1
Teletöltött álló hordó abroncs - feszültségeiről Korábban már többször nekifutottunk a fa hordók szilárdsági problémáinak, ám még messze nem válaszoltunk meg minden kérdést e témakörben. Az [ 1 ] munkában találtunk egy idevágó feladatot, melynek „megoldása” kapcsán jutottunk az alábbiakra. A feladat kiírásához tekintsük az 1. ábrát is!
1. ábra – forrása: [ 1 ] Négy 2 mm x 40 mm keresztmetszetű, 2000 N / cm2 előfeszültségű vasabroncs fogja körül egy fahordó dongáit. A hordó méretei: D1 = 600 mm, D2 = 800 mm, h = 1300 mm. Meghatározandó az abroncsok közepes normálfeszültsége, ha a hordó ρ = 850 kg / m3 sű rűségű borral van megtöltve. A dongákat körív alakúnak tekintjük. Itt rögtön megjegyezzük, hogy az eredeti szövegen kicsit változtattunk, egyebek mellett azért, mert azóta már mások a szabványos mértékegységek, valamint a feszültség és az igénybevétel nem használható egymás szinonimájaként. Az [ 1 ] könyvben ezen kívül közölték még a végeredményt is, ami átírva: ; ez azt jelenti, hogy a folyadéknyomás felvételéből abroncs - feszültség adódik. Ezt azért hozzuk fel a feladat megoldása előtt, mert nekünk nem ez az eredmény jött ki. Az Olvasó majd eldöntheti, hogy egyetért - e a mi megoldásunkkal és annak eredményé vel, vagy sem. ( Nem feledhetjük, hogy [ 1 ] - et matematikus írta / szerkesztette! )
2
A megoldást a 2. ábra alapján indítjuk el.
2. ábra Itt a függőleges szimmetriasíkjával félbevágott, teletöltött hordót láthatjuk. A fél hordó falára ható hidrosztatikai nyomóerők eredője a Hπ vízszintes erő, amely az xz síkban hat. A félbevágottnak képzelt abroncsokban az S1, S2, S3, S4 húzóerők működnek. A z tengely menti egyensúlyi egyenlettel: innen: (1) Az abroncsok keresztmetszeti területe a kiírás szerint egyformák: (2) ahol v és s az abroncsok téglalap keresztmetszetének vastagsági és szélességi méretei. Az abroncsokban ébredő húzóerők kifejezései, ( 2 ) - vel is: (3/1) (3/2) (3/3) (3/4) Itt ( i = 1, 2, 3, 4 ) a megfelelő húzófeszültségek az abroncsokban. Most ( 2 ) és ( 3 ) - mal:
3
innen:
a folyadéknyomásból származó átlagos húzófeszültség pedig innen (4) A közvetlen feladat a
erőnagyság kiszámítása. Ehhez tekintsük a 3. ábrát is!
3. ábra Itt azt szemléltettük, hogy a hordófal egy dF elemi felületére merőlegesen hat a dP nyomóerő. A felületelem kifejezése: (5) az elemi nyomóerő kifejezése: (6) a p hidrosztatikai nyomás kifejezése: (7)
4
ahol γ a folyadék fajsúlya: (8) itt ρfoly a hordót kitöltő folyadék ( itt: bor ) sűrűsége, g a nehézségi gyorsulás nagysága. A dP elemi nyomóerő vízszintes összetevője ( nagysága ): (9) az utóbbi eredményeket egymásba helyettesítve:
tehát: ( 10 ) Ennek x szerinti integrálja adja az ábrán is bejelölt „sáv - eredőt”: ( 11 ) a fél hordóra ható teljes horizontális erő nagysága pedig a sáv - eredők z tengelyre vett vetületeinek összegeként, a π nagyságú szögtartományra:
tehát: ( 12 ) Ehhez ki kell számítanunk az ( 13 ) határozott integrált, a számadatokkal. Ehhez először fel kell írnunk a z( x ) függvény kifejezését. Ehhez tekintsük a 4. ábrát is! Itt a dongák r átlagos sugarával dolgozunk. Azért átlagos sugarat veszünk figyelembe, mert a feladatban nem adták meg a dongák falvastagságát. Egyébként z( x ) - hez a dongák belső sugara kellene, hiszen a folyadék a hordó belső falával érintkezve fejti ki a nyomását. Az 1. ábrából sem világos, hogy a D1 és D2 átmérők pontosan mire vonatkoznak. Meglehet, ez a feladat - kiírás, illetve a feladat - megoldás közelítő jellege miatt nem is igazán lényeges.
