Bahtinov maskers als optische schuifmaat? Teus Tukker, Ferry Zijp
Onderwerpen Wie zijn wij? Kleine selectie van onze astrofoto’s Geschiedenis van het Bahtinov masker Hoe ziet een sterafbeelding er rond het focus precies uit? Nauwkeurigheid van de Bahtinov methode Kan het beter? Beeldherkenning!
Experimenten: absolute defocus bepaling uit één opname
Teus Tukker, Ferry Zijp Optica achtergrond UTwente / TUDelft Optica bij Philips Research en Lighting
“Ferry” op Astroforum @Astro040 op Twitter
“TWT” op Astroforum
Teus Tukker, Ferry Zijp Optica achtergrond UTwente / TUDelft Optica bij Philips Research en Lighting
“Ferry” op Astroforum @Astro040 op Twitter
“TWT” op Astroforum
Bahtinov maskers Idee van Pavel Bahtinov op www.astronomy.ru in 2005 (Russisch) Introductie in Engelstalige wereld via Dennis Sakva op CloudyNights in 2008
Bahtinov diffractie patroon op beeldsensor
Bahtinov’s idee
Perfect focus? The Bahtinov mask achieves perfect focus in seconds. Spike-A.com You can achieve critical focus with a CCD cameras in less than a minute. Sells new for $45 Astromart John
Bahtinov Masks are the perfect focusing aid for astro imaging. You can identify with absolute certainty when you have reached perfect focus. Teleskop-express.de …fine tune your tuning knobs until the center spike is in the middle. Your (sic) now in perfect focus. Amazon There is no way to make sure you are in the CFZ with help of a Bahtinov mask; there is not enough resolution in the above Bahtinov pattern… …I am not sure if my focus was dead on there, I have my doubts. Bilgebay The Bahtinov Mask won't give you perfect focus on a fast (f/4) telescope. It is too coarse a tool for that, but it is more accurate than a Hartmann Mask, and judging from experience it rivals what I can do with FWHM software. Bill Christie
Ster afbeelding rond focus (f/4.5, λ=0.550 μm) “Airy schijf”
Diameter 1e donkere ring: d = 2.44 x λ x (f/#)
Bijvoorbeeld: λ =0.55 μm en f/4.5 d = 2.44 x 0.55 x 4.5 = 6 μm
Defocus: 0 μm
d
Ster afbeelding rond focus (f/4.5, λ=0.550 μm) “Airy schijf”
Diameter 1e donkere ring: d = 2.44 x λ x (f/#)
Bijvoorbeeld: λ =0.55 μm en f/4.5 d = 2.44 x 0.55 x 4.5 = 6 μm
0 μm 20 40 Defocus: 60 μm 80 100 μm
Focusrichting z [μm]
Ster afbeelding rond focus (f/4.5, λ=0.550 μm)
Beeldveld x [μm]
Diffractie begrensd: Critical Focus Zone (CFZ)
CFZ = 4 x λ x (f/#)2 2.2 x (f/#)2
Focusrichting z [μm]
Maréchal criterium: 82% ≤ Airy piek ≤ 100%
CFZ
Bijvoorbeeld: f/4.5 CFZ = 2.2 x (4.5)2 = 45 μm Beeldveld x [μm]
Computer simulaties Monochromatisch (550 nm) en wit licht, van -300 tot +300 μm defocus voor f/4.5 “Overbelicht”
“Niet overbelicht”
Computer simulaties: gevoeligheid 35
“Verplaatsing”:
Simulatie met f/4 Verplaatsing [μm]
30 25 20 15 10
“Gevoeligheid”
5 0 0
50
100
150
200
250
Sensor defocus afstand [μm]
Verplaatsing in μm = 0.126 x defocus afstand van sensor in μm (bij f/4)
Gevoeligheid voor f/2 tot f/25
Gevoeligheid = 0.551 / (f/#)
Verplaatsing in μm = gevoeligheid x defocus afstand van sensor in μm Verplaatsing in μm = (0.551 / (f/#)) x defocus afstand van sensor in μm
Maximale “verplaatsing” op beeldsensor D = CFZ / 2 * Gevoeligheid [μm]
18 16 14 12 10 8 6 4 2
--- LSQ fit: D = 0.606 (f/#) 0 0
5
10
15
20
25
f/# (-)
Voor typische deepsky systemen met ≤ f/8 is de maximale verplaatsing om binnen de CFZ te blijven minder dan 1 pixel !
Niels Noordhoek: de Bahtinov grabber
Bahtinov beeldherkenning op basis van screenshots Defocus in pixels, later geometrisch-optisch model voor absolute defocus
Eigen Bahtinov analyser code
Matlab-gebaseerd: leest beeld uit bestand Subpixel nauwkeurige positieherkenning voor absolute defocus maat
Ingrediënten voor experiment
Stappenmotor experiment 350 300 250
Δz = 3.231 N - 16598 [μm] Fout marge = ±12.4 μm Blauw CFZ = 45 μm
z [μm]
200 150 100
Defocus
50 0 5025 -50
5075
5125
5175
5225
-100 -150 -200 -250 -300
-350
Stappenmotor positie getal N
Calibratie met schuifmaat:
[-]
3.163 μm/stap
Gem. gemeten defocus/stap : 3.231 μm/stap
Verschil maar 2%
Stappenmotor experiment 350 300 250
Δz = 3.231 N - 16598 [μm] Fout marge = ±12.4 μm Blauw CFZ = 45 μm
z [μm]
200 150 100
Defocus
50 0 5025 -50
5075
5125
5175
5225
-100 -150 -200 -250 -300
-350
Stappenmotor positie getal N
[-]
Alle metingen binnen ± 12.4 μm t.o.v. verwachtte rechte lijn
Behaalde nauwkeurigheid ongeveer 0.5 pixel “verplaatsing”
Eén, twee, hoppakee! 350
Fout marge = ±12.4 μm Blauw CFZ = 45 μm
300 250
z [μm]
200 150 100
Defocus
50 0
-50
0
5
10
15
20
-100 -150 -200 -250
-300 -350
Meting nummer [-]
25
30
Help het werkt, wat nu?
Samenwerking met Craig Stark, maker van Nebulosity and PhD Poging tot implementatie van het algorithme in Nebulosity !
Nieuwe code in C++
Volledig automatisch: slechts twee user inputs: f/# en pixel grootte
Om te onthouden: Voor systemen sneller dan f/8 is de maximale verplaatsing van de Bahtinovdiffractie lijnen minder dan 1 pixel van optimaal focus tot de rand van de CFZ. Met software kan de positie van een Bahtinov patroon herkent worden met een nauwkeurigheid beter dan 1 pixel. Met beeldherkenning kan men in 1 of 2 stappen met zekerheid in de CFZ komen. Absolute defocus bepaling met een nauwkeurigheid beter dan ± 15 μm*) is mogelijk op basis van 1 enkele opname voor snelle systemen rond f/5.
*) Ongeveer de nauwkeurigheid van een schuifmaat !