ARÁNY, ARÁNYOSSÁG, ARÁNYOS OSZTÁS 0731. Az arány fogalmának ismétlése és mélyítése
KÉSZÍTETTE: HARSÁNYI ZSUZSA
128
MATEMATIKA „A” – 7. ÉVFOLYAM – 073. ARÁNY, ARÁNYOSSÁG…
TANULÓI MUNKAFÜZET
1. FELADATLAP 1. A körlap Jutka születésnapi tortáját jelképezi. 2 7 1 , kékkel a , sárgával a részét! Színezd ki pirossal az 5 20 4
Bővítsd úgy a törteket, hogy a nevezőjük 100 legyen! Írd át a 100 nevezőjű törteket százalék alakba! 2. Válaszd ki az egyenlőket! 2 5 0,2 : 0,3 7 5
0,75
1,4
4,9 : 3,5
140 100
12 18
20 : 50
0,2 : 0,5
75 100
2 3
3 4
140%
75%
3,6 : 4,8
0,4
40%
3. Melyik a nagyobb? Tedd ki a megfelelő (<,>, =) jelet! 60 3 része, vagy a 120 -nak a 60%-a, vagy a 120 -nak a része? 100 5 1 része? b) A 70 -nek a 25%-a, vagy a 70 . 0,25 szorzat értéke, vagy a 70-nek az 4
a) A 120-nak a
c) A 48-nak a 30%-a, vagy a 30-nak a 48%-a? d) A 15-nek a 120%-a vagy a 80-nak a 14%-a? 4. Állítsd az alábbi értékeket növekvő sorrendbe!
b) a 45-nek a
3 -e, 4 30%-a,
c) a 15-nek a
150%-a,
d) a 45-nek a
0,3-szerese,
e) a 45-nek a
210%-a,
f) a 32-nek a
20%-kal csökkentett értéke,
g) a 15-nek a
1,5-szerese,
h) a 32-nek a
75%-a,
i) a 15-nek a
60%-kal megnövelt értéke.
a) a 32-nek a
5. A következőkben a feladat elolvasása után színessel húzd alá a szövegnek azt a részét, amelyből kiderül, hogy melyik a 100%. Tibinek 1 500 000 forintja van. Mennyi pénze lesz egy év múlva, ha ezt az összeget évi 8%-os kamatra beteszi egy évre a helyi bankba?
TANULÓI MUNKAFÜZET
0731. Az arány fogalmának ismétlése…
129
6. Az egyik kerékpár árát 30%-kal csökkentik. Mennyiért lehet az árcsökkentés után megvenni, ha az eredeti ár 70 000 Ft volt? 7. Zsuzsi barátnőivel rendszeresen e-mailezik. Az e-mailje bekapcsoláskor azt jelzi, hogy a postafióknak 75%-a már tele van. A postafiók mérete 25 MB. Hány MB-nyi szabad területe maradt? 8. Egy jó fogyókúrás recept alapján hetente 0,5 kg-ot lehet fogyni. Ági tömege 70 kg. Két hónap alatt hány százalékkal csökken a tömege, ha ezt a receptet használja? 9. Tóth úr ez évi jövedelme 1 400 000 Ft. Ha nem vesszük figyelembe az adókedvezményeket, akkor mennyi adót fizet ebben az évben a jövedelme után (az adókulcs 18%)? 10. Jancsi az egyik héten 1400 Ft-ért 10 db lottószelvényt vásárolt. Az egyik szelvényen három számot eltalált. A nyereménye 4340 Ft volt. A nyereménye hány %-a a szelvények árának? A tiszta nyeresége hány %-a szelvények árának? 11. Kovács úr 2004-ben egy új autót vásárolt 3 200 000 Ft-ért. Az autót három év múlva 1 800 000 Ftért eladta. Az eladási ár hány százaléka a vételi árnak? Hány százalékot vesztett három év alatt az autó az értékéből? 12. Az ezredforduló idején Kissék lakást építettek. Az építési költség 10,6 millió Ft volt. A lakást 6 év múlva eladták 18,6 millió Ft-ért. Az eladási ár hány százaléka az építési költségnek? Hány százalékkal drágábban adták el a lakást, mint amennyi az építés költsége volt? 13. Az egyik osztálytársad nagyon jó eredményeket ért el távolugrásban. Két évvel ezelőtt még csak 2,1 méter volt a leghosszabb ugrása, ma pedig 3,36 métert ugrott. Számold ki, hány százalékkal javította meg az eredményét!
ÖSSZEFOGLALÁS Az előző feladatokban a százalékszámításban szereplő mennyiségekkel dolgoztunk. Ezeknek külön neve is van. A teljes egész, a 100% a százalékszámítás alapja. Az egész valahányad része, a p %-a, a százalékérték. A p % a százalékláb. Például : Az 5. feladatban a százalékalap: 1 500 000 Ft. A százalékérték: 1 620 000 Ft A százalékláb: 108% = 108/100
130
MATEMATIKA „A” – 7. ÉVFOLYAM – 073. ARÁNY, ARÁNYOSSÁG…
TANULÓI MUNKAFÜZET
2. FELADATLAP 14. Adjatok magatoknak egy-egy betűjelet (A, B, C, D)! A tanártól kaptok egy csomag magyar kártyát. A csoport A jelű tagja számolja meg, hány db kártya van a csomagban! a) A B jelű olvassa fel a csoportnak az első feladatot! A kártyacsomagot osszátok két halmazba úgy, hogy az egyikben háromszor annyi legyen, mint a másikban! Beszéljétek meg, hogyan kell ezt megvalósítani, a C jelű hajtsa végre a csoport elképzelését, és a D jelű ellenőrizze, hogy helyesen hajtottátok-e végre a feladatot! b) Most a D jelű olvassa fel a feladatot! Úgy kell szétosztani a kártyákat két kupacra, hogy az egyikben hétszer annyi legyen, mint a másikban. A csoport beszélje meg, mit kell csinálni, és az A jelű valósítsa meg az elképzelést! B pedig ellenőrizze a feladatmegoldást! 2. Most a négy papírcsokoládéval dolgoztok. Ezeket külön-külön 24 db kis négyzetre lehet vágni. Használjátok az ollót! A C jelű olvassa fel a feladatot! Osszatok szét magatok között egy tábla csokoládét úgy, hogy a) mindenkinek ugyanannyi jusson! A csoport beszélje meg az eljárást, D megvalósítja, A leszámolja, hány darab kis négyzet jutott egy-egy gyereknek, B ellenőrzi. b) az egyik párnak kétszer annyi jusson, mint a másiknak! Beszéljétek meg az eljárást, és a másik tábla csokoládéval valósítsátok meg! Számoljátok meg, hány db jutott külön-külön a pároknak! c) az egyik párnak ötször annyi jusson, mint a másiknak! Beszéljétek meg az eljárást és az egyik ép csokoládéval valósítsátok meg! Számoljátok meg, hány db jutott külön-külön a pároknak! d) az egyik párnak hétszer annyi jusson, mint a másiknak! Beszéljétek meg az eljárást és az utolsó ép csokoládéval valósítsátok meg! Számoljátok meg, hány db jutott külön-külön a pároknak! 3. Most a körlappal dolgozzatok! A tanártól kaptok egy olyan körlapot, amely 16 egyenlő cikkre van osztva (a körlap egy 16 szeletes tortát szimbolizál). Osszátok fel a tortát úgy, hogy a) az egyik párnak háromszor annyi jusson, mint a másiknak b) az egyik párnak hétszer annyi jusson, mint a másiknak! c) 1 : 3 és 1 : 7 arányban; d) 3 : 5 arányban! Hány szeletet kapott az egyik és hányat a másik pár? A felosztás módját és a választ mindkét esetben beszéljétek meg! Az osztás műveletével ellenőrizzétek, hogy helyesen osztottátok-e szét a tortát!
