5- Persamaan Tiga Momen Pada metoda “Consistent Deformation” yang telah dibahas sebelumnya, kita menjadikan gaya luar yaitu reaksi perletakan sebagai gaya kelebihan pada suatu struktur statis tidak tertentu. Dengan menghilangkan gaya kelebihan yang ada, struktur dijadikan statis tertentu. Akibat beban yang ada dan akibat gaya kelebihan sebagai beban, dihitung deformasi dari struktur statis tertentu tersebut. Dengan melihat kondisi geometris asli dari struktur statis tidak tertentu, disusun persamaan “Consistent Deformation”. Dengan persamaan “consistent deformation” yang tersusun, gaya-gaya kelebihan dapat dihitung. Gaya - gaya yang lain dapat dicari dengan persamaan keseimbangan statis. Metoda “Consistent Deformation” dapat dipakai pada struktur balok portal maupun konstruksi rangka batang statis tidak tertentu, sedangkan metoda “Persamaan Tiga Momen” yang akan dibahas ini hanya dapat dipakai untuk struktur balok dan portal statis tidak tertentu.
MEKANIKA REKAYASA III MK-142003-Unnar-Dody Brahmantyo
1
Pada suatu struktur balok dan portal, sambungan antara batang-batang pada struktur tersebut diasumsikan sebagai sambungan kaku, dimana dalam sambungan kaku harus dipenuhi dua persyaratan yaitu : a)
Keseimbangan : jumlah momen batang-batang yang bertemu pada sebuah n
titik simpul yang disambung secara kaku sama dengan nol ( ∑ M Ti = 0 ). i =1
b)
Kestabilan : rotasi batang-batang yang bertemu pada sebuah titik simpul yang disambung secara kaku sama besar dan arahnya (T1 = T2 = …T3)
Contoh 5-1 : Batang T1, T2, T3 bertemu di titik simpul T dengan sambungan kaku, maka syarat : keseimbangan MT1 + MT2 + MT3 = 0 T1 = T2 = T3 P Kestabilan MT1
MT3
T
3 T1
T3
MT2
T2
1
2
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
2
Metoda “Persamaan Tiga Momen”, memakai momen-momen batang dan pergoyangan (defleksi ) pada struktur-struktur yang dapat bergoyang sebagai variabel (bilangan yang tidak diketahui). Untuk menentukan apakah sebuah struktur dapat bergoyang atau tidak, dapat dilihat dari teori sebagai berikut : suatu titik simpul mempunyai dua kemungkinan arah pergerakan, yaitu vertikal dan horizontal. Perletakan jepit dan perletakan sendi tidak dapat bergerak vertikal maupun horizontal, sedangkan perletakan rol dapat bergerak hanya pada satu arah yaitu searah bidang perletakan. Batang dibatasi oleh dua titik simpul, sehingga pergerakan titik simpul searah batang sama. Dari konsep tersebut dapat dirumuskan : n = 2 j – (m + 2f + 2 h + r) Dimana : n = jumlah derajat kebebasan dalam pergoyangan. j = “joint”, titik simpul termasuk perletakan m = “member”, jumlah batang yang dibatasi oleh dua joint. f = “fixed”, jumlah perletakan jepit. h = “hinge”, jumlah perletakan sendi. r = “rol”, jumlah perletakan rol.
Apabila n < 0, struktur tidak dapat bergoyang. MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
3
Untuk menghitung variabel yang ada, disusun persamaan-persamaan sejumlah variabel yang ada, dari dua ketentuan syarat sambungan kaku seperti yang disebutkan diatas yaitu : – Jumlah momen-momen batang yang bertemu pada satu titik simpul sama dengan nol. – Rotasi batang-batang yang bertemu pada satu titik sama, besar dan arahnya. Dan kalau ada variabel perlu persamaan keseimbangan struktur.
