BAB 2
TINJAUAN PUSTAKA
2.1 Tumbuhan Jambu Biji (Psidium guajava L.)
Jambu biji berasal dari Amerika tropik, tumbuh pada tanah yang gembur maupun liat, pada tempat terbuka dan mengandung air cukup banyak. Pohon ini banyak ditanam sebagai pohon buah-buahan. Namun, sering tumbuh liar dan dapat ditemukan pada ketinggian 1-1.200 m dpl. Jambu biji berbunga sepanjang tahun (Hapsoh, 2011).
2.1.1 Sistematika Tumbuhan Jambu Biji
Secara botanis tanaman jambu biji diklasifikasikan sebagai berikut : Kingdom
: Plantae
Divisi
: Spermatophyta
Class
: Dicotyledoneae
Ordo
: Myrtales
Famili
: Myrtaceae
Genus
: Psidium
Spesies
: Psidium guajava L.
Nama Lokal
: Jambu Biji
2.1.2 Morfologi Tumbuhan Jambu Biji
Jambu biji perdu atau pohon kecil, tinggi 2-10 m, percabangan banyak. Batangnya berkayu, keras, kulit batang licin, mengelupas, berwarna cokelat kehijauan. Daun tunggal, bertangkai pendek, letak berhadapan, daun muda berambut halus, permukaan atas daun tua licin. Helaian daun berbentuk bulat telur agak jorong,
Universitas Sumatera Utara
ujung tumpul, pangkal membulat, tepi rata agak melekuk ke atas, pertulangan menyirip, panjang 6-14 cm, lebar 3-6 cm, berwarna hijau. Bunga tunggal, bertangkai, keluar dari ketiak daun, berkumpul 1-3 bunga, berwarna putih. Buahnya buah buni, berbentuk bulat sampai bulat telur, berwarna hijau sampai hijau kekuningan. Daging buah tebal, buah yang masak bertekstur lunak, berwarna putih kekuningan atau merah jambu. Biji buah banyak mengumpul di tengah, kecil-kecil. Keras, berwarna kuning kecoklatan (Hapsoh, 2011).
2.1.3 Manfaat Tumbuhan Jambu Biji
Tanaman jambu biji atau Psidium guajava L. Termasuk familia Myrtaceae, banyak tumbuh di daerah-daerah di tanah air kita. Penduduk terlalu mementingkan buahnya, sedangkan daun-daunnya hanya sebagian kecil saja yang memperhatikannya, padahal mempunyai nilai obat yang baik, terutama untuk menyembuhkan sakit: diare dan astringensia (Kartasapoetra, 1992).
Jambu biji memiliki beberapa kelebihan, antara lain buahnya dapat dimakan sebagai buah segar, dapat diolah menjadi berbagai bentuk makanan dan minuman. Selain itu, buah jambu biji bermanfaat untuk pengobatan (terapi) bermacam-macam penyakit, seperti memperlancar pencernaan, menurunkan kolesterol, antioksidan, menghilangkan rasa lelah dan lesu, demam berdarah, dan sariawan. Selain buahnya, bagian tanaman lainnya, seperti daun, kulit akar maupun akarnya, dan buahnya yang masih muda juga berkhasiat obat untuk menyembuhkan penyakit disentri, keputihan, sariawan, kurap, diare, pingsan, radang lambung, gusi bengkak, dan peradangan mulut, serta kulit terbakar sinar matahari (Cahyono B, 2010).
Ekstrak etanol daun jambu biji juga telah dilakukan penelitian terhadap uji aktivitas anti oksidannya (Soebagio,et al. 2007) dan uji aktivitasnya sebagai anti bakteri penyebab diare (Adyana, et al. 2004).
Universitas Sumatera Utara
2.2 Senyawa Organik Bahan Alam
Kimia organik mengalami kemajuan yang sejajar dengan kemajuan cara pemisahan dan penelitian bahan alam. Karena sangat beranekaragam, molekul yang berasal dari mahluk hidup mempunyai arti yang sangat penting bagi para ahli kimia organi, yaitu untuk memperluas dan memperdalam pengetahuan tentang reaksi-reaksi organik, dan terutama dapat untuk menguji hipotesishipotesis tertentu, misalnya hipotesis tentang mekanisme reaksi. Pada mulanya, biogenesis dari produk alami berkaitan dengan kimia organik dan biokimia, tetapi mempunyai tujuan yang berlainan (Manitto, 1992).
Pada hakekatnya kimia bahan alam nerupakan pengetahuan yang telah dikenal sejak peradaban manusia tumbuh. Contoh yang dapat segera diketahui adalah pembuatan bahan makanan, pewarnaan benda, obat-obatan atau stimulan, dan sebagainya (Sastrohamidjojo, 1996).
Ada beberapa pendekatan yang dapat digunakan untuk menemukan induk obat baru dari alam, dan semuanya pernah digunakan oleh perusahaan farmasi dalam upaya memanfaatkan potensi hayati bahan alam yaitu :
1.
Pendekatan etnobotani
Pengetahuan tentang penggunaan tumbuhan tertentu oleh penduduk asli dimanfaatkan untuk mengarahakan pencarian induk obat baru, biasanya dilakukan oleh ahli botani dan kemudian menguji aktifitas biologisnya.
2.
Pendekatan kemotaksonomik
Pengetahuan bahwa suatu kelompok tumbuhan khusus mengandung golongan bahan alam tertentu yang dimanfaatkan untuk memperkirakan bahwa tumbuhan sejenis secara taksonomi mungkin mengandung senyawa yang secara struktural mirip. Pendekatan ini sangat bermanfaat jika aktifitas kimia dan biologi senyawa diketahui dengan baik serta senyawa berstruktur kimia yang sama perlu diuji biologis lebih lanjut.
Universitas Sumatera Utara
3.
Pendekatan acak
Tanaman dikumpulkan tanpa memperhatikan aktifitas kimia atau biologis yang telah ada sebelumnya. Pendekatan ini tergatung pada ketersediaan tanaman yang melimpah diwilayah tertentu. Pendekatan ini murni coba-coba karena seleksi tanaman secara acak akan mengarah pada penemuan ekstrak yang memiliki aktifitas biologis (bioaktivitas).
4.
