Van partiële energiesystemen naar geïntegreerde energie systemen
Workshop Groningen, 13 september 2013
Acknowledgment This project is supported by the European Commission through the Seventh Framework Programme (FP7).
2 / 57
ENSEA – International North Sea cooperation on Energy System Integration Environmental Planning
Netwerken ENSEA = Interregional cooperation
Targets Human Capital
Education Research
Governance Investments
Programma 1. Introductie ENSEA 2. Inleiding op ENSEA-thema’s: - Offshore oil & gas infrastructure North Sea - Power-to-Gas - Bio-Energy Pauze 3. Uitleg break-out sessies 4. Break-out sessies in twee groepen 5. Samenvatting en vervolgstappen 6. Afsluiting Borrel
4 / 57
Koos Lok Koos Lok Catrinus Jepma Luc Rabou Catrinus Jepma Catrinus Jepma
Introductie ENSEA Wat is de doelstelling van de workshop vandaag? -
Formuleren wat er in Nederland, in het bijzonder Noord-Nederland, rondom de Noordzee gebeurt en staat te gebeuren.
-
Bespreken samenhang en inzet triple-helix.
-
Van partiële energiesystemen naar geïntegreerde energiesystemen.
-
Waar moet Nederland zich komende jaren op inzetten? Wat is een geschikte rol voor Nederland?
-
Discussies over concrete thema’s: Offshore infrastructurele ontwikkelingen, Power-to-Gas en Bio-Energy.
5 / 57
Introductie ENSEA Wat is het ENSEA project? -
ENSEA richt zich op versterking van samenwerkingsverbanden in de triple-helix.
-
Samenhang creëren in netwerken, kennis en projecten op en rondom de Noordzee.
-
Inventariseren en identificeren van ontbrekende elementen aan bijvoorbeeld de kenniskant, samenwerking private sector en de governance structuren.
6 / 57
Introductie ENSEA Concreet, waar praten wij over: -
Afspraken in de private sector.
-
Kennisontwikkeling systeemintegratie.
-
Netwerken en governance versterken (OSPAR 2018).
-
Afstemming E&P belangen; verlengd onderhoud pijpleidingen.
-
Power-to-Gas pilot op boorplatform in de Noordzee.
-
Business case: transport elektriciteit door pijpleidingen d.m.v. waterstof.
-
Offshore pilot projects; schowcase.
7 / 57
Exploring the potential for optimal (re-)use of existing Oil & Gas infrastructure in the North Sea
ENSEA Regional Workshop for the Northern Netherlands, September 13 2013 Koos Lok (Energy Valley) & Janneke Pors (IMSA Amsterdam)
Contents 1. 2. 3. 4.
5.
Objectives of study Working hypothesis of study Current and future North Sea energy developments First exploration of some North Sea energy developments : a) Decommissioning, b) Underground Gas Storage, c) Carbon Capture and Storage, d) Electricity grid, e) Ecological reuse Intended follow-up of study
9 / 57
1. Objectives of study Overall objective • Explorative, science-based essay for EU policy-makers and a broad group of North Sea (energy) stakeholders which aims to open a discussion on system integration of energy infrastructure in the North Sea region in general and reuse of Oil & Gas infrastructure in specific. Research objectives • Examine the role and potential of the North Sea to contribute to the transition towards a renewable energy system in North-Western Europe? • Describe the main current and future offshore energy developments in the North Sea region and their objectives and functions • Explore the potential to re-use existing oil & gas infrastructure and maximize integration with (new) (renewable) energy infrastructure systems. • Identify the main boundary conditions for feasibility of potential re-use and/or system integration options • Sketch the main pathways to stimulate and accelerate potential re-use and/or system integration options
10 / 57
2a. Working hypothesis: Drivers Significant role for gas in all energy scenarios Declining gas production & increasing import dependency
Growing share of renewable energy
Declining O & G production North Sea
Intermittency issue of renewable energy
Decommissioning obligations
CO2-reduction targets fossil energy
New energy business developments in North Sea region
Diversification of gas carriers Need for new business model for O&G Need for flexible, reliable, affordable, low-carbon energy
Fossil energy
11 / 57
Need for optimal use of existing infrastructure Need for optimal use of renewable, affordable energy Renewable energy
Need for efficient investments in new infrastructure North Sea infrastructure
3. North Sea energy developments DCM DCM Pipelines Piping Grid
NORTH SEA
P2G P2G Wind CCS Wind
12 / 57
UGS O&G UGS UGS CCS CCS
P2G
4a. Decommissioning (DCM) •
•
•
•
•
Decommissioning of offshore installations in the North Sea is planned for years to come because of economic depreciation and depletion of oil & gas fields. O&G production until ca. 2040 and possibly later as oil prices rise and combinations with CCS increase the life time and productivity of fields. 500-600 offshore installations (60-70 fields) need to be abandoned and decommissioned over the coming 20-40 years. OSPAR 98/3 demands full removal to shore and disassembly, unless disused O&G installations could have ‘another legitimate purpose in the maritime area authorised or regulated by the competent authority’. There are no international guidelines on the decommissioning of disused pipelines. The regulatory regime is currently left to individual states.