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
4
Langkah-Langkah Penyelesaian Metode Persamaan Tiga Momen 1. Tentukan apakah struktur statis tidak tertentu tersebut mempunyai pergoyangan , dengan rumus : n = 2j- (m+2f+2h+R) Kalau n < 0, berarti stuktur tersebut tidak bergoyang. P=1t
q = 1 t/m
D EI A
EI
EI C
6m
2m
B
6m q = 1 t/m’ P2=2 t
C
EI
EI
P1=1 t
D EI E EI
4m B
A
4m
Balok diatas tiga tumpuan, A jepit, B dan C rol, dengan beban seperti tergambar : n = 2j-(m+2f+ 2h+R) n = 2x3 – (2+2x1+2x0+2) n=0 ( Tidak ada penggoyangan ) Suatu portal dengan perletakan A dan B sendi, dengan ukuran dan beban seperti tergambar n = 2 j – (m + 2 f + 2 f + R) = 2 x 4 – (3 + 2 x 0 + 2 x 2 + 0) n= 1 ada sebuah bentuk pergoyangan.
1m
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
5
2.
Kalau ada pergoyangan, gambarkan bentuk pergoyangan dan tentukan arah rotasi batang – batang akibat pergoyangan tersebut. Dalam menggambarkan bentuk pergoyangan ada dua ketentuan yang harus diperhatikan yaitu : • Batang tidak berubah panjang, Suatu batang ( ij ) kalau joint i bergerak ke kanan sebesar Δ , maka joint j juga akan berpindah ke kanan sebesar Δ. Δ i
Δ j
i’
j’
L
• Batang dapat berotasi akibat perpindahan relatif ujung-ujung batang. Perpindahan relatif antara ujung-ujung batang dapat digambarkan tegak lurus sumbu batang dan arah rotasi digambarkan dari arah asli sumbu batang ke arah sumbu batang setelah bergoyang. i
j
ij ji
ij = ji =
L
j’
L
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
6
C
C’
D’
D
B
A
b). Gambar pengoyangan
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
7
3.
Gambarkan permisalan arah momen-momen batang. Untuk momen kantilever, dapat dihitung besarnya dan ditentukan secara pasti arah putarannya, sedangkan untuk momen- momen batang yang lain besar maupun arahnya dimisalkan dengan mengingat ketentuan bahwa jumlah momen-momen batang yang bertemu pada satu titik simpul sama dengan nol. Jadi kalau pada satu titik simpul bertemu dua batang , maka besarnya momen-momen batang tadi sama, tetapi arahnya berlawanan. MA
MB
MC =4 tm P = 1 t
A
B
C
MC
C
D
MDC
P2=2t
MDE = 1,5 tm P1=1t D E
MC
A
MDB
B
Pemisalan Arah Momen Batang
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
8
4.
Gambarkan pemisalan bentuk garis elastis struktur. Untuk menggambarkan pemisalan bentuk garis elastis struktur, harus mengingat ketentuan bahwa rotasi batang-batang yang bertemu pada satu titik simpul adalah sama, besar maupun arahnya . Jadi kalau salah satu batang yang bertemu pada satu titik dimisalkan rotasinya searah jarum jam , maka batang-batang yang lain yang bertemu pada titik simpul tersebut harus digambarkan dengan arah rotasi yang sama yaitu searah jarum jam. C
BA D
BC B A c). Permisalan garis elastis
CD
CA
DCD
E DB
C
A
B
d). Pemisahan garis elastis
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
9
4.
5.
Dari langkah 1-4 yang telah dikerjakan diatas dapat ditentukan jumlah variablenya, yaitu momen-momen batang yang belum diketahui besarnya dan perpidahan relatif ujung batang (Δ) kalau ada goyangan. Untuk menghitung variable-variable diatas, susunlah persamaanpersamaan sejumlah variable yang ada. Penyusunan persamaan – persamaan tersebut berdasarkan ketentuan keseimbangan momen dan rotasi batang-batang pada titik simpul atau perletakan. a)
b) c)
Momen batang-batang yang bertemu pada satu titik simpul sama dengan nol. Untuk momen batang yang digambarkan dengan arah sama, diberi tanda sama. Misalnya kalau searah jarum jam diberi tanda positif (+). Maka yang berlawanan arah jarum jam diberi tanda negatif (-) , atau sebaliknya Rotasi batang dengan perletakan jepit sama dengan nol. Rotasi batang-batang yang bertemu pada satu titik simpul sama besar maupun arahnya . Untuk menyusun persamaan rotasi harus memperhatikan permisalan garis elastis (rotasi batang) dengan beban dan momen – momen yang ada pada batang tersebut. Kalau arah rotasi batang pada permisalan garis elastis sesuai dengan rotasi batang yang diakibatkan oleh beban dan momen batang yang bekerja diberi tanda positif (+) , kalau sebaliknya diberi tanda negatif (-). MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
10
d)
6.