Pendekatan berbasis-informasi
Memanfaatkan kombinasi pendekatan etnobotani, kemotaksonomi dan acak bersama dengan mengumpulkan data yang memiliki semua informasi yang relevan mengenai spesies tumbuhan tertentu . kumpulan data ini digunakan untuk memprioritaskan tanaman yang harus diekstrasi dan diskrining untuk mencari bioaktivitasnya.
Sejumlah kelompok senyawa bahan alam dapat dibuat dari asam amino fenillalanin, terutama fenilpropana, lignan, kumarin, dan flavonoida, semuanya memiliki substruktur umum yang berbasis cincin 6-karbon aromatik (unit C6) dengan rantai 3-karbon (unit 3) yang melekat pada cincin aromatik (Heinrich M, 2005).
Dengan meningkatnya jenis dan tipe senyawa yang ditemukan di dalam berbagai bahan alam, berkembang juga sistem klasifikasi senyawa yang berasal dari bahan alam, tetapi biasanya ada 4 jenis klasifikasi yang digunakan untuk membahasnya (Nakanishi et al, 1974).
1. Klasifikasi Berdasarkan Struktur Kimia Klasifikasi ini adalah klasifikasi formal berdasarkan kerangka struktur molekul, yaitu: a. Senyawa lemak rantai terbuka atau alifatik, seperti asam-asam lemak, gula-gula, dan hampir semua asam amino b. Senyawa sikloalifatik atau alisiklik, seperti terpenoid, steroid, dan beberapa alkaloid
Universitas Sumatera Utara
c. Senyawa benzenoid atau aromatik, seperti fenol dan kuinon. d. Senyawa heterosiklik, seperti alkaloid, flavonoid, dan basa-basa nukleat.
2. Klasifikasi Berdasarkan Aktivitas Fisiologi Biasanya pengembangan bahan alam didahului dengan pengamatan dan pengalaman empirik khasiat bahan alam tersebut untuk menyembuhkan penyakit tertentu. Oleh karena itu, salah satu cara penyelidikan bahan obat dari tumbuhan atau bahan alam lainnya adalah melalui ekstraksi dan penetapan khasiat farmakologi ekstrak, diikuti dengan isolasi komponen murni.
Sebagai contoh, berbagai steroid dengan struktur yang berbeda, aktivitas kardiotoniknya (kardenolida dan bufadienolida) ditunjukkan secara spesifik oleh (a) ikatan cis cincin A/B, (b) adanya gugus gula pada C3, dan (c) gugus lakton (dengan 5 atau 6 atom karbon) terkonjugasi pada C17. O O O
R= gugus gula H RO
OH
H
Kardenolida
Bufadienolida
3. Klasifikasi Berdasarkan Taksonomi Klasifikasi ini didasarkan pada pengkajian morfologi komparatif atau taksonomi tumbuhan. Di dalam hewan dan sebagian mikroorganisme metabolit akhir biasanya diekskresikan ke luar tubuh, sedangkan di dalam tumbuhan, metabolit tersebut disimpan di dalam tubuh tumbuhan. Walaupun beberapa metabolit selama ini diketahui spesifik pada tumbuhan tertentu, tetapi sekarang telah diketahui tersebar di dalam berbagai tumbuhan, misalnya alkaloid dan isoprenoid telah dapat diisolasi dari berbagai genus, spesies, suku, atau ordo. Bahkan di dalam satu spesies terdapat sejumlah komponen yang memiliki struktur dasar yang berkaitan. Sebagai contoh, opium dari Papaver somniferum mengandung lebih dari 20 alkaloid seperti morfin, kodein, tebain dan narkotin yang semuanya
Universitas Sumatera Utara
merupakan hasil biosintesis dari prekursor 11-benzilisokuinolin dengan kopling oksidatif.
Pengetahuan tentang kandungan komponen tumbuhan berkembang dengan sangat
pesat
karena
berkembangnya
metode
ekstraksi,
isolasi
dan
karakterisasinya. Hal ini mendorong berkembangnya suatu bidang baru yang disebut
kemotaksonomi
(chemotaxonomy)
atau
sistematik
kimia
(chemosystematic) yang mengarah ke pembagian kandungan tumbuhan berdasarkan taksa tumbuhan. Dengan kata lain, isi kandungan tumbuhan dianggap sebagai tanda bagi evolusi dan kalsifikasi tumbuhan. R-O
Me O HO
N Me
H O
H
N
Me
CH2
HO
Morfin R=H Kodein R=Me
OH O Me
11-Benzilisokuinolin
4. Klasifikasi Berdasarkan Biogenesis Biogenesis dan biosintesis memiliki arti yang sama dan sering kali digunakan tanpa perbedaan. Namun, istilah biogenesis biasanya digunakan untuk reaksi pembentukan yang masih dalam taraf hipotesis, sedangkan jika reaksi tersebut telah dibuktikan secara eksperimen, digunakan istilah biosintesis.
Sebagian besar bahkan hampir semua, senyawa kandungan kimia bahan alam adalah senyawa organik, dan sumber utama senyawa karbon atau senyawa organik ini adalah glukosa yang dibentuk melalui fotosintesis di dalam tumbuhan autotropik atau diperoleh dari organisme heterotrof.
Berbagai teori tentang pembentukan senyawa metabolit primer dan metabolit sekunder telah dikemukakan di dalam berbagai publikasi. Diawali dengan teori aturan isoprena pada tahun 1930, yang menyatakan bahwa semua
Universitas Sumatera Utara
terpenoid
dibentuk
dari
unit
isoprena
5-C,
dilanjutkan
dengan
teori
poliketometilena untuk senyawa fenolik, yang merupakan sarana pertama bagi biosintesis asetogenin (poliketida). Komponen pembangun utama untuk atomatom karbon dan nitrogen di dalam semua senyawa bahan alam berasal dari 5 kelompok prekursor, yaitu: a. asetil ko-A
→ unit 2C (MeCO-) → poliketida (asetogenin)
malonil ko-A b. asam sikimat → unit 6C-3C (6C-1C atau 6C-2C) → senyawa fenolik c. asam mevalonat → unit prenil → isoprenoid ( CH2=C-CH2-CH2-) Me d. unit asam amino seperti fenilanalina, tirosina, ornitina, lisina, dan triptofan → alkaloid e. 5-5’-deoksiadenilmetionina → unit 1C
(Wiryowidagdo, 2008).
