POLITEKNOSAINS VOL. XIV NO. 2
September 2015
SISTEM PENDUKUNG KEPUTUSAN TINGKAT KEAKTIFAN STUDI MAHASISWA MENGGUNAKAN METODE PROFILE MATCHING Martono 1, Bayu Surarso 2, Oky Dwi Nurhayati 3 1,2,3)
Magister Sistem Informasi Universitas Diponegoro
ABSTRACT The activities students level determinants qualification of students, while the qualification of students of determines the highest college education.The classification process of student activity level needs Decision Support System. The propose of the research is to determine the alternative of highest activity student level, by basing on the competition of the students by using profile matching. Method profile matching is chosen because it can to select the aspects criteria used to value academic aspects ( Index cumulative and Semester Credit System ) and attitude aspects ( study present and participation of students activity unit).The result of the research to describe that Decision Support System which used profile matching can result theDecision proportionally coinside with criteria aspects (academic aspects and attitude aspects). The result of the research by using profile matching method can showthe rankings and correlation with the student activity level. Keywords: Decision Support System; Activities Student Level :Profile Matching PENDAHULUAN Mahasiswa merupakan salah satu komponen dari sebuah perguruan tinggi dimana mahasiswa mempunyai kewajiban menuntut ilmu di peguruan tinggi. Mahasiswa yang sebagian besar adalah perubahan masa ke dewasa yang cenderung masih mencari jatidirinya. Dengan kata lain kualitas pendidikan tinggi ditentukan oleh kualitas mahasiswa. Kualitas mahasiswa antara lain terkait dengan akvitas belajar dan hasil belajarnya. Penelitian ini membuat sistem pengambilan keputusan yang dapat
Sistem pendukung keputusan…
membantu pengambil keputusan untuk menentukan tingkat keaktifan studi mahasiswa di Perguruan Tinggi untuk beberapa hal seperti mahasiswa berprestasi, beasiswa, dan studi lanjut. Metode yang diusulkan untuk memprediksi tingkat keaktifan studi mahasiswa adalah mengunakan metode profile matcing. Metode ini dapat menentukan tingkat keaktifan studi mahasiswa dan melakukan perangkingan dari yang paling tinggi sampai yang paling rendah dengan memadukan standar minimal profil
94
POLITEKNOSAINS VOL. XIV NO. 2
ideal dengan beberapa variabelvariabelnya. Algoritma profile matching digunakan dalam pencocokan DNA yang dengan mencocokan antara DNA satu ke DNA lainya dengan cepat dalam membandingkan matrik DNA. Hasil diperoleh juga sangat akurat hampir sama dengan sample yamg diteliti (Pizzi, 2008). Profile matching juga diguanakan dalam efisiensi pencocokan data yang seragam terhadap profil pengguna di sistem webcasting skala besar dalam proyek di Pusat Penelitian IBM Almaden yaitu desain dan implementasi GCS (Gran Central Station). Hasil kinerja dari GCS dengan metode profile matching dapat meningkat kinerja yang kuat melalui adaptasi dinamis (Qi Lu, 1998). Model Pengambilan Keputusan yang digunakan untuk menentukan rangking dari keaktifan studi mahasiswa adalah profile matching. Maksud dari model pencocokan profile (Profile Matching) adalah sebuah mekanisme pengambilan keputusan dengan mengansumsikan bahwa terdapat tingkat variabel predictor ideal yang dimiliki oleh karyawan, bukannya tingkat minimal yang harus dipenuhi atau dilewati (Kusrini, 2007) KERANGKA TEORI Pendekatan yang diusulkan untuk mempercepat profile matching didasarkan pada statistical significance, multipattern matching, filtering, indexing data structures, matrix
Sistem pendukung keputusan…
September 2015
partitioning, Fast Fourier Transform dan data compression untuk mempercepat proses pencarian profil (Pizzi, 2008). Penelitian terdahulu tentang metode yang efisien pencocokan data yang beragam terhadap profil pengguna di sistem webcasting skala besar. Desain dan implementasi dijelaskan dalam konteks Grand Central Station (GCS) proyek di IBM Almaden Pusat Penelitian. Evaluasi kinerja awal menunjukkan kemampuan GCS pencocokan profil untuk meningkatkan dan mencapai kinerja yang kuat melalui adaptasi dinamis (Qi Lu, 1998). Penelitian yang menggunakan metode pencocokan lainya adalah history matching process yang digunakan pada studi simulasi waduk untuk strategi pengujian produksi dan peramalan dan untuk mendapatkan prediksi produksi yang baik, maka harus memperbanyak data hasil yang sama. Proses pencocokan history mengurangi jumlah simulasi yang diperlukan untuk mencapai perbandingan yang dapat diterima (Costa, 2014). Berdasarkan hasil penelitian di atas ditarik kesimpulan bahwa dalam pengambilan keputusan tingkat keaktifan studi mahasiswa dapat dilakukan dengan mengunakan metode profle matching sesuai dengan variabel tingkat keaktifan studi yaitu variabel dari aspek akademik dan aspek perilaku.