7.
Kalau ada variable pergoyangan (Δ) maka perlu tambahan persamaan keseimbangan struktur. Disini kita buat perhitungan “ free body diagram” dengan arah momen-momen batang seperti yang dimisalkan , sehingga kita mendapatkan satu persamaan yang menghubungkan antara variable satu dengan yang lainnya.
Dari persamaan-persamaan yang disusun diatas , maka variable-variable yang berupa momen-momen batang tadi dapat dihitung besarnya. Kalau nilai variable yang didapat positif (+), maka arah momen permisalan benar, sedangkan kalau nilainya negatif (-), maka arah momen yang dimisalkan terbalik. Setelah momen-momen diperoleh, dengan perhitungan keseimbangan tiap-tiap batang (free body diagram), bidang momen, gaya lintang dan gaya normal dari struktur statis tidak tertemtu tersebut dapat digambarkan.
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
11
ij
Nilai rotasi pada balok
ji
i
ij = ji = j
EI
ql 4 24 EI
L ij
PL3 ij = ji = 16 EI
ji
EI
i
j
L
ij =
Mij i
ij
3 EI
; ji =
M ij L 6 EI
j
ji
EI
M ij L
L
Mij i
i
ij
ji
L
ij =
L
ji
6 EI
; ji =
M ji L 3 EI
j
j
ij
M ji L
ij = ji =
L
ji
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
12
Contoh Soal 5-2: Suatu balok statis tidak tertentu diatas 3 tumpuan, A perletakan jepit, B dan C perletakan rol dengan ukuran dan pembebanan seperti tergambar. Hitung momen-momen batangnya dengan metoda “Persamaan Tiga Momen” dan gambarkan bidang M, D dan N nya. P1 = 4t
q = 1 t/m’ A
1,5 EI
2 EI C
B
6m
6m
P2 = 1,5 t EI
D
2m
MB q = 1 t/m’
A
1,5 EI
6m
B
MC = 3 tm P2 = 1,5 t P1 = 4t 2 EI C
6m
EI
a) n = 2j – (m + 2f + 2h + R) = 2 x 3 – (2 + 2 x 1 + 2 x 0 + 2)
Balok statis tidak tentu dengan pembebanannya MA
Penyelesaian :
n = 0 tidak ada pergoyangannya. b) Permisalan Momen Batang MCD = 1,5 x 2 = 3 tm
D
2m
Gambar permisalan momen-momen batang
Titik C MC = 0 MCB = MCD = MC = 3 tm Titik B MB = 0 MBA = MBC = MB A jepit ada MA
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
13
BC BA
B
A 6m
C 6m
D 2m
c) Permisalan garis elastis
BA = BC berlawanan arah jarum jam
Gambar permisalan garis elastis
d) Variabel yang ada : MA dan MB e) Persamaan : 1.
A jepit : AB = 0
M A L AB M B .L AB q L AB3 + =0 3 EI AB 6 EI AB 24 EI AB M A .6 M B .6 1(6) 3 + =0 3(1,5EI) 6(1,5EI) 24 (1,5EI)
2 MA + MB = 9
x 1,5 EI
(1)
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
14
2.
