BAB II DASAR TEORI
2.1 Instrumentasi Pengukuran Dalam hal ini, instrumentasi merupakan alat bantu yang digunakan dalam
pengukuran dan kontrol pada proses industri. Sedangkan pengukuran merupakan suatu cara yang digunakan untuk mengetahui variabel proses. Alat bantu untuk mengetahui
variabel proses disebut instrumen ukur. Berdasarkan fungsinya sebagai pengubah sinyal
dari variabel proses, alat ukur dapat digambarkan menurut blok komponen. Blok
komponen ini dapat membantu dalam mempelajari fungsi setiap alat ukur yang ingin kita rancang. Blok komponen instrumentasi ini dapat dilihat pada gambar 2.1.
Level
Pengkondisi Sinyal
Sensor
Display
Gambar 0.1 Blok Diagram Instrumen
Sistem pengukur pada umumnya terbentuk atas 3 bagian, yaitu: 1. Sensor, sensor ini merespon nilai yang terukur dengan mengeluarkan sinyal output yang tergantung dari nilai yang terukur pada inputnya. 2. Pengkondisian sinyal (signal conditioner), elemen ini mengambil sinyal output sensor dan mengkonversi sinyal tersebut ke dalam kondisi yang sesuai untuk elemen selanjutnya. 3. Tampilan(display), elemen ini menampilkan data atau hasil dari pengukuran yang berasal dari sinyal yang telah diolah oleh elemen sebelumnya. 2.2 Input Input merupakan suatu acuan dalam sistem pengukuran, input menjadi acuan dalam menentukan keakuratan suatu alat ukur, input merupakan nilai sebenarnya dari sebuah alat ukur.
4
5
2.2.1 Error Error merupakan perbedaan nilai antara nilai hasil pengukuran dan nilai yang
sebenarnya. Besarnya error selalu tidak pasti,
error
itu sendiri dipengaruhi oleh
material used, calibration, dan noise. 2.3 Sensor
Sensor adalah suatu komponen yang mampu merespon dari besaran yang diukur dan mengubahnya menjadi besaran fisik tertentu. Sensor dapat dikelompokan kedalam beberapa golongan yaitu : ( Tri Hutomo,
Bambang 2012 : II-5 )
1. Dari sisi pola aktifitasnya 1.1 Sensor Aktif Sensor aktif adalah sensor yang dalam pengukurannya membutuhkan energi pada pengukurannya, contohnya resistif potensiometer 1.2 Sensor pasif Sensor pasif adalah sensor yang dalam pengukurannya tidak membutuhkan energy pada pengukurannya, contohnya termokopel 2. Dari sisi sifatnya 2.1 Sensor analog Sensor analog merupakan sensor yang menyediakan sinyal secara terus menerus mengenai waktu dan isi ruang 2.2 Sensor digital Sensor digital merupakan sensor yang menampilkan sinyal berupa diskrit. Sensor digital biasanya merupakan kode biner (on atau off )
2.4 Resistive Potensiometer Resistif potensiometer merupakan tahanan yang dapat digerakan, pergerakan tahanan tersebut dapat ke atas ke bawah ( translation ) atau rotasi, untuk pergerakan translation resistan dengan digerakan sejauh 0.1 – 20 inci sedangkan untuk rotasi yakni 10 derajat sampai 60 derajat. Masukan yang dapat diterima tahanan ini yakni input AC dan DC , dan tegangan keluaran dari resistif potensiometer ini idealnya bersifat linier. ( Independent Standards Laboratory, 1961)
6
Gambar0.2 Resistive Potensiometer
Gambar 0.3 Karakteristik Resistive Potensiometer
Pada Gambar 2.3 dan Gambar2.2 dapat dilihat bahwa kerakteristik resistif potinsiometer terhadap beban, pada Gambar2.2 merupakan rangkaian resistif potensiometer yang dimana eex merupakan supply, Xi merupakan nilai dari resistif potensiometer dan untuk e0 merupakan nilai output, sedangkan pada Gambar 2.3 merupakan karakteristik resistif potensiometer terhadap beban yang dimana Rp merupakan tahanan potensiometer sedangkan Rm merupakan tahanan alatukur yang dimana apabila perbandingan antara Rp dan Rm mendekati nol atau sama dengan nol maka output resistif potensiometer bersifat linier, namun sebaliknya jika perbandingan antara Rp dan Rm semakin besar maka karakteristik dari output resistif potensiometer semakin tidak linier. ( C.A. Mounteer, 1959 ) 2.5 Linearisasi Dengan karakteristik sensor tahanan yamg tidak linier karena range tahanan sensor tersebut besar, maka perlu ditambahkan rangkaian agar karakteristik menjadi lebih linier. Yakni dengan menggunakan rangkaian pararel.
7
Rangkaian pararel digunakan untuk melinierkan karakteristik sensor tahanan.