3. FELADATLAP 1. A karácsonyi diós bejgli töltelékében recept szerint a mazsolán kívül össze kell keverni egy pohárnyi édes morzsát, három pohárnyi darált diót, két pohárnyi cukrot és három pohárnyi vizet. Ha 1 ezeket összekeverjük, kilenc (1+3+2+3) pohárnyi masszát kapunk, amelynek -ed része mor9 3 2 3 zsa, -ed része dió, -ed része cukor, és -ed része víz. Ennyivel két rudat lehet megtölteni. 9 9 9 Amennyiben a család szereti a bejglit, a két rúd nagyon kevés. Ha négy rudat szeretnénk sütni, akkor a felsorolt alapanyagok mindegyikéből kétszer annyit kell venni. Ha hat rudat szeretnénk, akkor háromszor, ha nyolc rudat, akkor négyszer annyit kell venni. Egyetlen szempontot kell figyelembe venni, hogy a dió (d) a morzsa (m) háromszorosa, a cukor (c) a morzsa kétszerese, és a víz (v) a morzsa háromszorosa legyen, azaz a keverékben az alapanyagok aránya megmaradjon.
TANULÓI MUNKAFÜZET
0731. Az arány fogalmának ismétlése…
131
2. Olvassátok el a betűjeleteknek megfelelő feladatot! Üljetek egy csoportba az azonos jelű társatokkal! Olvassátok el a feladatot, beszéljétek meg a megoldást, majd ezt pontosan rögzítsétek a füzetbe! Ha készen vagytok, visszamentek a saját csoportotokhoz, és a többieknek megtanítjátok a feladatok megoldását. Ügyeljetek arra, hogy amikor megmagyarázzátok a feladat kidolgozását, társaitok dolgozzanak a füzetükbe! A: Andris és Eszter testvérek. Szüleik úgy döntöttek, hogy kettőjüknek együtt 6000 forint zsebpénzt adnak. Mivel Andris két évvel idősebb, a szülők azt tanácsolják a testvéreknek, hogy Andris havi zsebpénze kétszer annyi legyen, mint Eszteré. Számold ki, mennyi zsebpénzt kapnak különkülön! Andris: ………………… Ft
Eszter: ………………… Ft
Ez a körlap jelképezi a testvérek zsebpénzének összegét. Oszd fel a körlapot két részre úgy, hogy az egyik Eszter, a másik Andris zsebpénzének feleljen meg! Színezd is ki!
B: Krisztián és Bence szülei holnap érkeznek meg a nyaralásból. A két fiú elhatározza, hogy meglepetésként kitakarítják a lakást. Krisztián az idősebb, önként felajánlja, hogy a lakás háromnegyed részét rendbehozza. A lakásnak 60 m 2 -nyi alapterületét kell kitakarítani. Hány m2 -t hoz rendbe Krisztián, illetve Bence? Krisztián: ………………… m2
Bence: ………………… m2
Ez a téglalap a lakás kitakarításra váró részét jelképezi. Osszad fel a téglalapot úgy, hogy az egyik Krisztián munkáját, a másik Bencéét jelképezze! Színezd is ki!
C: Egy iskola tanulói megválasztják a diákönkormányzat vezetőjét. A két jelöltre (Anna, Miklós) 3 háromszázhúszan szavaztak. Anna a szavazatok -ad részét kapta meg. Hányan szavaztak 8 Annára és hányan Miklósra? Anna: …………………
Miklós: …………………
Rajzolj egy szakaszt!
A szakasz hossza az összes szavazat számát jelképezi. Jelöld be azokat a darabokat, amelyek az Annára, illetve a Miklósra adott szavazatok számának felelnek meg!
132
MATEMATIKA „A” – 7. ÉVFOLYAM – 073. ARÁNY, ARÁNYOSSÁG…
TANULÓI MUNKAFÜZET
D: Precízék új lakásba költöznek. Elképzeléseik szerint a falak mentén helyeznék el a szekrényeket és a könyvespolcokat. A legnagyobb szobával kezdik, amely téglalap alakú, szélessége 5 m, 3 hosszúsága 6 m. Azt szeretnék, hogy a szoba -öd része szabadon maradjon. 5 Hány m2 -nyi területre kerülhet bútor? ………………… m2 Amennyiben valamelyik szakértői csoportod gyorsan elkészül a feladat megoldásával, készítsétek el a rajzot is. Ez a téglalap a szobát jelképezi. Rajzold be a szekrények és a könyvespolcok lehetséges elhelyezkedését!
EMLÉKEZTETŐ Gyakran egy-egy mennyiség konkrét értéke helyett az a fontosabb nekünk, hogy egyik hányszorosa a másiknak. Mennyiségek összehasonlításakor nagyon sok esetben a hányados többet mond, mint a valódi érték, vagy a különbség. Ezért vezették be az arány elnevezést. Két mennyiség számértékeinek hányadosát a két mennyiség arányának nevezik. Ez egy szám, amit osztásjellel vagy törtalakban is szokás felírni. Két azonos mennyiség összehasonlításakor a mennyiségek értékeinek hányadosa sok mindent elárul. Például: Ha egy kg kenyér ára 400 Ft, akkor 10 kg kenyérért 4000 Ft-ot fizetünk. 4000 = 4000 : 400 = 10 megadja a vásárolt kenyér mennyiségét, és a 10 kg kenyér és az 1kg kenyér 400 áráról is szól.
