.
Megújuló energiaforrások Szélgenerátorok: A szél mozgását energiatermelés céljára hasznosítani képes eszközöket szélturbináknak (szélgenerátoroknak) nevezzük. A szél a turbinák lapátjait megforgatja, amely egy generátort hajt meg– így lesz a mozgási energiából villamos energia. Földrajzi és környezeti hatásokat figyelembe véve egyes helyeken több, máshol kevesebb szél által kinyerhető energiával lehet számolni. 2009-ben a világ szélerőműveinek együttes teljesítménye 159,2 GW volt. Az általuk megtermelt villamos energia értéke 340 TWh, ami a Föld elektromos energiaigényének kb. 2 %-át fedezte. Számos országban - jelentős kormányzati segítséggel - a szélenergiából kinyert villamos energia mértéke az ország által termelt teljes elektromos energia értékéhez viszonyítva igen magas értéket ért el. Dániában 20 %, 14 % Írországban és Portugáliában, 11% Spanyolországban, 8 % Németországban 95
Megújuló energiaforrások Szélgenerátorok: A szélturbinák két családját különböztetjük meg annak alapján, hogy milyen elrendezésű a tengelyük. Ennek alapján beszélhetünk vízszintes és függőleges tengely elrendezésű turbinákról. A vízszintes tengelyű szélturbinák a leggyakrabban előforduló és legnépszerűbb kialakítású berendezések. A forgórész (rotor) tengelye és az elektromos generátor fent helyezkedik el a magasban, a torony tetején. Fontos megjegyezni, hogy hatékonyan csak akkor tud működni, ha orrcsúcsa a szél irányába néz.
96
BME - Megújuló energiák - PV és szél
48
2014.04.25.
Megújuló energiaforrások Szélgenerátorok: A szélirányba való fordulást kisebb generátoroknál egy széllapát, nagyobb rendszereknél szélirány érzékelővel ellátott szervomotoros forgatómű teszi lehetővé. A legtöbb szélturbina rendelkezik áttétellel is, amik a rotor lassabb forgását áttételek segítségével az elektromos generátor számára ideálisabb, magasabb fordulatszámra alakítják. Mivel a torony maga mögött turbulenciát okoz, a turbina lapátokkal szerelt része általában széllel szemben előrefele néz. A lapátokat kemény anyagból készítik, valamint kellő távolságban helyezik el a toronytól, hogy még véletlenül se érjenek erősebb szélben sem a torony szerkezetéhez.
97
Megújuló energiaforrások Szélgenerátorok: A másik csoportba az ún. függőleges tengely elrendezésű turbinák tartoznak. Ennél a kivitelnél a forgórész tengelye függőleges pozícióban van. Legfőbb előnye, hogy ebben az esetben a turbinának nem kell szélirányba állnia azért, hogy hatékonyan működhessen. Ez leginkább ott használható ki, ahol a szélirány gyakorta megváltozik. A függőleges tengelyű szélturbinás rendszereknél a generátor és a váltómű elhelyezhető a földön, vagy föld közelében, így a toronynak nem kell ezeket, mint terhet hordoznia. Karbantartás szempontjából is kedvezőbb, mint a magasan elhelyezett, vízszintes tengely elrendezésű szélgenerátoros kivitel, hiszen nem kell a szerelésért a magasba menni.
98
BME - Megújuló energiák - PV és szél
49
2014.04.25.
Megújuló energiaforrások Szélgenerátorok: Egyik jellemző hátránya, hogy némelyik formai kialakítása pulzáló forgatónyomatékot eredményez, szemben a vízszintes tengelyű szélgenerátorokkal, ahol a generátor akár száz méteres magasságba is kerülhet (függően a lapátok hosszától). A függőleges tengelyű turbináknál a lapátok alacsonyabban helyezkednek el. Alacsonyabban a szél sebessége is kisebb, így ezeknek a szélerőműveknek a teljesítménye is kisebb valamint a hatásfokuk is rosszabb, mint a másik típushoz tartozóknak. A földhöz közeli légáramlatok és egyéb környező tárgyak, akadályok turbulens áramlásokat okozhatnak, amik a rendszer zavaró vibrálásához vezethetnek növelve akár a zaj hatásokat is. Ez viszont jelentősen leronthatja a hatékonyságát és csökkentheti mind a karbantartások közötti időközöket ill. az élettartamát is. Jellemző magassága általában a néhányszor tíz méterig terjed. ~ 200 % szélsebesség
100 %
~ 50 %
99
Megújuló energiaforrások Szélgenerátorok: Azoknál a típusoknál, ahol a turbulencia ellenére a lapátok a turbina torony mögötti részén található, megengedhető a rugalmasabb anyagból készült lapát, mert nagyobb szél esetén sem okoznak ütközést a tartószerkezettel az esetleges elhajlás miatt. Mivel az ismétlődő turbulencia ún. fáradásból eredő meghibásodáshoz vezethet, a legtöbb vízszintes tengelyű szélturbinán a lapátok széllel szembe, előrefele néznek.
100
BME - Megújuló energiák - PV és szél
50
2014.04.25.