2.3 Metabolit Sekunder
Senyawa kimia bermolekul besar merupakan bagian utama dalam organ tanaman kering. Senyawa bermolekul besar ini berfungsi sebagai pembentuk struktur tanaman (selulosa, kitin, lignin), sebagai cadangan makanan (amilum, protein, lipoprotein) atau untuk memenuhi fungsi metabolisme penting lainnya (protein dan enzim).
Senyawa kimia dari tanaman yang bebeda-beda dapat disaring
dengan pelarut umum (air, etanol, eter, benzen), berupa senyawa kimia tanaman dengan molekul kecil, senyawa kimia bermolekul kecil ini memiliki penyebaran yang terbatas, senyawa inilah yang disebut dengan metabolit sekunder.
2.3.1 Penggolongan Metabolit Sekuder
Pengelompokkan senyawa kimia tananam berdasarkan sifat khas yang dimiliknya (antara lain warna, rasa, bau, pH, kelarutan), merupakan hal penting sehingga sampai sekarang masih banyak dipakai. Berikut contoh pengelompokkan senyawa kimia seperti tersebut diatas.
Universitas Sumatera Utara
1. Minyak Atsiri. Baunya khas dan dapat dipisahkan dari senyawa kimia tanaman lainnya, karena sukar larut dalam air dan dapat menguap bersama uap air. 2. Alkaloid. Senyawa yang bersifat basa dapat dipisahkan dari yang netral dan asam. Penyebab sifat basa sangat erat kaitannya dengan kerja farmakologi pada tubuh binatang dan manusia. 3. Zat Pahit. Berpedoman pada rasa pahit adalah suatu metode yang mudah untuk memisahkan senyawa kimia tanaman, perlu waktu yang cukup sehingga seluruh zat pahit dalam sari menjadi zat yang dapat dikristalkan. 4. Zat warna. Jumlah zat warna dari tanaman diperkirakan ± 2000 jenis. Pigmen tanaman mempunyai struktur kimia yang berlainan, begitu juga sifat fisika, kelarutan, warna, fuoresensi, dan sebagainya (Sirait, 2007).
2.4 Senyawa Flavonoida
Senyawa flavonoida diturunkan dari unit C6-C3 (fenil propana) yang bersumber dari asam sikimat (via fenilalanin) dan unit C6 yang diturunkan dari jalur poliketida. Fragmen poliketida ini disusun dari tiga molekul malonil-KoA yang bergabung dengan unit C6-C3 (sebagai KoA tioester) untuk membentuk unit awal triketida. Oleh karena itu, flavonoid yang berasal dari biosintesis gabungan terdiri atas unit-unit yang diturunkan dari asam sikimat dan jalur poliketida.
Sistem penomoran untuk turunan senyawa flavonoid diberikan di bawah : 8 7 6
A 5
2' 3' 1 1' O 2 B 4' C 3 6' 5' O 4
(Robinson, 1995)
Unit awal triketida mengalami siklisasi oleh enzim kalkon sintase untuk membentuk gugus kalkon pada flavonoid. Kemudian terjadi siklus untuk menghasilkan cincin piranon yang mengandung inti flavanon, yang dapat memiliki ikatan C2-C3 teroksidasi (tidak jenuh) untuk menghasilkan gugus flavon,
Universitas Sumatera Utara
atau dihidroksilasi pada posisi C3 cincin piranon untuk menghasilkan gugus flavanol pada flavonoid.
Flavanol ini selanjutnya dioksidasi untuk menghasilkan antosianin, yang memberikan warna biru terang pada bunga dan warna anggur merah gelap. Senyawa flavonoid juga berperan dalam memberikan banyak warna lain di alam, terutama daun mahkota kuning dan jingga, bahkan flavonoid yang tidak berwarna menyerap cahaya pada spektrum UV (karena banyak gugus kromofor) dan dapat dilihat oleh banyak serangga. Senyawa ini diduga memiliki manfaat ekologi yang besar di alam berkat warnanya sebagai penarik serangga dan burung untuk membantu penyerbukan tanaman. Flavonoid tertentu juga mempengaruhi rasa makanan secara signifikan, misalnya beberapa tanaman memiliki rasa pahit dan kesat seperti glikosida flavanon naringin. OH Rha GlcO
O
OH
O
Naringin
Senyawa flavonoid diduga sangat bermanfaat dalam makanan karena, berupa senyawa fenolik, senyawa ini yang bersifat antioksidan kuat. Banyak kondisi penyakit yang diketahui bertambah parah oleh adanya radikal bebas seperti superoksida dan hidroksil, dan flavonoid memiliki kemampuan untuk menghilangkan dan secara efektif ‘menyapu’ spesies pengoksidasi yang merusak itu. Oleh karena itu, makanan kaya flavonoid dianggap penting untuk mengobati penyakit-penyakit, seperti kanker dan penyakit jantung (yang dapat memburuk akibat oksidasi lipoprotein densitas-rendah) (Heinrich et al, 2009).
2.4.1 Biosintesis Flavonoida
Semua varian flavonoida saling berkaitan karena alur biosintesis yang sama yang melalui alur sikimat dan alur asetat-malonat. Flavonoida yang pertama kali terbentuk pada biosintesis adalah khalkon dan semua bentuk diturunkan darinya melalui
Universitas Sumatera Utara
berbagai alur. Modifikasi flavonoida lebih lanjut mungkin terjadi pada berbagai tahap dan menghasilkan: penambahan (atau pengurangan) hidroksilasi, metilasi gugus hidroksil atau inti flavonoida, metilenasi gugus orto-dihidroksil, dimerisasi (pembentukan biflavonoida), dan glikosilasi gugus hidroksil (pembentukan flavonoida O-glikosida) atau inti flavonoida (pembentukan flavonoidaC-glikosida).