5
4. ábra A CTP derékszögű háromszögből Pitagorász tételével a körív egy P pontjára: innen: továbbá: majd ebből: elhagyva a „P” indexet:
( 14 ) Még meg kell határoznunk r kifejezését a megadott adatokkal. Ezt szintén a 4. ábra alapján tesszük. Eszerint írhatjuk, hogy ( 15 ) ( 16 ) Osztással: ( 17 )
6
felhasználva, hogy ( 18 ) ( 17 ) és ( 18 ) szerint kapjuk, hogy innen pedig:
( 19 ) A Ф szög ismeretében ( 15 ) - ből: ( 20 ) Most visszatérünk az Ih integrál kiszámításához; ( 13 ) és ( 14 ) - gyel: ( 21 )
Kiszámítását numerikusan végezzük, a Graph ingyenes szoftver görbe alatti terület számító szolgáltatásával. Ehhez kellenek a ( 21 ) kifejezésben szereplő állandók értékei. Ezekhez az adatok: R1 = D1 / 2 = 0,3 m ; R2 = D2 / 2 = 0,4 m ; h / 2 = 0, 65 m . ( A1 ) Most ( 19 ) és ( A1 ) - gyel: ( A2 ) Majd ( A1 ), ( A2 ) és ( 20 ) szerint: ( A3 ) Ezután ( 21 ) kifejezése az adatokkal: ( A kijelölt műveleteket elvégezve – 5. ábra – :
( A4 )
7
5. ábra Eszerint: ( A5 ) Most ( 8 ), ( 12 ), ( 13 ) - mal: ( 22 ) majd ( 4 ) és ( 22 ) - vel: ( 23 ) ezután ( 23 ) - mal, számszerűen: tehát: ( E1 ) Ehhez hozzáadva az abroncsok előfeszítéséből származó húzófeszültséget: ( E2 )
8
Ezzel a feladatot megoldottuk. Megjegyzések: M1. Az a tény, hogy [ 1 ] egy matematikai tankönyv, nem biztos, hogy garantálja egy esetleg más forrástól átvett feladat megoldásának jóságát. Az itteni feladatról nem derült ki, hogy átvették - e valahonnan, esetleges hibáival együtt, ellenőrizetlenül. Bár kicsi a valószínűsége, de akár még ez is megtörténhetett. Vagy csak mi nem találtuk ki, hogy pl. hogyan értelmezi a szerző az átlagos feszültséget; vagy más modell alapján dolgozott, stb. Nem zárhatjuk ki egy egyszerű sajtóhiba lehetőségét sem, a végeredmény közlésében. Ha ugyanis a helyes eredmény 281 kg / cm2 2810 N / cm2 lenne, akkor az eredményül kapott, a folyadéknyomásból származó ( 2810 – 2000 ) N / cm2 = 810 N / cm2 érték teljesen elfogadható lenne – v.ö. ( E1 ). Ha ez így lenne, akkor csak a 281 kg / cm2 helyett írt 251 kg / cm2 - es érték elírását kellene felemlítenünk. Ehhez persze az a kis „csalás” is kell, hogy a feladat kiírásában a borra megadott 850 kg / m3 - es adatot sűrűségként, ne pedig fajsúlyként értelmezzük. M2. Az 1. ábrán a hordó magasságát H - nak látszó betűvel jelölték. Mi ezt h - ra változtattuk, mert H - val vízszintes erő - komponenseket jelöltünk, ahogy azt [ 1 ] is tette. M3. Bár [ 1 ] a határozott integrálok kiszámításával foglalkozik, jobbnak láttuk az itt fellépő ( A4 ) határozott integrált numerikus úton meghatározni. Ugyanis sok helyen eltéveszthető a hosszadalmas integrálási folyamat, még integrál - táblázat használatával is. Jobb ez így. M4. Azon morfondíroztunk az imént, hogy netán sajtóhiba miatt nem egyezik eredmé nyünk a forráséval. Meglehet, ennél sokkal lényegesebb momentum az, hogy az álló hordó magassága mentén erősen változhat az abroncsokban a húzófeszültség, egymáshoz képest. Ez a számítás az egyes abroncsok feszültségeiről nem sokat mond, csak az összegükről, illetve a számtani átlagukról kaptunk információt. M5. Továbbra is úgy gondoljuk, hogy a „hordó - statika" nem egy könnyű témakör. Ha belegondolunk, mennyit kellett fáradoznunk itt egy átlagos feszültségi eredményért, akkor érthető e véleményünk. Miközben – úgy tűnik – még eléggé messze vagyunk e megismerési folyamat végétől. Emlékezzünk csak vissza, hogy korábbi fa hordós dolgo zatainkban már mi mindennel találkoztunk, és mennyi mindent nem oldottunk még meg. Talán majd legközelebb.