95
POLITEKNOSAINS VOL. XIV NO. 2
September 2015
2.1. Sistem Pengambilan Keputusan Secara hirarkis, Sistem pendukung keputusan (SPK) biasanya dikembangkan untuk pengguna pada tingkatan manajemen menengah dan tertinggi. SPK dalam sistem informasi dapat dikembangkan jika sistem pengolahan transaksi (level pertama) dan sistem informasi manajemen (level kedua) sudah berjalan dengan baik. Sistem Pendukung Keputusan, didefinisikan juga sebagai sebuah sistem yang mampu memberikan kemampuan, baik kemampuan pemecahan masalah maupun kemampuan pengkomunikasian untuk masalah semi terstruktur. Mendefinisikan SPK dengan cara membandingkan dengan sistem EDP (Electronic Data Processing) tradisional pada lima dimensi sebagai ditunjukkan pada tabel 2.1 berikut:
Tabel 2.1. SPK dan sistem EDP Dimensi Penggunaan Pengguna Tujuan Horison Wakty Tujuan
SPK Aktif Manajemen Staf Keefektifan Masa sekarang dan akan datang Flesibilitas
EDP Pasif Klerikal Efisiensi Masa lalu Konsistensi
2.2. Unifield Modelling Language (UML) UML adalah keluarga notasi grafis yang didukung oleh model-model tunggal yang membantu pendeskripsian dan Desain system perangkat lunak khususnya sistem yang dibangun
Sistem pendukung keputusan…
mengunakan pemrograman berorientasi objeck (Fowler, 2005). UML diagram dikelompokkan menjadi tiga prespektif berbeda untuk memodelkan suatu sistem (Munawar, 2005) yaitu: 1. Model Use Case Use case diagram mengambarkan interaksi antara sistem, sisten ekternal dan penguna. 2. Diagram Aktifitas UML ada dua diagram untuk memodelkan struktur statis siste informasi yaitu: a. Diagram Class Mengambarkan struktur objek system, diagram ini menunjukkan class object yang menyusun sistem dan juga hubungan antara class object tersebut. b. Object diagram Serupa dengan class object, object diagram memodelkan instance object actual dengan menunjukan nilai-nilai saat ini dari atribut instant
2.3. Metode Profile Matching Menurut (Kusrini, 2007) metode profile matching atau pencocokan profil adalah metode yang sering digunakan sebagai mekanisme dalam pengambilan keputusan dengan mengasumsikan bahwa terdapat tingkat variabel prediktor yang ideal yang harus dipenuhi oleh subyek yang diteliti, bukannya tingkat minimal yang harus dipenuhi atau dilewati. Berikut adalah
96
POLITEKNOSAINS VOL. XIV NO. 2
beberapa tahapan dan perumusan perhitungan dengan metode profile matching. a. Perhitungan Gap Kompetisi Setelah proses pemilihan mahasiswa yang akan di nilai, proses selanjutnya menentukan mahasiswa mana yang paling cocok memduduki sebagai mahasiswa yang tingkat keaktifannya tinggi sehingga sebagai yang terpilih. Dalam permasalahan ini penulis mengunakan perhitungan pemetaan gap kompetisi dimana yang dimaksud Gap disini adalah beda antara profil tingkat keaktifan mahasiswa dengan profil mahasiswa atau dapat di tunjukkan dengan persamaan 2.1 (Kusrini, 2007). Gap = Profil Mahasiswa – Profil ideal …. (2.1) b.