( Markham, 1988) Gambar 2.1 Biosintesa hubungan antara jenis monomer flavonoida dari alur asetat-malonat dan alur sikimat. 2.4.2 Klasifikasi Senyawa Flavonoida
Universitas Sumatera Utara
Dalam tumbuhan, flavonoid terdapat dalam berbagai bentuk struktur. Keragaman struktur flavonoid ini disebabkan karena perbedaan tahap modifikasi lanjutan dari struktur dasar flavonoid, antara lain:
1. Flavonoid O-glikosida. Flavonoid biasanya terdapat sebagai flavonoid O-glikosida, pada senyawa tersebut satu gugus hidroksi flavonoid (atau lebih) terikat pada satu gula (atau lebih) dengan ikatan hemiasetal yang tak tahan asam. Pengaruh glikosilasi meyebabkan flavonoid menjadi kurang reaktif dan lebih mudah larut dalam air (cairan). Glukosa merupakan gula yang paling umum terlibat, walaupun galaktosa, ramnosa, xilosa, dan arabinosa sering juga terdapat. Gula lain yang ditemukan adalah alosa, manosa, fruktosa, apiosa dan asam glukuronat serta galakturonat.
2. Flavonoid C-glikosida. Gula dapat juga terikat pada atom karbon flavonoid dan dalam hal ini gula tersebut terikat langsung pada inti benzena dengan suatu ikatan karbonkarbon. Glikosida yang demikian disebut C-glikosida. Sekarang gula yang terikat pada atom C hanya ditemukan pada atom C nomor 6 dan 8 dalam inti flavonoid. Jenis gula yang terlibat ternyata jauh lebih sedikit ketimbang jenis gula pada O-glikosida. Jenis aglikon flavonoid yang terlibat pun sangat terbatas. Jadi, walau pun isoflavon, flavanon, dan flavonol kadang-kadang terdapat dalam bentuk C-glikosida, hanya flavon C-glikosida yang paling lazim ditemukan.
3. Flavonoid Sulfat Gabungan flavonoid lain yang mudah larut dalam air yang mungkin ditemukan hanya flavonoid sulfat. Senyawa ini mengandung satu ion sulfat atau lebih, yang terikat pada hidroksil fenol atau gula.
4. Biflavonoid
Universitas Sumatera Utara
Biflavonod adalah flavonoid dimer, walau pun prosianidin dimer (satuan dasarnya katekin) biasanya tidak dimasukkan ke dalam golongan ini. Flavonoid yang biasanya terlibat adalah flavon dan flavanon yang secara biosintesis mempunyai pola oksigenasi yang sederhana 5,7,4’ (atau kadang-kadang 5,7,3’,4’) dan ikatan antar-flavonoid berupa ikatan karbonkarbon atau kadang-kadang ikatan eter. Biflavonoid jarang ditemukan sebagai glikosida, dan penyebarannya terbatas, terdapat terutama pada gimnospermae.
5. Aglikon flavonoid yang aktif-optik Aglikon flavonoid mempunyai atom karbon asimetrik dan dengan demikian
menunjukkan
keaktifan
optik
(yaitu
memutar
cahaya
terpolarisasi-datar). Yang termasuk dalam golongan flavonid ini ialah flavanon, dihidroflavonol, katekin, pterokarpan, rotenoid, dan beberapa biflavonoid (Markham, 1988).
Menurut Robinson (1995), flavonoid dapat dikelompokkan berdasarkan tahanan oksidasi dan keragaman lain pada rantai C3 : 1. Flavon Pada flavon, cincin C merupakan dasar dan membentuk garam kalium dengan asam klorida. Flavon bersamaan dengan flavonol merupakan senyawa yang paling tersebar luas dari semua pigmen tumbuhan kuning, meskipun warna kuning tumbuhan jagung biasanya disebabkan oleh karotenoid. Senyawa ini biasanya larut dalam air panas dan alkohol, meskipun beberapa flavonoid yang termetilasi tidak larut dalam air. Flavon berbeda dengan flavonol dimana pada flavon tidak terdapat gugus 3-hidroksi. Flavon dianggap sebagai induk dalam nomenklatur kelompok senyawa flavonoid.
Universitas Sumatera Utara
A
O C
B
O
2. Flavonol Flavonol lazim sebagai konstituen tanaman yang tinggi, dan terdapat dalam berbagai bentuk terhidroksilasi. Flavonol paling sering terdapat sebagai glikosida, biasanya 3-glikosida. Larutan flavonol dalam suasana basa (tetapi flavon tidak) dioksidasi oleh udara tetapi tidak begitu cepat sehingga pengunaan basa pada pengerjaannya masih dapat dilakukan.
A
O C
B
OH O
3. Isoflavon Isoflavon sukar dicirikan karena reaksinya tidak khas dengan pereaksi warna manapun. Beberapa isoflavon (misalnya daidzein) memberikan warna biru muda cemerlang dengan sinar UV bila diuapi amonia, tetapi kebanyakan yang lain (misalnya genistein) tampak sebagai bercak lembayung pudar yang dengan amonia berubah menjadi coklat pudar. Isoflavon merupakan senyawa yang tidak begitu mencolok, tetapi senyawa ini penting sebagai fitoaleksin (senyawa pelindung) dalam tumbuhan untuk pertahanan terhadap penyakit. Pembeda struktur isoflavon dari flavonoid lain terletak pada cincin C, dimana cincin B terikat langsung pada cincin C pada atom C-3. A
O C O
B
4. Flavanon Senyawa ini terdapat hanya sedikit sekali jika dibandingkan dengan flavonoid lain. Tidak berwarna atau hanya kuning sedikit. Flavanon (dihidroflavon) sering terjadi sebagai aglikon, tetapi beberapa glikosidanya
Universitas Sumatera Utara
dikenal misalnya hesperidin dan naringan dari jaringan kulit buah jeruk. Penentuan struktur flavanon cepat dilakukan berdasarkan metoda klasik. Polihidroksiflavon mudah dikenal terbentuknya merah, lembayung, bila flavon direduksi dengan magnesium dalam garam klorida dalam larutan etanol. Pada srtukturnya, cincin C pada atom C-3 mengikat 2 proton langsung karena tidak ada ikatan rangkap diantara C-2 dan C-3.
A
O C
B
O
5. Flavanonol Flavanonol (atau dihidroflavonol) barangkali merupakan flavonoid yang paling kurang dikenal, dan tidak dapat diketahui apakah senyawa ini terdapat sebagai glikosida. Senyawa ini stabil dalam asam klorida panas tetapi terurai oleh udara.