A
Tehát ha egy tört számlálója és nevezője ugyan annak a mennyiségnek a számértékeit jelöli, akkor a hányados megmutatja, hogy a mennyiség számértékei milyen arányban vannak egymással. 15 Például a = 15 : 5 = 3 ugyanazt az arányt jelenti. Mindegyik azt fejezi ki, hogy az egyik mennyi5 ség háromszorosa a másiknak. Ugyanakkor a 15 : 5 arányt így is értelmezhetjük, lehet egy olyan közös „mérőegységet” találni, amivel az egyik mennyiséget 15 darabból, a másikat 5 darabból ki lehet rakni. A diós bejgli receptjében például ilyen közös egység a pohár. A térképek léptékét is aránnyal szokták megadni. Például: M= 1: 500. Ez azt jelenti, hogy ami a térképen 1 egység, az a valóságban 500 egység, tehát 500-ad részére kicsinyítették a méreteket. Biológia könyvekben gyakran találjuk parányi élőlények nagyított képét. Például: M= 5:2. Ez azt jelenti, hogy ami a képen 5 egység, az a valóságban 2 egység. Tehát 2,5- szeresére nagyították fel az eredeti képet. Tudjuk, hogy a törtek bővítésével, egyszerűsítésével a tört értéke nem változik. Ennek megfelelően, ha az arány tényezőit ugyanazzal a számmal szorozzuk, vagy osztjuk, az arány értéke sem változik. Például: 4 : 10 = 2 : 5 = 12 : 30 = 1 : 2,5 = 0,2 : 0,5 = 0,8 : 2 = 0,4 vagy
10 30 1 : = 10 : 30=1 : 3 = . 7 7 3
Az egyenlő értékű arányokat aránypárnak szokás nevezni. Például: 5 : 4= 15 : 12.
TANULÓI MUNKAFÜZET
0731. Az arány fogalmának ismétlése…
133
Általánosan megfogalmazva: a / b = a : b (b 0) arány megmutatja, hogy az a hányszorosa b-nek. Ami azt is jelenti, hogy ha az egyiket a egyenlő részből tudjuk kirakni, akkor a másikhoz b ugyanekkora részre van szükség. Az arányban szereplő számok nem felcserélhetőek.
4. FELADATLAP 1. Osszátok szét a csomag kártyát három csoportba úgy, hogy a lapok száma 1 : 2 : 5 arányú legyen. Az eljárást a csoport együtt beszélje meg. Ezután számoljátok ki, hogy a kupacokba külön-külön a lapok hány százaléka került. 2. Egy 24 szeletes tortát osszatok szét 3 : 5 arányban! Hány szeletet tartalmaznak a különböző részek? A megoldást ellenőrizzétek! Ez a kör a tortát jelképezi. Színezzétek ki kétféle színnel úgy, hogy a két rész aránya 3 : 5 legyen! Számoljátok ki, hogy a két rész külön-külön hány százaléka az egész tortának! 3. Az egyik osztályba 28 tanuló jár. Az angol nyelvet 2 csoportban tanulják. Hány tanuló jár az egyes csoportokba, ha a létszámuk aránya 3 : 4? A megoldást ellenőrizzétek! Ez a szakasz 28 egység hosszú. Az osztályba járók számát jelképezi. Osszátok fel a szakaszt 3 : 4 arányban!
Számoljátok ki, hogy az egyes csoportokba a tanulók hány százaléka jár! 4. A Bizakodó Kft-t három testvér: István, Feri és János alapítják. A Kft kezdő tőkéje 4,5 millió Ft. A kezdő tőkét a három testvér a felsorolásuk sorrendjében 2 : 3 : 4 arányban rakta össze. Mennyi pénzzel kezdett a vállalkozáshoz a három testvér külön-külön?
5. FELADATLAP 1. Egy 8 m hosszú kerítés egynegyedében átjárót terveznek.
Rajzold be az átjáró helyét! Így a kerítést két részre osztottuk. Írd le: a) a kerítés kisebb és hosszabb darabjának arányát, b) a kerítés hosszabb és kisebb darabjának arányát! 2. Egy 24 szeletes torta
3 -ad része elfogyott. Hány szelet maradt? 8
3. Rajzolj le egy 12 szeletes tortát! Osszad fel 5 : 7 arányban! 5 4. Juliska néni a cseresznye -od részét 12 000 Ft-ért adta el. Mennyit kapott volna az egész cseresz6 nyéért?
134
MATEMATIKA „A” – 7. ÉVFOLYAM – 073. ARÁNY, ARÁNYOSSÁG…
TANULÓI MUNKAFÜZET
5. Egy lakás alapterülete 45 m2 . A lakóhelyiségek és a kiszolgálóhelyiségek aránya 7 : 2. Hány m2 -es a lakóhelység? 6. Egy divattervező cég tudni szeretné, hogy az embereknek melyik a kedvenc színük, ezért megbízta az egyik közvélemény-kutató céget, hogy végezzen ebben a témakörben felmérést. A reprezentatív felmérésből az derült ki, hogy a piros (p) színt kedvelők háromszor annyian vannak, mint a sárga (s) színt kedvelők, és a kék (k) színt kétszer annyian szeretik, mint a sárgát. Írd fel a felmérés eredményét aránnyal! p : k : s = …… : …… : …… Egy körlapon ábrázold az arányokat! Használj színeseket! 7. Kriszti születésnapi zsúrt szeretne rendezni. 3 -e 27 fő? 4 4 b) Hány lány van közöttük, ha a meghívottak -e lány? 9 c) Hány felnőtt van közöttük, ha a felnőttek és a gyerekek aránya 5 : 7? Kriszti szerint 15 felnőtt és 21 gyerek van. Igaza van-e?