Sensor tahanan tersebut dipararelkan dengan sebuah resistor Rp. Pengubah Span dan Zero 2.6 Output suatu tranduser jarang yang sesuai dengan pengkondisi sinyal, display,
atau computer. Pengubah span dan zero dapat dibuat dengan menggunakan rangkaian
penjumlah (inverting summer), seperti tampak pada Gambar 2.4 berikut ini:
+ - V
Ros
Rf
Ri
-
e in
-(mx+b) R
+V R
U1 +
-
eu1
U2 +
-V
Rcomp
eu2 +(mx+b)
R/2
Gambar 0.4 Inverting Summer
Persamaan umum span and zero converter : eout = m.ein + b …………………………………………………………… (2.3) Rcomp = Rf // Ri // Ros dengan, m = gradient persamaan garis b = titik potong terhadap sumbu vertikal dengan kurva alih V e
out2
e
out1
e
in-1
e
V in-2
Gambar 0.5 Kurva alih rangkain zero & span
Dari Gambar 2.5 dapat diketahui nilai tegangan keluaran dari sapn & zero dengan persamaan garis pada persamaan 2.3 dengan harga Rf dipilih relatif besar, sehingga perubahan sedikit pada Ri tidak akan membebani sensor, harga (nilai) Ri
8
dapat dihitung, demikian pula nilai Ros dapat dihitung bila V dapat ditentukan,
sedangkan untuk Rcomp didapat dengan mengetahui nilai Rf, Rid dan Ros, Rcomp itu
sendiri berfungsi sebagai pencegah arus bias yang keluar dari kaki op-amp, meskipun dalam aturan op-amp tidak ada arus yang masuk dan keluar dari kaki-kaki op-amp namun dalam keadaan tertenttu arus dapat masuk dan keluar dari kaki kaki op-amp.
2.7 Penguat Operasional Penguat operasional (Op-amp) adalah penguat DC dengan perolehan tinggi yang
mempunyai impedansi masukan tinggi dan impedansi keluaran rendah. Istilah Operasional menunjukkan bahwa penambahan komponen luar yang sesuai dapat dikonfigurasikan untuk melakukan berbagai operasi, seperti penambahan, pengurangan,
perkalian, integrasi dan diferensial. Pada umumnya, operasi-operasi ini digunakan untuk operasi linier dan non-linier.
2.7.1 Diffrensiator/ Pengurang Penguat ini serupa dengan pembanding, kedua masukan dipakai untuk merasakan tegangan diantara mereka, namun rangkaian menggunakan modus lup tertutup, sehingga tegangan keluaran dapat diperkirakan dan dikendalikan besarnya. Bila semua resistor luar sama besarnya, maka penguat ini berfungsi sebagai rangkaian matematik analog dan dikenal sebagai pengurang tegangan, seperti tampak dalam Gambar 2.6. Tegangan keluaran merupakan kebaliakan selidih tegangan di antara kedua masukan dan nilainya dihitung dengan persamaan :
Jika Rf = R1 = R2 = R3, maka Vo = V1 – V2 ………..………………………………………………………(2.6) Rangkaian Integrator, dapat dibangun dengan menggunakan dua buah komponen pasif, yaitu resistor dan kapasitor. Fungsi dari rangkaian integrator adalah sebagai
Gambar 0.6 Rangkaian Difrensiator
filter frekuensi tinggi -LPF - low pass filter .
9
2.7.2 Integrator Rangkaian Integrator, dapat dibangun dengan menggunakan dua buah komponen pasif,
yaitu resistor dan kapasitor. Fungsi dari rangkaian integrator adalah sebagai filter frekuensi tinggi -LPF - low pass filter .
Gambar 0.7 Rangkaian Integrator
Pada Gambar 2.7 merupakan rangkaian integrator yang merupakan rangkaian pararel antara tahanan dan kapasitor yang akan menghasilkan suatu persamaan : ………………………………………………… (2.7 ) Dari rumus 2.7 dapat disimpulkan bahwa hubungan antara tegangan keluaran berbanding terbalik dengan frekuensi maka apabila frekuensi rendah maka tegangan keluaran akan besar, namun sebaliknya apabila frekuensi yang masuk tinggi maka tegangan keluaran akan kecil. 2.8 Rangkaian Catu Daya Catu daya merupakan rangkaian yang penting dalam sistem elektronika. Rangkaian catu daya memberikan supply tegangan pada alat pengendali. Terdapat beberapa macam catu daya, yaitu catu daya tegangan tetap dan catu daya tegangan variabel. Catu daya tegangan teteap adalah catu daya yang tegangan keluarannya tetap dan tidak dapat diatur. Sedangkan catu daya tegangan variabel adalah catu daya yang tegangan keluarannya dapat diubah atau diatur. Terdapat dua sumber catu daya, yaitu sumber AC dan sumber DC. 2.9 Rangkaian Konverter 2.9.1 Rangkaian Konverter Voltage to Frekuensi Transmisi sinyal dalam bentuk tegangan atau arus mempunyai beberapa keterbatasan. Untuk mengatasi keterbatasan seperti dalam transmisi tegangan atau
10
arus maka digunakan transmisi dalam bentuk pulsa digital.