A
O C
B
OH O
6. Antosianin Senyawa flavonoid alam yang paling menyolok adalah antosianin, yang merupakan pembentuk dasa pigmen warna merah, ungu dan biru pada tanaman, terutama sebagai bahan pewarna bunga dan buah-buahan. Antosianin adalah pigmen daun bunga merah sampai biru yang biasa, banyaknya sampai 30% bobot kering dalam beberapa bunga. Antosianin terdapat juga dalam bagian lain tumbuhan tinggi kecuali fungus. Antosianin selalu terdapat dalam bentuk glikosida.
A
O C
B
OH
Universitas Sumatera Utara
7. Katekin Katekin dan proantosianidin adalah dua golongan senyawa yang mempunyai banyak kesamaan. Semuanya senyawa tanpa warna, terdapat pada seluruh dunia tumbuhan tetapi terutama dalam tumbuhan berkayu. OH OH HO
B
O C
A
OH OH
8. Leukoantosianidin Merupakan monomer flavan 3,4-diol, leukoantosianidin jarang terdapat sebagai glikosida, namun beberapa bentuk glikosida yang dikenal adalah apiferol, dan peltoginol. OH OH B
O C
HO A HO
OH OH
9. Auron Berupa pigmen kuning emas terdapat dalam bunga tertentu dan bryofita. Dalam larutan senyawa ini menjadi merah ros. O A
CH
B
O
10. Kalkon Polihidroksi
kalkon
terdapat
dalam
sejumlah
tanaman,
namun
terdistribusinya di alam tidak lazim. Pada kenyataan, pengubahan kalkon menjadi flavanon terjadi dengan mudah dalam larutan asam dan reaksi kebalikannya dalam basa. Reaksi ini mudah diamati karena kalkon warnanya jauh lebih kuat daripada warna flavanon, terutama dalam larutan basa warnya merah jingga. Alasan pokok bahwa kalkon cepat mengalami isomerasi menjadi flavanon dalam satuan keseimbangan. Oleh karena itu,
Universitas Sumatera Utara
hidrolisis glikosida kalkon dalam suasana asam menghasilkan aglikon flavanon sebagai senyawa jadi, bukan kalkon. B
A O
(Robinson, 1995).
2.5 Skrining Fitokimia
Banyak reagen yang dapat digunakan untuk mengetahui keberadaan dari flavonoid, meskipun beberapa juga akan bereaksi positif dengan senyawa polifenol. Reagen yang biasa digunakan adalah : 1. Shinoda Test, yaitu dengan menambahkan serbuk magnesium pada ekstrak sampel dan beberapa tetes HCl pekat, warna orange, pink, merah sampai ungu akan terjadi pada senyawa flavon, flavonol, turunan 2,3-dihidro dan xanton. Penggunaan zinc sebagai pengganti magnesium dapat dilakukan, dimana hanya flavanonol yang memberikan perubahan warna merah pekat sampai magenta, flavanon dan flavonol akan memberi warna merah muda yang lemah sampai magenta. 2. H2SO4(p), flavon dan flavonol akan memberikan perubahan larutan kuning pekat. Kalkon dan auron menghasilkan larutan berwarna merah atau merah kebiru-biruan. Flavanon memberikan warna orange sampai merah (Cannell, 1998). 3. NaOH 10% , menghasilkan larutan biru violet 4. FeCl3 5% telah digunakan secara luas untuk mengidentifikasi senyawa fenol, tetapi tidak dapat digunakan untuk membedakan macam-macam golongan flavonoid. Pereaksi ini memberi warna kehijauan, warna biru, dan warna hitam-biru (Robinson, 1995).
Universitas Sumatera Utara
2.6 Teknik Pemisahan
Teknik pemisahan memiliki tujuan untuk memisahkan komponen yang akan ditentukan berada dalam keadaan murni, tidak tercampur dengan komponenkomponen lainnya. Ada 2 jenis teknik pemisahan: 1. Pemisahan kimia adalah suatu teknik pemisahan yang berdasarkan adanya perbedaan yang besar dari sifat-sifat fisika komponen dalam campuran yang akan dipisahkan. 2. Pemisahan fisika adalah suatu teknik pemisahan yang didasarkan pada perbedaan-perbedaan kecil dari sifat-sifat fisik antara senyawa-senyawa yang termasuk dalam satu golongan.
Gambar 2.2 Diagram Teknik Pemisahan Biomassa (tanaman, mikroba, laut)
Ekstraksi
Skrining
Isolasi zat aktif berdasarkan uji hayati
Skrining silang
Elusidasi Struktur (Muldja, 1995). 2.6.1 Ekstraksi
Sampel yang berasal dari tanaman setelah diidentifikasi, kemudian digolongkan menjadi spesies dan famili, sampel kemudian dikumpulkan dari bagian arialnya (daun, batang, kulit kayu pada batang, kulit batang, dan akar). Sampel ini kemudian dikeringkan dengan cara diangin-anginkan untuk menghindari
Universitas Sumatera Utara
penguraian komponen oleh udara atau mikroba. Jika telah dikeringkan, biomassa kemudian digiling menjadi partikel-partikel kecil menggunakan blender atau penggilingan. Proses penggilingan ini penting karena ektraksi efektif pada partikel kecil, dikarenakan memiliki luas permukaan yang lebih besar.
Pemilihan pelarut ekstraksi sangat penting. Jika tanaman diteliti dari sudut pandang etnobotani, ektraksi harus mengikuti pemakaiannya secara tradisional. Kegagalan mengekstraksi biomassa dapat menyebabkan kehilangan akses untuk mendapatkan zat aktif.
Terdapat sejumlah metode ekstraksi, yang paling sederhana adalah ekstraksi dingin (dalam labu besar berisi biomassa), dengan cara ini bahan kering hasil gilingan diekstraksi pada suhu kamar secara berturut-turut dengan pelarut yang kepolarannya makin tinggi. Keuntungan utama cara ini adalah merupakan metode ekstraksi yang mudah karena ekstrak tidak dipanaskan sehingga kemungkinan kecil bahan alam terurai. Penggunaan pelarut dengan peningkatan kepolaran secara berurutan memungkinkan pemisahan bahan alam berdasarkan kelarutannya (dan polaritasnya) dalam ektraksi. Hal ini sangat mempermudah proses isolasi. Ekstraksi dingin memungkinkan banyak senyawa terekstraksi, meskipun beberapa senyawa memiliki kelarutan terbatas dalam pelarut ekstraksi pada suhu kamar (Heinrich et al, 2009).