a) Hány embert hív meg, ha a társaság
8. Egy téglalap kerülete 84 cm. Mekkorák az oldalai, ha az arányuk 4 : 3 ? 9. Egy 140 dm kerületű háromszög oldalainak aránya 2 : 3 : 5. Mekkorák az oldalak? A szögeinek aránya 4 : 5 : 9. A szögeit tekintve milyen ez a háromszög? 10. Rendezd nagyság szerint sorba a felsorolt értékeket! a) 100-nak a 20%-a b) 30-nak a 200%-a c) 40-nek a 70%-a d) 20-nak a 140%-a e) 50-nek a 14%-a 5 -a 6 10 g) 45-nek a -e 9 h) 80-nak a tizede f) 30-nak az
1 -a 6 30 j) 20-nak a -e 5
i) 60-nak az
TANULÓI MUNKAFÜZET
0731. Az arány fogalmának ismétlése…
135
FELADATGYŰJTEMÉNY 1. Szerkeszd meg azt a derékszögű háromszöget, amelynek átfogója 5 cm, és a hegyesszögek aránya 1:3! 2. Öcsédnek deltoid alakú sárkányt szeretnél csinálni. A szimmetriaátlója 65 cm, a másik átlója 50 cm. A két átló metszéspontja 8 : 5 arányban osztja a szimmetriaátlót. Készítsd el a sárkányt! Először szerkeszd meg a füzetedbe a tizedrészekre kicsinyített adatokkal! Tamás nem mer hozzákezdeni, mert felmerült benne a gondolat, hogy ha a hosszúságadatokat tizedére csökkenti, akkor megváltozik a két átló metszéspontjának a helye. Válaszolj Tamásnak! 3. Nagymama csalamádét szeretne eltenni télre. A recept szerint uborkát, káposztát, hagymát, paprikát, zölddinnyét, sárgarépát kell összekeverni 3 : 5 : 1 : 2,5 : 2 : 0,5 arányban. Péter, aki a legerősebb a családban, felajánlja, hogy az alapanyagokat elhozza a piacról. Péter tudja, hogy legfeljebb 56 kg-ot bír el. Útközben akarja kiszámolni, hogy mennyit kell vásárolnia. Segíts neki! uborkából:
kg-ot,
káposztából:
kg-ot,
hagymából:
kg-ot,
paprikából:
kg-ot,
zölddinnyéből:
kg-ot,
sárgarépából:
kg-ot.
4. Egy görögdinnye háromnegyed része 4,5 kg. Mekkora a tömege a dinnye négyötöd részének? 5. Jutka néni barackot vitt a piacra. A termés kétharmad részét, 60 kg-ot. Mennyit vitt volna, ha a termés négyötöd részét viszi ki? 6. Gazdag úr és Módos úr vállalatot alapított. Az apportként bevitt tőke aránya 5 : 4 volt. Három év után 12,6 milliós nyereségük lett. Mennyi pénzt kapnak ebből külön-külön, ha a nyereségen a bevitt tőke arányában osztoznak? Gazdag úr alapító tőkéje 9,7 millió volt. Hány százalékkal növekedett a tőkéje? Értékeld a vállalkozást! 7. Egy háromszög legnagyobb oldala 7 cm. A szögeinek aránya 3 : 4 : 5. Szerkeszd meg a háromszöget! 8. Hány fokosak a) a rombusz szögei, ha arányuk 7 : 8? b) a húrtrapéz szögei, ha arányuk 5 : 4? c) az egyenlőszárú háromszög szögei, ha arányuk 3 : 6?
136
MATEMATIKA „A” – 7. ÉVFOLYAM – 073. ARÁNY, ARÁNYOSSÁG…
TANULÓI MUNKAFÜZET
9. Egy 360 m2 -es telken áll egy 120 m2 alapterületű ház. A házat körbeveszi a 36 m 2 -es járda. Hány m2 lehet a zöldterület? Írd fel: a) a ház területének és a telek területének arányát! b) a járda területének és a telek területének arányát! c) hányszorosa a ház területe a járda területének! d) a zöldterület hány %-a a telek területének! 10. Ketten, apa és fia, elhatározzák, hogy a hétvégén felássák a 150 nm-es kertjüket. Előre megbeszélik, hogy a munkát 3 : 2 arányban osztják fel maguk között. Mekkora területet fog felásni az apa és mennyit a fia? 11. Egy házaspár jövedelme 400 000 Ft. Mennyi a jövedelmük külön-külön, ha a keresetük aránya 3 : 5, és az apa hozza haza a több pénzt? 12. Egy derékszögű háromszög egyik hegyesszögének és külső szögének aránya 4 : 7. Hány százaléka a hegyesszög a külső szögnek? Mekkora a másik hegyesszög? 13. Egy téglalap két oldalának aránya 3 : 5. Mekkora a területe, ha a kerülete 24 cm? 14. Szilva néni négy unokájának szilvás gombócot főz. Úgy gondolja, hogy a gyerekek életkoruk arányában eszik majd meg a 42 gombócot. Az unokák 4, 4, 6, 7 évesek. Hány gombócot esznek különkülön a gyerekek?
ARÁNY, ARÁNYOSSÁG, ARÁNYOS OSZTÁS 0732. Egyenes és fordított arányosság
KÉSZÍTETTE: HARSÁNYI ZSUZSA
138
MATEMATIKA „A” – 7. ÉVFOLYAM – 073. ARÁNY, ARÁNYOSSÁG…
TANULÓI MUNKAFÜZET
I. EGYENES ARÁNYOSSÁG TÁBOR SZERVEZÉSI PROJEKT A csoportotok szervezi a nomád tábort. A táborban sátrakban fogtok lakni és szalmazsákokon aludni. Önellátók lesztek, azaz ti fogtok bevásárolni és főzni. Most az a dolgotok, hogy a tábor költségvetésének főbb pontjait megtervezzétek. Ahhoz, hogy ez jól látható és tanulmányozható legyen, minden egy plakátra fog felkerülni meg. Gyűjtsetek ismereteket a tábor helyszínével kapcsolatban! A táblázatokat közösen töltsétek ki, a grafikonok ábrázolását beszéljétek meg! A plakátot közösen készítsétek el, a munkát osszátok fel magatok között! A plakáton szerepeljen a tábor helyszínének ajánlása, a költségvetés különböző fejezeteihez kapcsolódó táblázatok és grafikonok! A csoport a közösen elkészített plakáton fogja bemutatni a munkáját. (Vigyázzatok! Minden részfeladat kidolgozását rendezetten őrizzétek meg, ugyanis a plakát elkészítéséhez szükségetek lesz ezekre.)