September 2015 5 6 7 8 9
-2 3 -3 4 -4
3 2.5 2 1.5 1
Kompetensi individu kurang 2 Tingkat/level Kompetensi individu lebih 3 Tingkat/level Kompetensi individu kurang 3 Tingkat/level Kompetensi individu lebih 4 Tingkat/level Kompetensi individu kurang 4 Tingkat/level
c. Pengelompokan Core dan Secondary Factor Setelah menentukan bobot nilai Gap kriteria yang dibutuhkan, kemudian tiap kriteria dikelompokan lagi menjadi dua kelompok yaitu Core Factor dan Secondary Factor.
Core Factor (Faktor Utama) Core Factor merupakan aspek (kompetensi) yang paling menonjol / paling dibutuhkan oleh suatu jabatan yang diperkirakan dapat menghasilkan kinerja optimal. Untuk menghitung Core Factor digunakan persamaan 2.2 (Kusrini, 2007): NCI =
Perhitungan pemetaan Gap
Pada tahap ini, akan ditentukan bobot nilai masing-masing aspek dengan menggunakan bobot nilai yang telah ditentukan bagi masing-masing aspek itu sendiri. Adapun masukan dari proses pembobotan ini adalah selisih dari profil mahasiswa dan profil tingkat keaktifan. Dalam penentuan peringkat pada aspek akademik dan perilaku untuk tingkat keaktifan yang sama pada setiap Gap, diberikan bobot nilai sesuai dengan tabel 2.2 berikut : Tabel 2.2. Bobot nilai Gap Gap Selisih Bobot Keterangan No Gap Nilai 1 0 5 Kompetensi sesuai dengan yang dibutuhkan 2 1 4.5 Kompetensi individu lebih 1 tingkat / level 3 -1 4 Kompetensi individu kurang 1 Tingkat/level 4 2 3.5 Kompetensi individu lebih 2 Tingkat/level
Sistem pendukung keputusan…
∑ ∑
……………. (2.2) NCI mewakili Nilai rata-rata Core Factor, NC menyatakan Jumlah total nilai core factor, IC mewakili Jumlah item core factor.
Secondary
factor
(Faktor
Pendukung) Secondary factor adalah item-item selain aspek yang ada pada core factor. Untuk menghitung secondary factor digunakan persamaan 2.3 (Kusrini, 2007) : NSI =
∑ ∑
…………… (2.3)
NSI mewakili Nilai rata-rata secondary factor aspek akademik,
97
POLITEKNOSAINS VOL. XIV NO. 2
NS menyatakan Jumlah total nilai secondary factor aspek akademik dan IS mewakili Jumlah item secondary factor. Persamaan diatas adalah rumus untuk menghitung Core Factor dan secondary factor dari aspek akademik dan juga menghitung Core Factor dan secondary factor dari aspek perilaku. d. Perhitungan Nilai Total Dari perhitungan Core Factor dan Secondary Factor dari tiap-tiap aspek, kemudian dihitung nilai total dari tiap-tiap aspek yang diperkirakan berpengaruh pada kinerja tiap-tiap profil. Untuk menghitung nila total dari masing- masing aspek, digunakan persamaan 2.4 (Kusrini, 2007): N=(X) % NCI + (X) % NSI ……… (2.4) Nilai total (N) merupakan (X)% nilai prosentase yang di inputkan dari NCI yaitu nilai rata-rata Core Factor ditambahkan dengan nilai-nilai prosentase yang di inputkan dari NSI yaitu rata-rata Secondary Factor. Perhitungan nilai total terlebih dahulu menentukan nilai persen yang dimasukkan yaitu Core Factor 60% dan Secondary Factor 40%. Kemudian nilai Core Factor dan Secondary Factor ini dijumlahkan sesuai dengan persamaan 2.4. e. Perangkingan Hasil akhir dari proses profile matching adalah rangking dari kandidat yang di ajukan untuk mengisi jabatan /
Sistem pendukung keputusan…
September 2015