Ekstraksi dianggap selesai bila tetesan terakhir memberikan reaksi negatif terhadap senyawa yang diekstraksi. Untuk mendapatkan larutan ekstrak pekat, biasanya pelarut ekstrak diuapkan dengan menggunakan alat rotari evaporator (Harborne, 1996).
2.6.2 Partisi
Metode pemisahan yang mungkin paling sederhana adalah partisi, yang banyak digunakan sebagai tahap awal pemurnian ekstrak. Partisi menggunakan dua pelarut tak bercampur yang ditambahkan kedalam ekstrak tersebut, hal ini dapat
Universitas Sumatera Utara
dilakukan secara terus menerus dengan menggunakan dua pelarut yang tak bercampur yang kepolarannya meningkat. Partisi biasanya dilakukan melalui dua tahap: 1. Air/petroleum eter ringan (heksana) untuk menghasilkan fraksi nonpolar di lapisan organik 2. Air/diklorometan atau air/kloroform atau air/etil asetat untuk membuat fraksi agak polar di lapisan organik. Ini merupakan metode pemisahan yang mudah dan mengandalkan kelarutan bahan alam dan bukan interaksi fisik dengan medium lain (Heinrich et al, 2009).
2.6.3 Hidrolisis
Prosedur yang digunakan untuk hidrolisis asam dari flavonoid glikosida adalah, sebanyak 2 mg sampel flavonoid glikosida dicampur dengan asam klorida 6% sebanyak 5 ml dengan jumlah metanol yang sangat sedikit pada sampel untuk membuat proses hidrolisis menjadi sempurna. Larutan dipanaskan selama 45 menit lalu didinginkan, kemudian ekstrak sepenuhnya dilarutkan dengan eter. Penguapan dari larutan akan mengendapkan ramnosa dan glukosa. Lapisan eter, setelah dikeringkan dengan menggunakan natrium sulfat akan didapatkan aglikon flavonoid setelah diuapkan (Mabry et al, 1970).
2.6.4 Kromatografi
Kromatografi pertama kali dikembangkan oleh seorang ahli botani Rusia Michael Tswett pada tahun 1903 untuk memisahkan pigmen berwarna dalam tanaman dengan cara perkolasi ekstrak petroleum eter dalam kolom gelas yang berisi kalsium karbonat (CaCO3). Kromatografi merupakan suatu teknik pemisahan yang menggunakan fase diam (stationary phase) dan fase gerak (mobile phase). Teknik kromatografi telah berkembang dan telah digunakan untuk memisahkan dan mengkuantifikasi berbagai macam komponen yang kompleks, baik komponen organik maupun komponen anorganik.
Universitas Sumatera Utara
Kromatografi dapat dibedakan atas berbagai macam tergantung pada pengelompokkannya. Berdasarkan pada mekanisme pemisahannya, kromatografi dibedakan menjadi: kromatografi adsorbsi, kromatografi partisi, kromatografi pasangan ion, kromatografi penukar ion, kromatografi eksklusi ukuran. Berdasarkan pada alat yang digunakan, kromatografi dapat dibagi atas: kromatografi kertas, kromatografi lapis tipis (disebut juga kromatografi planar), kromatografi cair kinerja tinggi, dan kromatogtrafi gas. Bentuk kromatografi yang paling awal adalah kromatografi kolom yang digunakan untuk pemisahan sampel dalam jumlah yang besar.
Pemisahan pada kromatografi planar pada umumnya dihentikan sebelum semua fase gerak melewati seluruh permukaan fase diam. Solut pada kedua kromatografi ini dikarakterisasi dengan jarak migrasi solut terhadap jarak ujung fase geraknya. Nilai faktor retardasi solut (Rf) dapat dihitung dengan menggunakan perbandingan dalam persamaan:
Rf=
Jarak yang ditempuh solut Jarak yang ditempuh fase gerak
Nilai maksimum Rf adalah 1 dan ini dicapai ketika solut mempunyai perbandingan distribusi (D) dan faktor retensi sama dengan 0 yang berarti solut bermigrasi dengan kecepatan yang sama dengan fase gerak. Nilai minimum Rf adalah 0 dan ini teramati jika solut tertahan pada posisi titik awal di permukaan fase diam.
Proses Sorpsi
Sorpsi merupakan proses pemindahan solut dari fase gerak ke fase diam, sementara itu proses sebaliknya (pemindahan solut dari fase diam ke fase gerak) disebut dengan desorpsi. Kedua proses ini (sorpsi dan desorpsi) terjadi secara terus menerus selama pemisahan kromatografi karenanya sistem kromatografi berada dalam keadaan kesetimbangan dinamis. Solut akan terdistribusi diantara dua fase yang bersesuaian dengan perbandingan distribusinya (D) untuk menjaga
Universitas Sumatera Utara
keadaan kesetimbangan ini. Ada 4 jenis mekanisme sorpsi dasar dan umumnya 2 atau lebih mekanisme ini terlibat dalam satu jenis kromatografi. Keempat jenis tersebut adalah adsorpsi, partisi, pertukaran ion, dan eksklusi ukuran.
Adsorben
Silika gel merupakan jenis adsorben (fase diam) yang penggunaannya paling luas. Permukaan silika gel terdiri atas gugus Si-O-Si dan gugus silanol (Si-OH). Gugus silanol bersifat sedikit asam dan polar karenanya gugus ini mampu membentuk ikatan hidrogen dengan solut-solut yang agak polar sampai sangat polar.
Adanya air dari atmosfer yang diserap oleh permukaan silika gel mampu mendeaktifkan permukaan silika gel karena air akan menutup sisi aktif silika gel. Hal seperti ini dapat diatasi dengan memanaskan pada suhu 1050C, meskipun demikian reprodusibilitasnya sulit dicapai kecuali jika suhu dan kelembapan benar-benar dijaga secara hati-hati. Semakin polar solut maka akan semakin tertahan kuat ke dalam adsorben silika gel ini (Gandjar dkk, 2007).