1. FELADATLAP A nomád tábor előkészületeihez az élelmiszer-rendelés és a költségvetés elkészítése is hozzátartozik. Tudjuk, hogy az egyes élelmiszerekből mennyi a napi szükséglet fejenként: Kenyér: 1 főnek napi 60 dkg és 1 kg kenyér ára 100 Ft. Hús: 1 főnek napi 20 dkg és 1 kg hús ára 1000 Ft. 1. Mennyi kenyeret és húst kell rendelni, ha 15-en, 30-an, 45-en, 53-an, 80-an vesznek részt a táborban? Töltsétek ki az alábbi táblázatot! 15 fő
30 fő
45 fő
53 fő
80 fő
kenyér mennyisége kenyér ára hús mennyisége hús ára az összetartozó értékek hányadosa
kenyér ára (Ft) kenyér mennyisége (kg)
2. Ábrázoljátok grafikonon, hogyan függ a résztvevők számától a szükséges alapanyagok mennyisége, illetve ára, úgy, hogy az egyik pár a kenyér és a hús mennyiségével, a másik pedig az árakkal dolgozik! (az x tengelyre a kenyér/hús mennyisége, az y tengelyre az ára kerüljön!) Használjátok a milliméterpapírt! Figyeljétek meg a kapott grafikonok tulajdonságait! Fogalmazz meg állításokat, ha – az egymás mellett lévő mennyiségek mérőszámának hányadosát hasonlítod össze a különböző sorokban, – az összetartozó értékpárok hányadosát vizsgálod! Számítsátok ki az egyes táblázatokban az összetartozó értékpárok hányadosát! A kitöltött táblázatot, a válaszokat és elkészített grafikont használjátok fel a plakáthoz!
TANULÓI MUNKAFÜZET
0732. Egyenes és fordított arányosság
139
EMLÉKEZTETŐ Ha két mennyiség között olyan kapcsolat van, hogy az összetartozó értékek aránya, hányadosa állandó, akkor a két mennyiség egyenesen arányos.
2. FELADATLAP 1. Válogasd ki az alábbi arányok közül az egyenlőket, és írd le az egyenlőségeket!
0,6 : 0,2;
60 : 100;
4 ; 5 3 : 5;
1 : 1; 2
5 1 : ; 3 3
5 : 5; 2
3 : 1;
4,5 : 3;
1:
27 : 9; 5 : 4; 5 : 1.
2. Jucika fényképeket nagyít. Az egyik kép méretei 5 cm·8 cm. A nagyobbik kép rövidebb oldala 9 cm. Mekkora lesz nagyítás után a kép hosszabbik oldala? 3. Egy adott szakaszt úgy osszál két részre, hogy a kisebbik és a nagyobbik szakasz aránya megegyezzen a nagyobbik és az egész szakasz arányával! Ez az arány legyen most kb. 9 : 15. Számold ki a rövidebb szakasz hosszát, ha a hosszabbik 48 cm! Most kicsinyítsd 0,1-szeresére az adott szakaszt, és jelöld be az osztópontot! Akkor beszélünk aranymetszésről, ha egy szakaszt úgy osztunk két részre, hogy a kisebbik és a nagyobbik szakasz hosszának az aránya megegyezik a nagyobbik és az egész szakasz hosszának az arányával. Az aranymetszés szabálya az ókori görögöktől származik. A templomaik, a szobraik tökéletes harmóniát sugároznak. A templomok fő részei az aranymetszés aránya szerint készültek. Az ókori görög szobrászok a „tökéletes” férfit akarták ábrázolni, ezért úgy tervezték meg a szobrokat, hogy a csípővonal az aranymetszés aránya szerint ossza fel az egész testet alsó és felsőtestre. Az aranymetszés aránya a test magasságától függetlenül (általában a szakaszok hosszától függetlenül) kb. 0,618.
II. FORDÍTOTT ARÁNYOSSÁG
3. FELADATLAP Busszal mentek és egy kilométernyi útért a Volán Rt.-nek 150 Ft-ot kell fizetni. Így az utazás költsége …… Ft. A csoportok számolják ki, mennyit kell egy tanulónak fizetni az utazásért, ha 15-en, ha 30-an, ha 45-en, ha 54-en, ha 81-en mennének a táborba. Készítsenek az adatokból táblázatot is. Résztvevők száma
15
30
45
54
81
Egy főre jutó költség Az utolsó három hányados közelítő érték. 81 fő esetén 371 Ft-ot kell fizetni, különben nem lesz meg a 30 000 forint. Fogalmazzátok meg a tapasztalatokat!
140
MATEMATIKA „A” – 7. ÉVFOLYAM – 073. ARÁNY, ARÁNYOSSÁG…
TANULÓI MUNKAFÜZET
2. Grafikonon ábrázoljátok az összetartozó értékeket! A vízszintes tengelyre a résztvevők száma, a függőlegesre az egy főre jutó költség kerüljön! Fogalmazzátok meg! a) milyen különbség van az előző és a legújabb grafikon között, b) milyen összefüggést találtatok az összetartozó értékpárok szorzatai között, c) milyen összefüggést találtatok az egymás melletti értékek hányadosai között? A kitöltött táblázatot, a válaszokat és a grafikont helyezzétek el a plakátra!
EMLÉKEZTETŐ Ha két mennyiség között olyan kapcsolat van, hogy ahányszorosára nő az egyik mennyiség, annyiad részére csökken a másik mennyiség, akkor a két mennyiség fordítottan arányos. Azt is mondhatjuk, hogy ha két mennyiség között olyan a kapcsolat, hogy a szorzatuk állandó, akkor a két mennyiség fordítottan arányos. Ez az állandó 0 nem lehet.
4. FELADATLAP 1. Döntsétek el, hogy hol legyen a tábor! Lehetne például Kistolmács. A résztvevőket ötszemélyes sátrakban szeretnék elhelyezni. Egy sátor beszerzési ára 80 000 Ft. A sátorban szalmazsákon fogtok aludni, egy szalmazsák ára 1500 Ft. Készítsen a csoport erre vonatkozó költségvetést is! A költségeket foglaljátok táblázatba! Résztvevők száma
15
30
45
54
81
Sátrak száma Sátrak beszerzési költsége Szalmazsákok beszerzési költsége 2. A koordinátarendszerben rajzoljátok meg a táblázatnak megfelelő grafikonokat úgy, hogy az egyik pár a sátrak, a másik a szalmazsákok költségvetésével foglalkozzon! Figyeljétek meg a kapott grafikonok tulajdonságait! Használjatok színes íróeszközt! A kitöltött táblázatot és a grafikont használjátok fel a plakáthoz!