Titik simpul B : BA = BC M L M .L PL ² M A L AB M B .L AB 2 L AB3 + = + B BC + C BC - 1 BC 6 EI AB 3 EI AB 24 EI AB 3 EI BC 6 EI BC 16 EI BC
M A .6 M B .6 M B .6 1(6) 3 3x 6 4(6)² + =+ + 6 (1,5 EI) 3 (1,5EI) 24 (1,5 EI) 3 (2EI) 3 (2EI) 16 (2EI)
MA + 3,5 MB = 13,5
x 1,5 EI
(2)
(1)– 2 x (2) - 6 MB = -18 MB = + 3 tm (arah benar) (2) MA + 3,5 MB = 13,5 MA + 3,5 x 3 = 13,5 MA = 13,5 – 10,5 = + 3 tm (arah benar).
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
15
MA=3 tm
P1 = 4t
q = 1t/m’
P2 = 1,5 t
MC=3 tm
MB=3 tm
D A
3t
3t
2t
B
2t
1,5 t
C
Free body diagram 3t 2t
1,5t
+
+
A
+
B
3m
D
2t
3t 3m
C
3m
3m
2m
Bidang Gaya Lintang (D) 3 tm A
+
3 tm
3 tm
-
-
B 1,5 tm
+
C
D
3 tm
Bidang Momen (M)
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
16
Contoh Soal 5-3: Suatu portal dengan ukuran dan pembebanan seperti tergambar. A perletakan rol dan D perletakan jepit. Hitung momen-momen batangnya dengan metoda “Persamaan Tiga Momen” dan Gambar bidang M, D dan N-nya. P1 = 4t
P2 = 3t
2EI
A
B
EI C EI
3m
D 2m
2m
1m
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
17
C B A
C’
Penyelesaian : a) n = 2 j – (m + 2f + 2h + R) = 2 x 3 – (2 + 2 x 1 + 2 x 0 + 1) = 1 ada pergoyangan !.
B’
A’
Gambar pergoyangan : A bergerak ke A’ sebesar B bergerak ke B’ sebesar Batang BD berotasi searah jarum jam
D
Gambar pergoyangan 4t
A
MBC C
MBA
B MBD
b) Permisalan Momen Batang MBC = 3 x 1 = 3 tm () MBA () ; MBD () ; MDB ()
MDB
D
Gambar permisalan momen batang
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
18
A
C BA
c) . Permisalan Garis Elastis BA = BD ()
D
Gambar permisalan garis elastis d). Varibel yang ada : MBA, MBD, MDB dan
e). Persamaan : 1). MB = 0 MBA – MBC – MBD = 0 MBA = MBD + 3 2). D jepit DB = 0
(1)
M BD . L BD M DB . L BD + + =0 6 EI BD 3EI BD L BD
M BD . 3 M DB . 3 + + = 0 → 3 M BD + 6 M DB + 2 EI = 0 6 EI 3 EI 3
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
(2)
19
3). BA = BD - M BA . L BA + P1L BA ² = M BD . L BD + M DB . L BD - 3 EI BA
16 EI BA
3 EI BD
6 EI BD
L BD
M BA M BD . ³ M BD . 6 4(4)² + = + 3(2EI) 16 (2EI) 3 EI 6 EI 3
4 MBA + 6 MBD + 3MDB – 2 EI = 0 4). Persamaan Keseimbangan Struktur 3t
4t
MBC = 3 tm B
A
C
(3)
A adalah rol HA = 0 H=0 HA + HD = 0 HD = 0 Batang BD : MB = 0
MBA
HD x 3 + MDB – MBD = 0
MBD 3m
D
MBD = MDB
(4)
MDB HD = 0
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
20
9 MBD + 2 EI = 0 13 MBD – 2 EI = 0
Substitusi (4) ke (2) Substitusi (4) ke (3)
4t
MBA = 3 tm MBC = 3 tm B
3t
+ 22 MBD = 0 MBD = 0 (4) MDB = 0 (1) MBA = + 3 tm
C
A 1,25 t
3t
2,75 t
D 5,75 t
Free Body Diagram
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
21
3 tm 1,25 t B
C
A
-
A
3t
B C
+
A
B
+
C
2,75 t 2,5 tm
D
D
3m D
5,75 t 4m f). Bidang N
1m
2m
2m
g). Bidang D
1m
2m
2m
1m
h). Bidang M
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
22
MEKANIKA REKAYASA III MK-142004-Unnar-Dody Brahmantyo
23