9
M6. Utólagos internetes keresés után megtaláltuk azt az orosz feladatgyűjteményt – [ 2 ] – , ahonnan [ 1 ] átvette a fenti feladatot. Eszerint a helyes megoldás: σ = 283 kg / cm2 . Ez már jó. Ezek szerint tényleg az történhetett, hogy rosszul másolták át a végeredményt az eredetiből. Ez nagy öröm – nekünk. A 6. ábrán szemlélhetjük az eredeti oldalakat; ezek igazolják a mondottakat.
6. ábra Ha az ( E1 ) - re vezető számítást g = 10 m / s2 - tel végezzük, akkor az eredmény: σátl, foly = 823,7 N / cm2 , így σ össz= σ elő + σátl, foly = 2823,7 N / cm2 282,4 kg / cm2 , ami már teljesen rendben lévő eredmény. Ha megnézzük a 6. ábrát, akkor azt is látjuk, hogy az ittenit követő feladat végeredménye a σ = 251 kg / cm2 . Ez azonban már nem az álló hordó esete – ha jól értjük. Úgy tűnik, sikerült megfejtenünk a rejtvényt, elrendeznünk a dolgokat. Bárcsak az öt találatosunk is így bejönne… A folyamat azért is vehetett sok időt igénybe, mert [ 1 ] - ben ennél a feladatnál sem hivatkoztak közvetlenül az orosz forrásra, hanem csak a bevezetésben felsorolták, hogy kiktől merítettek. Szóval, még szerencse is kellett, hogy fény derüljön a részletekre.
10
M7. Ha már rendelkezésünkre áll a 6. ábra két fahordós feladatának eredménye, akkor azt is meg tudjuk mondani, hogy a fekvő hordó felállításával mekkorát nő az abroncsok átlagos húzófeszültségének nagysága, abszolúte és relatíve is: ~ az abszolút növekedés: Δσ = ( 2830 – 2510 ) N / cm2 = 320 N / cm2 ; ~ a relatív növekedés: δσ = ( 320 / 2510 ) x 100 = 12,7 % . Persze, itt feltettük, hogy a feladatgyűjtemény második hordós feladatának is jó a vég eredménye. Ezt azért is vállaljuk, mert az első feladat végeredménye már az előbb jónak bizonyult.
Irodalom: [ 1 ] – Szerk.: Fazekas Ferenc: Műszaki matematikai gyakorlatok A. V.** Határozott integrál ( Második rész ) 3. kiadás, Tankönyvkiadó, Budapest, 1974. [ 2 ] – V. Sz. Jablonszkij ~ V. P. Jablonszkaja: Szbornyik zadacs po tyehnyicseszkoj gidrotyehnyike Gosztyehizdat, 1951., Moszkva - Lenyingrad. vagy: http://static.my-shop.ru/product/pdf/159/1587482.pdf
Összeállította: Galgóczi Gyula mérnöktanár Sződliget, 2015. 04. 19.