TANULÓI MUNKAFÜZET
0732. Egyenes és fordított arányosság
141
5. FELADATLAP 1. Igazak-e az alábbi állítások? a) Ahányszorosára növeljük a sátrak számát, annyiszorosára nő a beszerzési költség. b) Ahányszorosára nő a résztvevők száma, annyiszorosára nő a szalmazsákok beszerzési költsége. c) A sátrak beszerzési költsége és a sátrak száma egyenesen arányos. d) A szalmazsákok beszerzési költsége és a résztvevők száma nem egyenesen arányos. e) A sátrak száma és a résztvevők száma egyenesen arányos. f) A résztvevők száma és az egy főre jutó útiköltség nem egyenesen arányos. g) Ha elosztjuk a sátrak beszerzési költségét a hozzátartozó sátrak számával, mindig ugyanazt a számot kapjuk. h) Ha elosztjuk a szalmazsákok beszerzési költségét a hozzátartozó résztvevők számával, mindig ugyanazt a számot kapjuk. i) Ha elosztjuk a résztvevők számát az egy főre jutó utazási költséggel, mindig ugyanazt a számot kapjuk. j) Ha megszorozzuk a résztvevők számát a hozzátartozó egy főre jutó utazási költséggel, mindig ugyanazt a számot kapjuk.
6. FELADATLAP Folytassátok a költségvetést! 1. A tábor helye téglalap alakú, melynek területe 1200 m 2 . A lakósátrakon kívül szükség van egy konyhasátorra, egy ebédlősátorra és egy tárolósátorra. Ezek összterülete 200 m 2 . A lakósátrak 480 m2 -nyi területre helyezhetők el. Egy sátor alapterülete 20 m2 . Foglaljátok táblázatba, ha változtatjuk a sátrak számát, hogyan változik a sátrakkal elfoglalt terület nagysága! Sátrak száma
3
6
9
11
17
Sátrak által elfoglalt terület nagysága Állapítsátok meg azt is, hogy maximum hány sátor helyezhető el az adott területen! 2. Ábrázoljátok grafikonon az összetartozó mennyiségeket! Keressétek meg, milyen arány van a sátrak száma és az elfoglalt terület nagysága között! A grafikont és a kitöltött táblázatot ragasszátok fel a plakátra!
142
MATEMATIKA „A” – 7. ÉVFOLYAM – 073. ARÁNY, ARÁNYOSSÁG…
TANULÓI MUNKAFÜZET
7. FELADATLAP 1. A tábor szervezői azt szeretnék, hogy a sátorban ne csak a szalmazsákok férjenek el, hanem legyen benne szabad terület is. A költségvetést készítőkhöz azzal a kéréssel fordulnak a szervezők, hogy határozzák meg a sátrak lehetséges alapterületét, ha tudjuk, hogy a rét 480 m 2 -nyi területére kerülnek a lakósátrak és egy sátorban öten fognak lakni. Szorosan egymás mellé, minden m 2 területet felhasználva helyezik el a sátrakat. A sátor által elfoglalt területbe vegyük bele a sátor és a körülötte lévő árok alapterületét is. Foglaljátok táblázatba a sátrak alapterületének növekedésével hogyan változik az adott területen elhelyezhető sátrak száma (technikai kérdésekkel – megépíthető-e az adott nagyságú sátor – ne foglalkozzunk)! Sátrak száma
3
6
9
11
17
Sátrak által elfoglalt terület nagysága Állapítsátok meg, hogy egyenes vagy fordított arányosság van az adott területre elhelyezhető sátrak alapterülete és a sátrak száma között! Készítsétek el a grafikont is! A grafikont és a kitöltött táblázatot ragasszátok fel a plakátra.
FELADATGYŰJTEMÉNY 1. A tábor mellett álló házban élő Szépítő család ki szeretné festetni a lakását. A szomszédban a múlt héten festették ki a kisebbik szobát 45 000 Ft-ért. A szoba falának a területe 30 m 2 . Mennyiért festené ki ugyanaz a mester Szépítőék lakását, ahol a falak összterülete 180 m 2? 2. A táborozók elvállalták, hogy a hétvégén kitakarítják a tábort. Előzetesen csak hárman jelentkeztek. A három gyerek el volt keseredve, féltek, hogy így nagyon későn fognak végezni. Szerencsére a takarítás reggelén 8-an jelentek meg, így két óra alatt elvégezték a munkát. Hány óráig tartott volna a takarítás, ha csak 3-an dolgoztak volna? 3. A tábor mellett egy strand van. Az egyik medencét három csap 2 óra alatt tölti fel vízzel. Hány óra alatt töltené fel ugyanezt a medencét 5 ugyanilyen teljesítményű csap? 4. Egy 20 m2 alapterületű 2,6 m magas lakás fűtése hetente 3120 Ft-ba kerül. Mennyit kell fizetni egy 86 m2 alapterületű és 3,5 m magas lakás fűtéséért ugyanennyi idő alatt (a fűtési díjat légköbméterenként számolják)? 5. Szilvi 3 gombóc fagylaltért 280 Ft-ot fizetett. Mennyit fizetne egy 5 gombócos fagylaltért, ha a tölcsér 10 Ft-ba kerül? 6. A társasházakban a lakások alapterülete alapján állapítják meg, hogy mennyi közös költséget kell fizetni. Kissék lakása 80 m2, Nagyéké 120 m2 . Kissék havi közös költsége 8300 Ft. Mennyit kell fizetnie Nagyéknak? Állapítsd meg a két lakás alapterületének arányát! 7. Az Egis Rt. 5 db 10 000 Ft-os részvényre 9000 Ft osztalékot fizet. Menyit fizet 13 db ugyanilyen névértékű részvényre? 8. Szépalmán (a Bakonyban van) a kastély istállójában 5 ló él. A lovak napi 15 kg abrakot esznek. Hány kg abrakot enne 9 ló egy nap alatt? (feltéve, hogy minden ló naponta ugyannyit eszik). A lovász 450 kg abrakot vásárolt. Hány napra lenne elég ez a mennyiség, ha nyolc ló élne az istállóban. Hány lovat lehetne etetni 4 napon át ennyi abrakból?
TANULÓI MUNKAFÜZET
0732. Egyenes és fordított arányosság
143
9. Forgácsék új lakásba költöznek. Már régóta a nappali berendezésének megtervezésén gondolkodnak. Évi azt ajánlja, hogy rajzolják meg a nappali és a bútorok arányosan kicsinyített képét, és így próbálják megtervezni a bútorok elhelyezését. A tervrajzon a nappali téglalap alakú, és a mérete 4m · 5,5 m. A meglévő bútorok alapja vagy téglalap vagy kör alakú. A mért adatok: – a szekrény: 1,5 m · 0,9 m, alapja téglalap. – az asztal: 1,2 m · 0,6 m, alapja téglalap – fotelek: köralakú, sugara 40 cm – szék: négyzet alapú, oldala 45 cm. Készítsd el egy rajzlapon a tervezetet úgy, hogy minden méretet kicsinyíts 1 : 20 arányban. 10. A térképen lévő 2,5 cm hosszú szakasz a valóságban 10 km-es távolságnak felel meg. Számold ki a kicsinyítés arányát! Egészítsd ki: 2,5 cm: 10 km = 1 : ? Add meg, hogy a térképen milyen hosszú az a szakasz, amely a két várost: Kukutyint és Kakutyint köti össze, ha a valóságban a két város távolsága 15 km!