posisi tertentu. Penentuan mengacu rangking pada hasil perhitungan yang ditentukan oleh persamaan (Kusrini, 2007). Rangking = % NCF + % NSF ……… (2.5) NCF mewakili Nilai akhir Aspek akademik dan NSF mewakili Nilai akhir dari Aspek perilaku. METODOLOGI Bahan yang digunakan dalam penelitian ini berupa data yang akan diambil basis data sistem informasi akademik (SiakadPol) Politeknik Pratama Mulia Surakarta. Data-data yang berkaitan dengan informasi mahasiswa antara lain : program studi, mahasiswa, data mata kuliah, IPK mahasiswa dan SKS yang diperoleh. Data yang berupa presensi mahasiswa diperoleh dari data bukti presensi tiap mata kuliah yang diperoleh dari pihak akademik dan data keikutsertaan dalam organisasi mahasiswa dari bidang kemahasiswaan. Penelitian ini menggunakan metode profile matching dengan berdasarkan aspek-aspek yang digunakan yaitu aspek intelektual dan aspek perilaku. Prosedur penelitian ini dimulai dengan mengidentifikasi masalah kemudian melakukan analisa terhadap permasalahan dalam sistem yang terdiri dari penentuan kriteria keaktifan mahasiswa, penentuan nilai bobot dari variabel yang diteliti, kemudian pengelompokan Core Factor dan Secondary Factor serta penentuan nilai akhir lalu menghasilkan rangking
98
POLITEKNOSAINS VOL. XIV NO. 2
mahasiswa dengan keaktifan studi mahasiswa. Langkah selanjutnya adalah perancangan sistem yang terdiri dari desain sistem dan perancangan sistem yang akan digunakan dalam penelitian ini, setelah itu dilakukan pengujian sistem dan penarikan kesimpulan dari penelitian ini. Untuk memperoleh gambaran yang lebih jelas dari penelitian ini, dibuat suatu aplikasi perangkat lunak sistem pendukung keputusan. Sistem yang akan dibuat adalah sebuah aplikasi SPK yang terhubung dengan aplikasi SiakadPol yang sedang berjalan saat ini dengan mengunakan nama basis data yaitu dengan WinAdpol. Aplikasi berguna untuk memasukkan data-data yang berkaitan dengan kriteria aspek yang ditentukan. 3.1 Pemilihan Data Sebagai bahan penelitian ini adalah data mahasiswa yang terdapat di basis data dari sistem informasi akademik (SiakadPol) di Politeknik Pratama Mulia Surakarta yang akan dijadikan contoh untuk menentukan rangking dari tingkat keaktifan studi mahasiswa. a. Alternatif Sebagai alternatif dalam pemilihan data adalah semua mahasiswa semester dua tahun angkatan 2013, tahun ajaran 2014, semester genap di Politeknik Pratama Mulia Surakarta. b. Penentuan Kriteria Kriteria yang terdapat dalam pemilihan data adalah aspek
Sistem pendukung keputusan…
September 2015
akademik dan aspek perilaku mahasiswa. 1. Aspek Akademik Aspek ini meliputi Nilai Indeks Prestasi Komulatif ( IPK) dan Jumlah SKS total yang diperoleh pada semester yang diteliti. 2. Aspek Prilaku mahasiswa Aspek ini meliputi presensi mashasiswa dan Keterlibatan mahasiswa dalam kegiatan di kampus atau keikutsertaan dalam unit kegiatan mahasiswa (UKM). 3.2. Proses Profile Matching Profile matching diawali dengan input profil ideal tiap sub kriteria dan input nilai mahasiswa tiap sub kriteria. Proses perhitungan selisih gap antara profil ideal tiap sub Kriteria dengan dengan input niali profil mahasiswa tiap sub Kriteria. Selanjutnya mengubahnya menjadi nilai gap dengan disesuaikan pada tabel bobot nilai gap pada tabel 2.2 (bobot nilai Gap). Berdasarkan nilai Gap tersebut akan ditentukan nilai bobotnya, Gap = 0 akan menempati bobot tertinggi, yang artinya mahasiswa tersebut berada pada profil ideal. Setelah menentukan bobot nilai gap untuk masing-masing aspek dengan cara yang sama. Kemudian dilakukan perhitungan dan pengelompokan Core Factor dan Secondary Factor. Core factor merupakan subkriteria yang utama dan Secondary factor adalah subkriteria pendukung.