2.6.4.1 Kromatografi Lapis Tipis
Dalam kromatografi lapis tipis (KLT), adsorben diletakkan tepat pada satu sisi plat atau kaca atau saluran plastik ataupun aluminium. Adsorben yang paling sering digunakan adalah silika gel dan alumina. Beberapa mikroliter larutan sampel yang akan dianalisa ditotolkan pada plat sebagai titik kecil yang tunggal dengan menggunakan pipa mikrokapilaritas. Plat dikembangkan dengan meletakkannya didalam botol ataupun chamber pengembang yang berisi sejumlah kecil pelarut. Pelarut akan menaiki plat dengan adanya gaya kapilar, dan membawa senyawa dari sampel dengan itu. Senyawa yang berbeda dipisahkan dari dasarnya pada saat interaksi mereka dengan lapisan adsorben.
Plat KLT yang biasa digunakan adalah plat dengan ukuran pori silika 60 Å dan ketebalan lapisan 25 µm dalam penyangga poliester atau aluminium, beberapa
Universitas Sumatera Utara
dengan menggunakan atau tanpa menggunakan indikator fluorosensi yang sesuai untuk analisa cepat dari ekstrak kasar tanaman dan digunakan sebagai dasar dari langkah preparatif. Plat biasa dapat digunting dengan menggunakan gunting atau kertas cutter untuk mengambil ukuran yang diinginkan. Deteksi noda yang dihasilkan dapat menggunakan lampu ultraviolet ataupun dengan menyemprot dengan menggunakan reagen yang sesuai (Cseke et al, 2006).
2.6.4.2 Kromatografi Kolom
Kolom kromatografi atau tabung untuk pengaliran karena gaya tarik bumi (gravitasi) atau sistem bertekanan rendah biasanya terbuat dari kaca yang dilengkapi keran jenis tertentu pada bagian bawahnya untuk mengatur aliran pelarut. Ukuran keseluruhan kolom sungguh beragam, tetapi biasanya panjangnya sekurang-kurangnya 10 kali garis tengah dalamnya dan mungkin saja sampai 100 kalinya. Ukuran kolom dan banyaknya penjerap yang dipakai ditentukan oleh bobot campuran sampel yang akan dipisahkan.
Untuk pemisahan normal, bobot sampel biasanya 30:1 ternyata memadai jika pemisahan tidak terlalu sukar. Ukuran partikel penjerap pada kolom biasanya lebih besar daripada untuk KLT. Walau pun banyak jenis penjerap telah dipakai untuk kolom, alumina dan silika gel adalah penjerap yang paling berguna dan mudah didapat.
Fraksi kolom yang mengandung senyawa yang sama (diperiksa dengan KLT) atau tampaknya berasal dari satu puncak (memakai pendeteksian sinambung) digabungkan, dan pelarutnya diuapkan, lebih baik dengan tekanan rendah. Jika pelarut dan penjerap murni. Maka fraksi-fraksi pun murni (Gritter dkk, 1991).
Universitas Sumatera Utara
2.6.4.3 Kromatografi Lapis Tipis Preparatif
Sebagian besar pemakaian kromatografi lapis tipis preparatif hanya dalam jumlah miligram. Kromatografi lapis tipis preparatif bersama-sama dengan kromatografi kolom terbuka, dijumpai sebagian besar dalam isolasi bahan alam. Penjerap yang paling umum digunakan adalah silika gel dan dipakai untuk pemisahan campuran senyawa lipofil maupun campuran senyawa hidrofil. Ukuran partikel dan porinya kurang lebih sama dengan ukuran tingkat KLT.
Kromatografi lapis tipis preparatif dilakukan dengan menggunakan lapisan tebal (1 mm) sebagai pengganti lapisan penjerap yang tipis (0,10-0,25). Pelat preparatif yang dibuat oleh paprik dapat dibeli. Cuplikan sebanyak 10-100 mg dapat dipisahkan pada lapisan silika gel atau aluminium oksida 20 x 20 cm yang tebalnya 1 mm. Pengembangan plat KLTP biasanya dilakukan dalam bejana kaca yang dapat menampung beberapa plat.
Kebanyakan penjerap KLTP mengandung indikator fluorosensi yang membantu mendeteksi kedudukan pita yang terpisah sepanjang senyawa yang dipisahkan menyerap sinar UV. Pita yang kedudukannya telah diketahui dikerok dari plat dengan spatula atau pengerok berbentuk tabung. Senyawa harus diekstraksi dari penjerap dengan pelarut yang paling kurang polar yang mungkin (sekitar 5 ml pelarut untuk 1 g penjerap). Harus diperhatikan bahwa semakin lama senyawa berkontak dengan penjerap makin besar kemungkinan penguraian (Hostettmann dkk, 1995).
2.7 Teknik Spektroskopi
Teknik analisis modern mencakup berbagai teknik analisis instrumen elektronika yang dikembangkan untuk mengukur parameter fisika dan kimia alami yang khas dan tetap dari atom atau molekul. Parameter khas yang bermakna untuk analisis adalah absorpsi dan emisi energi radiasi elektromagnet oleh atom atau molekul.
Universitas Sumatera Utara
Teknik analisis spektroskopi berasaskan antaraksi radiasi elektromagnet dengan komponen atom atau molekul yang menghasilkan fenomena bermakna sebagai parameter analisis. Karena pada setiap teknik spektroskopi antaraksi radiasi elektromagnet dengan komponen atom/ molekul khas dan tidak semuanya sama, uraian teknik analisis didahului dengan mekanisme antaraksi tersebut, serta fenomena yang dipakai sebagai parameter analisisnya (Satiadarma dkk, 1995).
2.7.1 Spektroskopi Ultraviolet (UV-Vis)
Senyawa polifenol memiliki dua karakteristik pita penyerapan Ultraviolet dengan maksimal jarak 240 sampai 285 nm dan 300 sampai 550 nm. Berbagai macam golongan flavonoid dapat dikenali dari spektrum UV mereka masing-masing, karakteristik spektra UV dari masing-masing flavonoid yang mengandung jumlah dari golongan hidroksil aglikon, pola substituen glikosida, dan golongan asil aromatik bahan alam.
Saat ini penggunaan Spektroskopi UV-Visible paling sering digunakan dalam aplikasi untuk analisa kuantitatif, dan nilai dari metode ini dapat mengurangi perbandingan informasi yang banyak dari teknik spektroskopi yang lainnya seperti NMR dan MS (Andersen, 2006).