ÖSSZEGZÉS Arány: Két szám vagy mennyiség aránya azt jelenti, hogy az egyik szám hányszorosa a másiknak. A törtek is két szám arányát fejezik ki, a számláló és a nevező arányát, emiatt az arányt kettősponttal vagy törtvonallal jelöljük. Az egyenlő értékű arányok aránypárt alkotnak Pl.: 2 : 3 = 4 : 6 (olvasd: kettő úgy aránylik a háromhoz, mint négy a hathoz). Az ilyen típusú egyenlőségből az egyiket ki lehet számolni a másik három ismeretében Pl.: 2 : 3 = x : 6, ahonnan 2 · 6 = 3 · x és x = 4. Arányos osztás: Ha valamely dolgot (torta, lakás, szakasz) két vagy több szám arányában szeretnének felosztani, akkor felosztjuk az arányban szereplő számok összegével, és így megkapjuk, hogy egy rész mekkora. Ezután az egy részt annyiszor vesszük, amennyit a számok mutatnak. Pl.: ha egy 20-szeletes tortát 2 : 3 arányban szeretnénk felosztani, akkor egy rész 20 : 5 = 4, 4 szelet tortával egyenlő, tehát a két rész 8 szeletnek, a 3 rész 12 szeletnek felel meg, és valóban 8 + 12 = 20. Egyenes arányosság: Ha két változó mennyiség kapcsolata olyan, hogy a megfelelő értékek aránya, hányadosa állandó, akkor a két mennyiség egyenesen arányos, a grafikonja egy origón áthaladó egyenes. A 0 : 0 arányt nem értelmezzük. Fordított arányosság: Ha két változó mennyiség kapcsolata olyan, hogy a megfelelő értékek szorzata egy 0-tól különböző állandó, akkor a két mennyiség fordítottan arányos, grafikonja nem egyenes.
ARÁNY, ARÁNYOSSÁG, ARÁNYOS OSZTÁS 0733. Arányosságok más területen
KÉSZÍTETTE: HARSÁNYI ZSUZSA
146
MATEMATIKA „A” – 7. ÉVFOLYAM – 073. ARÁNY, ARÁNYOSSÁG…
TANULÓI MUNKAFÜZET
7. FELADATLAP Dolgozzatok párban, eredményeiteket egyeztessétek a csoport másik párjával. 1. Töltsd ki a táblázatot! Egyenesen arányos mennyiségek
Fordítottan arányos mennyiségek
Ha az egyik mennyiséget a kétszeresére növelem, hogyan változik a másik? Ha az egyik mennyiséget a háromszorosára növelem, hogyan változik a másik? Ha az egyik mennyiséget a felére csökkentem, hogyan változik a másik? Ha az egyik mennyiséget a harmadára csökkentem, hogyan változik a másik? Mit tudunk az összetartozó értékpárokról? Milyen a grafikonja? 2. Válogasd ki az alábbi mennyiségpárok közül azokat, amelyek egyenesen arányosak egymással! a) Egyenletesen haladó gyalogos által megtett út és az eltelt idő. b) Négyzet oldala és kerülete. c) Négyzet oldala és területe. d) Egyenletesen vetett búzaföld területe és a learatott búza mennyisége. A búzának egyenletesen kell kinőnie is! e) Az üzletben vásárolt tej mennyisége és ára. f) 60 m2 területű téglalap alakú kert szomszédos oldalainak hossza. Írd ide az egyenesen arányos mennyiségek betűjelét: ………………………… 3. Azonos tempóban dolgozó kőműveseket keresnek egy 400 m 2 alapterületű 3 emeletes ház falainak felhúzásához. Az építtetők tapasztalataiból tudják, hogyha 2 kőműves dolgozna, akkor a falak 120 óra alatt lennének készen. Mennyi idő alatt készülne el a ház fala, ha növelnéd a kőművesek számát? Készíts tervet! Kőműves
2
3
4
5
6
7
8
9
10
Idő 12
15
20
30
40
50
120
180
240
(A vállalkozónak azon is el kell gondolkoznia, hány kőművest érdemes alkalmazni.) Írd le az összetartozó értékpárokra vonatkozó összefüggést!
TANULÓI MUNKAFÜZET
0733. Arányosságok más területen
147
4. A Citroen C3 150 km-en 9 l benzint fogyaszt. Mennyit fogyaszt egy 375 km-es úton? Mennyibe kerül ez a benzinmennyiség, ha a tízharmada, 2l 750 Ft-ba kerül? 5. Öten elhatározták, hogy reggelente tejet és péksüteményt szállítanak a környék lakóinak. Lemérték, hogy mindez 2 óra és 20 percig tart. Mivel 7 órára végezni kell a szállítással, nagyon korán kell kezdeniük. Segítségül hívják három társukat. Mennyi időt vesz igénybe így a szállítás? És ha 11-en lennének? És ha 3-an lennének? 6. Egy autó mozgását ábrázolja a következő grafikon. Az autó ideális esetben egyenes vonalú egyenletes mozgást végez.
a) Olvasd le a megjelölt pontok koordinátáit! b) Hány km utat tesz meg az autó a megjelölt időegységek alatt? c) Milyen arányosság van a megtett út és az eltelt idő között?
2. FELADATLAP 1. Katiék a háztartási munkákat családon belül elosztják. Kati feladata a porszívózás. A lakásuk poros helyen van, ezért minden nap porszívózni kell. Kati először nagyon örült a rábízott feladatnak, azt hitte, hogy könnyen és gyorsan készen lesz vele. Az első nap fél óra múlva készen is lett. A második napon már csak ímmel-ámmal dolgozott, így 50 percig tartott a porszívózás. A 3. napon már annyira unta a dolgot, hogy időnként leült pihenni (a porszívót persze nem kapcsolta ki). Így a takarítás 1 óra 20 percig tartott. Számold ki, mennyi villamos energiát fogyasztott, és mennyibe került a porszívózás külön-külön a három napban, ha a gép elektromos energiafogyasztása 1400 W (olvasd: watt) óránként, és azt tudjuk, hogy 1 kWh (olvasd: kilowattóra) 36 forintba kerül. 2. Három autó menetidejét hasonlítjuk össze. Annyit tudunk, hogy ugyan azt a távolságot teszik meg. Az egyik éjjel a városban, a másik autóúton, a harmadik autópályán megy. Mindegyik kihasználja a lehetséges maximális sebességet, így a városban egyenletesen 50 km/h, az autóúton 90 km/h, az autópályán 130 km/h. a) Melyik autó menetideje a legtöbb? b) Számold ki, hogy az autóúton és az autópályán haladó autó menetideje hányad része a városban közlekedőének?