99
POLITEKNOSAINS VOL. XIV NO. 2
Proses selanjutnya adalah menghitung nilai total dihitung berdasarkan jumlah dari hasil perkalian prosentase untuk masing masing Core Factor dan Secondary Factor dengan nilai Core Factor dan Secondary Factor. Sebagai hasil akhir dari proses profile matching adalah perankingan dari mahasiswa yang diproses dihitung dengan hasil penjumlahan dari perkalian input prosentase untuk tiaptiap Kriteria dengan nilai total tiap aspeknya. Penentuan rangking mengacu pada hasil perhitungan pada landasan teori rangking tertinggi yang menunjukkan mahasiswa berada pada rangking pertama. 3.3. Proses Diagram Desain Proses Diagram seperti gambar 3.1
September 2015
3.4. Diagram Use Case Terdapat satu aktor yaitu Admin yang menjadi pengunaan dalam sistem ini. Desain use case sistem yang dibuat ditunjukkan oleh Gambar 3.2
Gambar 3.2. Desain use case sistem yang dibuat Tabel 3.1. Narasi Use Case Memasukkan bobot kriteria aspek Nama use case Aktor Keterangan
Alur
Gambar 3.1. Desain Proses Diagram
Sistem pendukung keputusan…
Memasukkan rasio kepentingan untuk kriteria Penguna Modul ini berfungsi untuk memasukan nilai bobot kriteria dan menghasilkan nilai bobot untuk menghitung bobot dari aspek Kriteria 1. Pengguna melakukan login 2. Memasukkan bobot Aspek Kriteria
Tabel 3.2. Narasi Use Case Mengambil data dari SiakadPol Nama use Mengambil data dari case SiakadPol Aktor Admin Keterangan Modul ini berfungsi untuk mengambil data dari sistem informasi akademik yang sudah ada seperti data mahasiswa, data IPK mahasiswa dan jumlah SKS Kumulatif semester yang akan digunakan untuk perhitungan perankingan dengan metode profile matching dalam perhitungan
100
POLITEKNOSAINS VOL. XIV NO. 2
Alur
bobot. 1. Pengguna melakukan login 2. Memasukkan bobot Aspek kriteria 3. Mengambil data dari SiakadPol 4. Menghitung Bobot dari aspek criteria
Tabel 3.3. Narasi Use Case Memasukkan Data Presensi dan UKM Nama use Memasukkan Data Presensi case dan UKM Aktor Admin Keterangan Modul ini berfungsi untuk memasukkan data presensi dan UKM digunakan dalam proses pada metode profile matching menghitung nilai bobot, proses pemetaan Gap, proses pengelompokan Core Factor dan Secondary Factor serta perhitungan akhir dari metode profile matching Alur 1. Pengguna melakukan login 2. Memasukkan nilai bobot aspek kriteria 3. Mengambil data dari SiakadPol 4. Menghitung nilai bobot 5. Proses pemetaan Gap 6. Proses pengelompokan Core Factor dan Secondary Factor 7. Menghitung nlai akhir
September 2015
data absensi dan pengambilan data mahasiswa, total SKS semester, data mata kuliah dan data ipk dari basis data yang dipakai untuk sampling maka akan diproses di sistem informasi SPK yang dirancang dan dicocokan dengan bobot dari masing-masing aspek kemudian memasukkan data presensi serta data UKM juga akan di pembobotan Gap aspek kriteria, pengelompokan Core Factor dan Secondary Factor dari masing-masing aspek dilakukan perhitungan nilai total dan nilai akhir menghasilkan rangking dari mahasiswa yang tingkat keaktifan studinya tertinggi.
Gambar 3.4. Diagram aktifitas pengambilan data basis data
Diagram aktifitas kriteria aspek penilaian ditunjukkan oleh Gambar 3.5:
3.5. Diagram Activity Diagram aktifitas dapat dilihat bahwa setelah pengguna memasukkan
Sistem pendukung keputusan…
101
POLITEKNOSAINS VOL. XIV NO. 2
September 2015
Diagram aktifitas pemetaan Gap Kompetensi ditunjukkan oleh Gambar 3.7:
Gambar 3.5. Diagram aktifitas kriteria aspek penilaian
Gambar 3.7. Diagram aktifitas pemetaan Gap Kompetensi
Diagram aktifitas Input data presensi dan UKM ditunjukkan oleh Gambar 3.6:
Diagram aktifitas perhitungan kelompok Core Factor dan Secondary Factor ditunjukkan oleh Gambar 3.8:
Gambar 3.6. Diagram aktifitas Input data presensi dan UKM
Sistem pendukung keputusan…
Gambar 3.8. Diagram aktifitas perhitungan kelompok Core Factor dan Secondary Factor Diagram aktifitas perhitungan nilai total aspek ditunjukkan oleh Gambar 3.9.