13 / 57
4a. Decommissioning: Dutch example So whether we like it or not …
Source: EBN
14 / 57
4a. Decommissioning: Costs •
• •
•
•
The technical costs of removing O&G installations in the North Sea are estimated at € 53 billion in the next 30 to 40 years. Some estimate costs at €100 billion. Costs are largely covered by governments (50-80%) as a result of tax deduction & coownership. These costs include the costs of removal of jackets and topsides, plugging of wells and cleaning of seabed. The costs of pipeline decommissioning are not included and are currently estimated at over £2bn (only UKCS) with the assumption that trunk lines are left in place and other pipelines are trenched and buried.
15 / 57
4a. Decommissioning: Who pays the costs? Who pays for decommissioning costs? e.g. cost estimate of jacket decommissioning: £ 10 billion
50-70% ~ 80% ~ 50% 50-70%
16 / 57
4b. Underground Gas Storage (UGS) • The need for underground gas storage is driven by: a. need for growing flexibility caused by the intermittency of renewable energy sources. b. need for supply security in case of an outage in a major supply source (Oxford, 2013). • Additional gas storage capacity demand in northwest Europe is estimated at 13-20 billion m3 2030, depending on gas scenario (De Joode, 2010). • If approx. half of the currently known plans is met, this would be sufficient in meeting future demand. Realisation of many UGS plans, however, is currently uncertain. • Offshore storage is mainly suitable for large-scale, seasonal storage and/or strategic storage. • Of offshore locations partly depleted gas fields are the most favourable locations, as they have proven to trap gas and provide the possibility to use O&G infrastructure and ‘native gas’ as cushion gas.
17 / 57
4b. UGS: Role and benefits Strategic storage
Security of supply Flexibility of supply
Natural gas
Seasonal storage Export & trade
Hydrogen / Methane
18 / 57
Cheap supply New business model gas sector
Integration of intermittent renewable energy
Optimal use of renewable energy
Role of gas storage
Benefits of gas storage
4b. UGS: ‘Rough’ project Field characteristics
• The Rough gas field in the Southern North Sea was the world's first offshore gas storage reservoir and is operational since 1985. • The storage facility is built by British Gas and currently operated by Centrica Storage. • Rough is the largest gas storage facility in UK able to meet 10% of the UK's winter peak day demand and representing around 75% of UK’s current storage capacity. • Excess summer supplies are injected into the reservoir, to be produced during the winter to meet the peak demand.
Capacity
10% UK peak use
Storage capacity
2.8 BCM
Delivery capacity
1.5 BCM
Field depth
2743 m
Distance to shore
25 km
Figure: Rough facility
19 / 25
4c. Carbon Capture & Storage (CCS)
20 / 25
4c. CCS: Sleipner project • The Sleipner field is the world’s first offshore CCS project. The facility is operational since 1996 and will last until the accompanying gas field is depleted • The natural gas of Statoil’s Sleipner field contains around 9% CO2, which is removed and then injected into a geological layer below the Sleipner platform in the central North Sea, 250 km from land. • The CO2 is stored in a sandstone formation 1000 m below the sea floor, the Utsira formation, and will stay there for thousands of years. • One million tonnes per year is stored, roughly 3% of the Norwegian CO2 emissions in 1990. Until now eight million tonnes of CO2 have been stored. • The CCS technology was designed to fit on an offshore platform.
21 / 57
4d. Electricity grid • …..
22 / 57
4e. Ecological reuse of platforms: LINSI Ecological reuse of disused installations seems to be a promising option. The Living North Sea Initiative aims to contribute to improvement of the quality status of the North Sea ecosystem: 1. By facilitating ecological reuse of redundant offshore structures (protecting biodiversity hotspots); 2. By realising decommissioning cost-savings that will partly be transferred to a North Sea Fund. A different approach to decommissioning could reduce decommissioning costs with GBP 4-10 billion (primarily in the UK and Norway). 3. By creating a North Sea Fund that could invest in more sustainable use of the North Sea, in long-term monitoring programmes, in active creation and maintenance of artificial reefs, etc. 4. By facilitating a stakeholder dialogue in which there is room for e.g. improved marine spatial planning, enlarged ecosystem protection zone and active measures to restore certain habitats.