Megújuló energiaforrások Szélgenerátorok: Méretük: 1-2 m-től egészen a hatalmas szélparkok esetén alkalmazott darabokig A kisebb turbinák: akkumlátor töltő rendszerek üzemelésére, közvilágítás v. lakóotthonok, oktatási intézmények, közösségi helyek energiaellátására használhatóak. Magasságuk: 1-15 m, P= 100 W … 5 kW Egy átlagos lakás, ház: 1…2,5 kW ; magasságuk kb 1,5 m épületbe integrált típus Közösségi épületek, iskolák: kb 5 kW; épülettől távolabb, pilonokon elhelyezve Rendszer felépítés: hasonlóan a napelemes rendszerekhez: sziget üzemű, hibrid, hálózatra kapcsolt
101
Megújuló energiaforrások Szélgenerátorok: Működési feltételek: -akadálytalan terepviszonyok (épületek, fák légáramlat akadályozó szerepe, v. turbulencia) – telepítés előtt végiggondolni ! szélsebességmérés (akár 1 év is) -minimális szélsebesség igény: 3-5 m/s, optimális sebesség > 6 m/s; a túl nagy (> 25 m/s) sebesség sem jó! Működtetésének előnyei, hátrányai: -környezetkárosító hatása csekély a fosszilis energiatermeléshez képest -esztétikai látvány: „hozzá kell szokni” -keletkező zaj hatása: típustól függően hangosabb v. halkabb. Pl: nagy turbinák: lakóépületektől távol (min. 400m)
102
BME - Megújuló energiák - PV és szél
51
2014.04.25.
103
Megújuló energiaforrások Szélgenerátorok: Működési feltételek: -akadálytalan terepviszonyok (épületek, fák légáramlat akadályozó szerepe, v. turbulencia) – telepítés előtt végiggondolni ! szélsebességmérés (akár 1 év is) -minimális szélsebesség igény: 3-5 m/s, optimális sebesség > 6 m/s; a túl nagy (> 25 m/s) sebesség sem jó! Működtetésének előnyei, hátrányai: -környezetkárosító hatása csekély a fosszilis energiatermeléshez képest -esztétikai látvány: „hozzá kell szokni” -keletkező zaj hatása: típustól függően hangosabb v. halkabb. Pl: nagy turbinák: lakóépületektől távol (min. 400m) -„diszkóhatás” ( tájolás, távolság) -környezeti hatások: pl. madarak vonulásának útvonalainak figyelembe vétele -lakóépületekre helyezett kisebb turbinák esetén: vizuális kedvezőtlen hatás nem annyira, a zaj hatás azonban jelentős lehet 104
BME - Megújuló energiák - PV és szél
52
2014.04.25.
global installed wind power capacity [MW] 105
global installed wind power capacity [MW] 106
BME - Megújuló energiák - PV és szél
53
2014.04.25.
global installed wind power capacity [MW] 107
global installed wind power capacity [MW] 108
BME - Megújuló energiák - PV és szél
54
2014.04.25.
Dánia
Brazilia
Texas
Franciaország
Spanyolország
Kína
Chile 109
Greenenergy Szélerőmű project 2010 (7:34) - összeépítés Szélerőművek (5:10) – bogarak ha túl gyors a szél… (0:39) szélerőmű – indexvideo (2:58) szélerőmű Bőnyben (5:47)
110
BME - Megújuló energiák - PV és szél
55
2014.04.25.
Források, irodalmak: http://www.iea.org
http://re.jrc.ec.europa.eu/pvgis/
http://www.gwec.net/
www.energiaközpont.hu
wikipédia
Viessmann-Vitovolt 200 Mono-és polikristályos napelemek Tervezési segédlet
www.elmu.hu http://www.panelectron.hu/akkumulator_gyik.html 111
Gyártók:
http://www.enercon.de/de-de
http://www.ecobusinesslinks.com/solar_en ergy_solar_power_panels.htm itt további gyártók listája szerepel
http://www.ewea.org
http://www.vestas.com/de/de
http://www.nordex-online.com/en 112
BME - Megújuló energiák - PV és szél
56
2014.04.25.
Elektronikai hulladékok, környezetvédelem
113
+ energiaigény komfortfokozat növelése, életminőség „javulása” (?)
114
BME - Megújuló energiák - PV és szél
57
2014.04.25.
+ energiaigény komfortfokozat növelése, életminőség „javulása” (?)
115
Video: „Villanykörte összeesküvés” (52:49) Uruguay elnöki beszéde (10:06) Madarak szigete (3:55)
116
BME - Megújuló energiák - PV és szél
58
2014.04.25.
117
Köszönöm a figyelmüket!
A munka szakmai tartalma kapcsolódik a "Minőségorientált, összehangolt oktatási és K+F+I stratégia, valamint működési modell kidolgozása a Műegyetemen" c. projekt szakmai célkitűzéseinek megvalósításához. A projekt megvalósítását az ÚMFT TÁMOP-4.2.1/B-09/1/KMR-2010-0002 programja támogatja. This work is connected to the scientific program of the " Development of quality-oriented and harmonized R+D+I strategy and functional model at BME" project. This project is supported by the New Hungary Development Plan (Project ID: TÁMOP-4.2.1/B-09/1/KMR-2010-0002).”
118
BME - Megújuló energiák - PV és szél
59