148
MATEMATIKA „A” – 7. ÉVFOLYAM – 073. ARÁNY, ARÁNYOSSÁG…
TANULÓI MUNKAFÜZET
3. Valamely távolság megtételénél egy 62 cm átmérőjű kerék 300-at fordul. Mennyit fordul ugyan ezen a távolságon egy 75 cm, 53 cm, 92 cm, 110 cm átmérőjű kerék. Készíts táblázatot, ábrázold grafikonon. 4. A nyáron sokan voltak Horvátországban nyaralni. Akik nem akartak a szállásra sok pénzt költeni, már kora tavasszal nagyobb társaságokba verődve lefoglaltak egy tengerparti házat. Péterék, 12-en napi 80 eurót fizettek egy házért. Mennyibe került forintban számolva Péternek a szállás, ha 8 napot töltött a tengerparton? 1 euro = 260 Ft 5. Az arany tömörebb, sűrűbb anyag, mint az ezüst. Megmérték egy cm3 térfogatú arany tömegét, ez 19,3 gramm és egy cm3 ezüst tömegét, ez 10,5 gramm. Egyforma tömegű arany és ezüstdarab van az asztalon. a) Melyik nagyobb térfogatú ? b) Ha az ezüst térfogata 5 cm, mekkora az aranyé? 6. Egy 780 N súlyú tornász függeszkedik a nyújtón. Egy-egy tenyere 0,24 dm 2 -es felületen érintkezik a nyújtó rúdjával. Mekkora annak a gyereknek a tenyere, akinek a súlya 460 N és ugyanakkora nyomást fejt ki a rúdra? 7. Egy vaskocka térfogata 12 dm3. A súlya 94,32 kp. Ha megkétszerezzük a térfogatát mekkora lesz a súlya? És ha megháromszorozzuk? És ha felére vesszük? Fogalmazd meg milyen arányban áll egymással a kocka súlya és a térfogata. Ábrázold grafikonon. 8. A népsűrűségi adat azt jelenti, hogy valamely régióban 1 km2 -nyi területen átlagosan hány ember él. Például Magyarország népsűrűsége 408,3 fő/km2 . Hogyan változik ez az adat, ha valamely régióban élő emberek száma 2-szeresére, 3-szorosára nő. Tehát a régióban élő emberek száma és a népsűrűség …………………………… arányban van, ha a terület nagysága nem változik. Hogyan változik ez az adat, ha az emberek száma nem változik de a vizsgált terület nagysága 2-szeresére, 3-szorosára nő. Tehát a népsűrűség és a terület nagysága …………………………… arányban áll, ha az ott élők száma nem változik. 9. A fogyókúrázók nagyon erősen figyelnek az elfogyasztott élelmiszer kalóriatartalmára. Például kenyér helyett toastot esznek. Egy doboz toast tiszta tömege 100 g, energiatartalma 388 kcal. Egy dobozban 30 kis szelet van. Eszter hány szeletet ehet ebből, ha vacsorára csak 100 kcal energia tartalmú kenyérfélét ehet? 10. Matek Dani 5 barátját hívta meg születésnapi bulijára. Az egyik barátjától egy kerek tortát kapott. Dani igazságosan akarta elosztani a tortát, ezért hozott egy körzőt, egy vonalzót, és egy szögmérőt. A vonalzó és a körző segítségével megkereste a torta középpontját, meghúzta egy késsel a torta sugarát, majd a szögmérő segítségével kijelölte a szeleteket. Hány fokos középponti szöget mért a szögmérővel?
FELADATGYŰJTEMÉNY 1. Tamás nagyon szeret zenét hallgatni. Hétvégén szinte egész nap otthon ül, és valamelyik kedvencét hallgatja. A CD lejátszója 12 W-ot, az erősítője 225 W-ot fogyaszt óránként. a) Mennyi energiát fogyasztanak ezek a gépek, ha Tamás 18 órán át hallgat zenét. 1 kWh ára 36 Ft. b) Mennyibe kerül a zenehallgatás, ha 1 kWh óra ára 36 Ft?
TANULÓI MUNKAFÜZET
0733. Arányosságok más területen
149
2. Régebben, ha az ember új autót vett, be kellett járatni. Ez azt jelentette, hogy az első 1500 km-es utat maximum 60 km/h-s sebességgel lehetett megtenni. Számold ki, mennyi ideig tartott ez az út? 3. Karcsi és Juli egyforma súlyúak. Juli két lábának talpfelülete összesen 0,025 m2, és két egységnyi nyomást fejt ki a talajra. Mekkora Karcsi talpfelülete, ha a talajra, csak 1,2 egységnyi nyomást tud kifejteni? 4. A statisztika felmérések szerint Magyarországon a felnőtt lakosság naponta átlagosan 6 órát néz televíziót. Juhász néni (72 éves) egész nap otthon van. Minden nap körülbelül 3 órakor bekapcsolja a TV-t és este 11-ig nézi. A TV óránként 88 W-ot fogyaszt. a) Mennyibe kerül a havi TV nézési szokása Juhász néninek? (1 kWh ára 36 Ft) b) Kelemen néni jobban szeret videózni, mint TV-t nézni. Videójának energiafogyasztása óránként 22 W. Hány óráig videózhat Kelemen néni a Juhász néni TV-zési költségéért? 5. Az egyik Égei-tengeren túli ország területe 95 000 km 2 . Lakosainak száma 9 975 000. Az Óperenciás tengeren túl van egy ország, amelynek ugyan ennyi a népsűrűsége, de a területe 142 500 km 2 . a) Hány ember él ebben az országban? b) Az Óperenciás tengeren túl van egy másik ország, ahol ugyanannyi ember él, mint az Égei-tengeren-túliban. De a területe 63 333 km2 . Mekkora a népsűrűsége? 6. Egy körlapon a 20°-os középponti szöghöz tartozó körív hossza 2 cm. a) Milyen hosszú ív tartozik az 50°-os középponti szöghöz? b) Számold ki a kör kerületét! c) Számold ki a kör területét!