23 / 57
5. Intended follow-up of ENSEA study The ENSEA North Sea study aims to start an discussion about system integration of energy infrastructure in the North Sea region in general and reuse of Oil & Gas infrastructure in specific: 1. Analyse potential of North Sea to contribute to a renewable energy transition in northwest Europe. 2. Explore options for reuse of existing energy infrastructure and for system integration of energy infrastructures. 3. Design pathways to develop criteria and to optimise conditions for infrastructure reuse and system integration. 4. Build a powerful North Sea coalition. 5. Develop pilots projects to show potential. 6. Realise decommissioning cost-savings that will partly be transferred to a Infrastructure Fund which could be used for adaptation of existing infrastructure or creation of new energy infrastructure.
24 / 57
Power-to-Gas on and around the North Sea
ENSEA Regional Workshop for the Northern Netherlands, September 13 2013 Catrinus Jepma (Energy Valley)
Power-to-Gas
26 / 57
Comparison of the interconnection options with methanation
27 / 57
Comparison of the efficiency chains for energy storage with PtG
28 / 57
PtG-efficiency chain utilising HT-electrolysis
29 / 57
Outlook
30 / 57
Stelling Rond de Noordzee zijn wij noch: - technisch, - juridisch, - economisch, - organisatorisch, - op maatschappelijke acceptatie, voldoende voorbereid op energie systeemintegratie. 31 / 57
Biomass contribution to a sustainable energy future Luc Rabou (ECN) Groningen, 13 September 2013
[km2]
Regions
Norway Rogaland
[x 106 p] [toe/p/y]
365000
4.9
8600
0.46
6.8
[km2] [x 106 p] [toe/p/y]
[km2]
NL 34000
16.7
EV
2.4
9700
5.2
[x 106 p] [toe/p/y]
UK
240000
62.7
3.4
Scotland
77000
5.3
3.9
[km2]
[x 106 p] [toe/p/y]
Germany
348000
81.8
Ndr Sachsen
47600
7.9
4.1
Contents • What is the problem? • What is the solution? • What has biomass to offer?
A rude analysis in 15 minutes
34 / 57
What is the problem? There is no problem everyone agrees on • We emit too much CO2 • We use too much energy • We are too many
35 / 57
What is the solution? There is no solution acceptable to everyone
• We emit too much CO2
=> reduce use of fossil fuels
• We use too much energy
=> save energy
• We are too many
=> reduce population
(I told you this would be rude)
36 / 57
A healthy UK solution For a more balanced and inspiring view, read
http://zerocarbonbritain.com 37 / 57
Biomass functions We need/want/use biomass a.o. for • Food • Timber & paper • Clothing • Protection of land & life • Leisure • Energy Is there enough? 38 / 57
Focus on energy Some typical terms: 1 toe (ton oil equivalent)
≈ 42 GJ
≈ 11.6 MWh ≈ 1300 m3 Groningen natural gas 1 EJ = 1000 PJ 1 PJ = 1000 TJ 1 TJ = 1000 GJ 1 GJ = 1000 MJ 39 / 57
Energy use -- biomass production Country
Land surface Population area [km2] [x 106 p] Germany 348000 81.8 Ndr Sachsen 47600 7.9
Primary energy Specific primary energy consumption consumption [PJ/y] [GWh/km2/y] [MWh/p/y] 14100 11 48 (~8)
United Kingdom
240000
62.7
8900
10
39
Scotland Netherlands EV region Norway Rogaland World
77000 34000 9700 365000 8600 149000000
5.3 16.7 2.4 4.9 0.46 7200
850 3650
3 30 (~15) 1 (~3) 1
45 60
1400 532000
79 20
Expected biomass production capacity: 0.5 – 5 GWh/km2/y (waste land) 5 – 10 GWh/km2/y (prime agricultural land)
40 / 57
Biomass supply & demand 2050 Biomass Assessment (2008) Report 500 102 012 V. Domburg, A. Faaij, P. Verweij e.a.