Flavonoid mengandung sistem aromatik yang terkonyungasi dan karena itu menunjukkan pita serapan kuat pada daerah spektrum UV dan Spektrum tampak seperti yang disajikan pada tabel berikut:
Universitas Sumatera Utara
Tabel 2.2 Rentangan Serapan Spektrum UV-Visible golongan Flavonoida 𝛌 Maksimum
𝛌 Maksimum tambahan (nm)
Petunjuk
475-567
Atosianin
390-430
±275 (55%)
240-270 (32%)
Auron
365-390
240-260 (30%)
Khalkon
350-390
±300 (40%)
Flavonol
Tidak ada
Flavon dan Biflavonil
275-295
310-330 (30%)
Flavanon dan Flavanonol
±225
310-330 (25%)
Isoflavon
utama (nm)
250-270 330-350
(dengan intensitas nisbi)
300-350
255-295
(Harborne, 1996) 2.7.2
Spektroskopi Inframerah (FT-IR)
Spektrum inframerah suatu molekul adalah hasil transisi antara tingkat energi getaran (vibrasi) yang berlainan. Inti-inti atom yang terikat oleh ikatan kovalen mengalami getaran (vibrasi) atau osilasi (oscillation) dengan cara serupa dengan dua bola yang terikat oleh suatu pegas.
Bila molekul menyerap radiasi inframerah, energi yang diserap menyebabkan kenaikan dalam amplitudo getaran atom-atom yang terikat itu. Jadi molekul ini berada dalam keadaan vibrasi tereksitasi , energi yang diserap ini akan dibuang dalam bentuk panas bila molekul itu kembali ke keadaan dasar. Panjang gelombang eksak dari absorpsi oleh suatu tipe ikatan, bergantung pada macam getaran dari ikatan tersebut. Oleh karena itu, tipe ikatan yang berlainan (C-H, CC, C=O, C=C, O-H, dan sebagainya) menyerap radiasi inframerah pada panjang gelombang yang berlainan. Dengan demikian spektrometri inframerah dapat digunakan untuk mengidentifikasi adanya gugus fungsi dalam suatu molekul. Banyaknya energi yang diserap juga beraneka ragam dari ikatan ke ikatan. Ini
Universitas Sumatera Utara
disebabkan sebagian oleh perubahan dalam momen dipol (µ ≠0) pada saat energi diserap. Ikatan nonpolar (seperti C-H atau C-C) menyebabkan absorpsi lemah, sedangkan ikatan polar (seperti misalnya O-H, N-H, dan C=O) menunjukkan absorpsi yang lebih kuat.
Suatu ikatan dalam sebuah molekul dapat mengalami berbagai vibrasi molekul. Secara umum terdapat dua tipe vibrasi molekul: 1. Streching (vibrasi regang/ulur): vibrasi sepanjang ikatan sehingga terjadi perpanjangan atau pemendekan ikatan. 2. Bending (vibrasi lentur/tekuk): vibrasi yang disebabkan oleh sudut ikatan sehingga terjadi pembesaran atau pengecilan sudut ikatan.
Oleh karena itu suatu ikatan tertentu dapat menyerap energi lebih dari satu panjang gelombang. Contohnya, ikatan O-H menyerap energi pada frekuensi 3330 cm-1, energi pada panjang gelombang ini menyebabkan kenaikan vibrasi regang ikatan O-H itu. Suatu ikatan O-H itu juga menyerap pada kira-kira 1250 cm-1, energi pada panjang gelombang ini menyebabkan kenaikan vibrasi lentur. Tipe vibrasi yang berlain-lainan ini disebut cara vibrasi fundamental (Supratman, 2010). 2.7.3 Spektroskopi Resonansi Magnetik Inti Proton (1H-NMR)
Setelah spektroskopi inframerah, spektroskopi resonansi magnetik inti (NMR) adalah yang metode yang paling penting digunakan dalam kimia organik. Dalam spektroskopi inframerah mengandung infromasi mengenai adanya gugus fungsi pada molekul, sedangkan spektroskopi NMR memberikan informasi mengenai jumlah dari masing-masing hidrogen.
Kemampuan terhebat resonansi inti magnetik timbul karena tidak semua proton dalam molekul memiliki resonansi yang identik pada frekuensi yang sama. Hal ini sesuai dengan fakta bahwa berbagai macam proton dalam molekul dikelilingi oleh elektron
dan memiliki sedikit perbedaan dalam lingkungan
Universitas Sumatera Utara
elektronik dari satu dan yang lainnya. Proton akan terlindungi oleh elektron yang mengelilingi mereka. Dalam daerah magnetik, peredaran elektron valensi dari daerah penghasil proton yang bertentangan dengan daerah magnetik yang berlaku. Pergeseran kimia dalam unit δ ditunjukkan dalam jumlah resonansi proton yang bergeser dari TMS dalam bagian per juta (ppm) dari frekuensi dasar spektroskopi
δ=
pergeseran dalam Hz frekuensi spektrometer dalam MHz
Unsur dasar dari spektrometer nmr adalah ilustrasi skematis. Sampel dilarutkan dalam pelarut yang tidak memiliki proton (biasanya CCl4) dan dalam jumlah yang kecil dari TMS yang ditambahkan sebagai pusat referensi internal.
Semua proton dalam molekul yang identik dalam lingkungan kimia akan memiliki pergerseran kimia yang sama. Dengan demikian, semua proton dari TMS atau semua proton dalam benzena, siklopentana, atau aseton memiliki nilai resonansi yang berdekatan pada nilai δ. Masing-masing komponen akan memiliki penyerapan yang tunggal dalam spektrum nmr. Proton ini dikatakan sama secara kimia. Pada kenyataannya, spektrum tidak dapat hanya dibedakan dari berapa banyak tipe proton yang berbeda pada molekul tersebut, tetapi dapat memperlihatkan berapa banyak jenis perbedaan yang ada dalam molekul tersebut. Dalam spektrum nmr, daerah dibawah masing-masing peak adalah proporsional dengan jumlah dari hidrogen yang ada pada peak tersebut (Pavia, 1979).
Universitas Sumatera Utara