Yakni dengan
mengubah tegangan analog dari sensor dan dari pengkondisi sinyal dalam bentuk pulsa
pulsa. Lebar pulsa adalah konstan sedangkan frekuensi bervariasi secara linier terhadap
tegangan yang diterapkan. Frekuensi dapat ditransmisikan dalam bentuk arus.
Noise pada rangkaian transmisi (lup rangkaian) akan mempengaruhi amplitudo,
tetapi tidak frekuensi sinyalnya. Sesampai di tujuan, frekuensi dari penguat insrument kemudian dikonversikan kembali dalam bentuk analog. Seperti saat semula dikirimkan dengan demikian Noise yang besar serta resistansi lup seri yang berpengaruh terhadap
sinyal yang dikirimkan telah diminimisasi. Vs
8 2 Rs
1
RL VX
Switched cur rent sour ce
Ct Vlogic
Frequency output Input compar ator
+
5
6
CL V1
Rt
One-shot timer
3
7
Input Voltage 4
Gambar 0.8 Diagram Blok Dasar Voltage to Frequency Converter
Gambar 0.8 merupakan rangkaian dari voltage to frequency converter dimana Tegangan diubah oleh instrument menjadi pulsa tegangan seperti Gambar 0.9 diagram waktu dimana Vi merupakan V logic atau V referensi sedangkan untuk Vx merupakan tegangan input, sehingga apabila tegangan input besar nilainya sama dengan Vi maka Voutput akan bernilai 1 bila tegangan input tidak sama dengan tegangan Vi maka besar nilainya 0.
11
V1 a b t
Vx a b
t
Vout
0
1 2
3
4 5
6
7
t
fout
Adjust
f1 High V1
high fout
Low V1
Adjustment
low fout High V1
high fout t
Gambar 0.9 Operasi dan Bentuk Gelombang pada Konverter V to F
Voltage w ith small noise remaining after IA C MRR
C urrent signal w ith noise 500 H z 0.5 V
500 H z
500 H z
0.5 V
5V
V/F converter
V/I converter
I
F/V converter
IA
Gambar 0.10 Pengaruh Noise pada transmisi sinyal frekuensi
2.9.2 Rangkaian Frequency to Voltage converter Proses konversi dapat dilihat pada Gambar 0.11 Vcc
Iout 1 7 6
+ -
RL
One shot
Vcc Rt
Ct
Gambar 0.11 Diagram blok voltage to frequency converter
12
Vin I
Vout
t T
3
4
Gambar 0.12 Bentuk gelombang
Gambar 0.11 prinsip kerja secara normal , RD yang dihubungkan dengan +Vcc
akan menahan masukan - comparator pada Vcc di atas masukan (+). Hal ini akan menjadikan one-shot dan current source menjadi off. Falling edge dari masukan akan didefinisir menjadi suatu pulsa (spike) oleh RD dan CD. Sesaat akan menarik masukan (-
) comparator di bawah masukan (+).
One shot menjadi aktif.
Hal ini akan
menghubungkan current source untuk memberikan arus Iout menuju beban (load) Dikarenakan masukan pulsa sudah menghilang, akhir dari interval waktu one shot akan menjadikan current source menjadi off dan akan on lagi jika ada pulsa trigger yang masuk. Hasilnya merupakan suatu pulsa-pulsa dengan lebar pulsa yang konstan (+) dan dengan ferkuensi yang sama dengan masukan. Persamaan 2.8 sampai dengan persamaan 2.11 memperlihatkan nilai – nilai pada rangkaian voltage to frequency converter. i =2V ………………………………………………………………...(2.8) Rs Nilai rata-rata (average) atau nilai dc dari arus akan sebanding dengan luas di bawah kurva, atau : i.t Iave = ………………………………………………………........(2.9) T =2V.1,1.Rt.Ct Rs.T tetapi
Vave = Iave . RL ……………………………………………….(2.10) = 2V x 1,1 Rt Ct x
dimana fin
1 = T
RL x fin Rs
………………………………………………...(2.11)
13
Pengkonversi frekuensi ke tegangan biasa digunakan secara langsung dengan
transduser seperti : incremental optical recorder, reflective optical sensing, Hall effect
magnetic sensor. Transduser-transduser tersebut memberikan keluaran berupa deretan pulsa-pulsa. Frekuensi dari pulsa-pulsa tersebut tergantung pada kecepatan rotasi sari sensor. Untuk mendapatkan sinyal analog yang merupakan ukuran dari kecepatan,
diperlukan suatu pengkonversi frekuensi ke tegangan.