Energy demand 600 – 1000 EJ/y Biomass supply 100 – 500 EJ/y Biomass demand 50 – 250 EJ/y
Demand limited by price of competing options
41 / 57
Biomass versatility Biomass can/does • Produce power - prevent CO2 release from fossil fuel - remove CO2 from atmosphere (CCS or biochar) • Provide heat • Provide biofuel for transport • Replace oil & gas in C-chemistry • Become H-carrier via P2G and/or 2nd generation biofuel 42 / 57
Uncertainties in power production If you do want to use biomass for power production • Price of bio-energy vs other renewables - what will be the ultimate cost per kWh - when will that be available • Central vs distributed energy generation - cost of infrastructure & transport - efficiency & cost advantages (scale effects) - heat demand 43 / 57
Higher cost Lower cost Lower cost than non-intermittent
Price bioenergy versus (non-) intermittent alternatives
Biopower scenarios Bioenergy is king Bioenergy continues to play a key role for energy supply as the sustainable source
Bioenergy is omni-present Bioenergy continues to play a key role for energy supply on a district scale
Bioenergy as the back-up Beats alternative nonintermittent solutions on price
Bioenergy as the back-up Beats alternative local nonintermittent solutions on price
Bioenergy via co-firing In the transition towards sustainable energy biomass is used for co-firing
Bioenergy as a back-up In regions where no other non-intermittent sources are economically available
Centralized Distributed Optimal energy-system design Northern Europe 44 / 57
Cost competition Wind & solar power are intermittent, but have low marginal production costs
=> fossil fuel base load can’t compete, let alone biomass Reliable power supply requires back-up capacity (for seconds, minutes, hours, days, weeks, months, years)
45 / 57
Biomass for back-up power? • Biomass is not an easy fuel you can switch on/off => not attractive for short back-up periods => winter back-up fits CHP • Biomass derived fuels may fill short & long gaps => gas, oil or pellets • Biomass plants may switch between products and power (or even between power consumption and production) 46 / 57
Open questions • How much (surplus) intermittent capacity is affordable? • Is regulating demand an economically and socially acceptable solution? • What is the optimal load for non-intermittent solutions to reach lowest system cost? • Who will provide/pay for storage and back-up capacity? • How to make optimal use of existing infrastructure in the period of transition? 47 / 57
Can it happen? Some renewables may become cheap, but a reliable energy supply will be expensive
Public support is mandatory => community action & local involvement
48 / 57
Stelling De rol van biomassa als flexibele back-up voor fluctuerende bronnen als wind en zon moet worden vervuld door gas, hydro en batterijen. Biomassa kan beter ingezet worden voor toepassingen binnen: - groene chemie, - gebruik voor mobiliteit 49 / 57
Pauze
50 / 57
Uitleg Break-out sessies Verdeling in twee groepen: - Offshore infrastructure; Green Decommssioning en Power-to-Gas. - Bio-Energy
51 / 57
Uitleg Break-out sessies -
-
Waarom break-out sessies? In kaart brengen van sterktes en zwaktes (Noord) Nederland t.a.v. de thema’s. Ideale uitkomsten: Concrete formuleringen van sterktes en zwaktes. Verwerking van de uitkomsten: Worden interregionaal verbonden om internationaal discussie op gang te brengen. Bepalen wie welke rol kan spelen binnen systeemintegratie rondom de Noordzee. In samenhang met de andere workshops worden contouren bepaald voor de te ondernemen acties; Joint Action Plans. Invulling van de sessies: Discussie over één stelling gericht op vier aspecten; netwerken, uitvoering/toepassing, ‘human capital’ en belang/maatschappelijke acceptatie.
52 / 57
Uitleg Break-out sessies -
Green Decommissioning en Power-to-Gas
-
Stelling: Rond de Noordzee zijn wij noch technisch, juridisch, economisch, organisatorisch, op maatschappelijke acceptatie voldoende voorbereid op energie systeemintegratie.
-
Samenwerking en organisatie binnen triple-helix ontbreekt. Er bestaan geen adequate (reken)modellen op basis van systeemintegratie. Er is een gebrek aan ‘human capital’ voor uitvoering van de thema’s. Belang van de Noordzee als hot-spot voor de duurzame energietransitie vanuit geïntegreerd systeem denken is niet goed bekend.
-
53 / 57
Uitleg Break-out sessies -
Bio-Energy
-
Stelling: De rol van biomassa als flexibele back-up voor fluctuerende bronnen als wind en zon moet worden vervuld door gas, hydro en batterijen. Biomassa kan beter ingezet worden voor groene chemie, mobiliteit etc.
-
Geen sterke netwerken op thema biomassa. Geen overeenstemming op de toepassing van biomassa in een geïntegreerd energiesysteem. Er is een gebrek aan ‘human capital’, o.a. op kennisniveau. Is de PR op het thema biomassa wel sterk genoeg? Invloed op het landschap, concurrentie met voedsel etc. Is sociale acceptatie over zijn hoogtepunt?
-
54 / 57
Samenvatting en vervolgstappen - Uitkomsten van de break-out sessies - Uitkomsten in relatie tot het ‘Joint Action Plan’.
55 / 57
Afsluiting
56 / 57