102
POLITEKNOSAINS VOL. XIV NO. 2
September 2015
Gambar 3.11. Diagram aktifitas Rangking
HASIL DAN PEMBAHASAN
Gambar 3.9. Diagram aktifitas perhitungan nilai total tiap aspek
Diagram aktifitas perhitungan hasil akhir ditunjukkan oleh Gambar 3.10:
Pengolahan proses profile matching dalam sistem pendukung keputusan ini dimulai dengan pengambilan data dan memasukkan nilai sub aspek kriteria sehingga menghasilkan nilai bobot. Pembobotan nilai pada sub kriteria adalah sebagai berikut: Tabel 4.1: Keterangan sub aspek kriteria Kriteria Keterangan sub kriteria Aspek Nilai indek prestasi Akademik Total SKS Aspek prilaku Presensi Kegiatan Mahasiswa Aspek Akademik a. Indeks Prestasi Mahasiswa Berikut ini table dari penentuan bobot nilai pada kriteria IPK mahasiswa.
Gambar 3.10. Diagram aktifitas perhitungan nilai akhir Diagram aktifitas ditunjukkan oleh Gambar 3.11.
Tabel 4.2: Nilai kriteria IPK Jarak (Range) Nilai <2.50 1 >2.50 – 2.75 2 >2.75 – 3.00 3 >3.00 – 3.50 4 >3.50 5
Rangking
Sistem pendukung keputusan…
103
POLITEKNOSAINS VOL. XIV NO. 2
b. Total SKS yang diperoleh Tabel 4.3 Nilai kriteria total SKS Jarak (Range) Nilai <=32 1 <=36 2 <=40 3 <=44 4 <=48 5 Aspek perilaku a. Presensi kuliah Tabel 4.4 Nilai kriteria Presensi kuliah Jarak (Range) Nilai <75% 1 >76% – 80% 2 >81% – 85% 3 >86% – 90% 4 >91% – 100% 5 b. Kriteria ikut kegiatan kampus Tabel 4.5 Nilai kriteria kegiatan kampus Jarak (Range) Nilai Tidak ikut 1 Anggota Pasif 2 Anggota Aktif 3 Pengurus 4 Ikut 2 UKM 5
Langkah berikutnya adalah pemetaan Gap kompetensi. Dalam perhitungan ini akan dihasilkan selisih dari pengurangan bobot Gap profil mahasiswa dengan bobot Gap kompetisi profil tingkat keaktifan studi mahasiswa yang ideal dan telah di tetapkan. Dimana selisih nilai dari sub aspek tersebut diatas akan dicocokkan dengan selisih bobot gap kompetensi seperti pada tabel 2.2, dan menghasilkan nilai tertentu. Hasil yang didapat dari selisih itu akan di kelompokkan menjadi 2 bagian yaitu sub aspek yang menjadi
Sistem pendukung keputusan…
September 2015
kelompok core factor dan kelompok nilai secondary factor selanjutnya dihitung dengan persamaan 2.2 dan persamaan 2.3. Kemudian menghitung nilai total dari tiap aspek kriteria berdasarkan jumlah dari hasil perkalian prosentase untuk masing masing core factor dan secondary factor dengan nilai core factor dan secondary factor seperti dalam persamaan 2.4 dengan menentukan presentase dari core factor dan secondary factor. Langkah terakhir dalam perhitungan profile matching adalah menghitung nilai akhir yaitu akan diberikan presentase dari setiap aspek alademik dan perilaku kemudian di kalikan dengan hasil perhitungan nilai total setiap aspek kriteria tersebut dan hasilnya akan dijumlahkan dan menghasilkan nilai akhir seperti pada persamaan 2.5, sehingga dapat ditentukan rangking dari mahasiswa yang tingkat keaktifan studinya tertinggi. 4.2. Perhitungan Bobot Setiap Aspek Kriteria Dari hasil pengambilan basis data untuk subkriteria IPK dan total SKS didapatkan hasil dengan bobot. Setelah memasukkan bobot nilai dari subkriteria presensi dan UKM maka didapat nilai bobot dari setiap aspek. Tabel 4.6. Hasil perhitungan bobot nilai sub aspek kriteria No 1 2 3 4
NIM
IPK
13.21668 13.21669 13.21670 13.21671
4 2 3 1
Total SKS 5 5 5 5
Presensi
UKM
5 5 5 5
4 4 4 4
104
POLITEKNOSAINS VOL. XIV NO. 2
Perhitungan Kompetisi
4.3.
Pemetaan
September 2015
Gap
Perhitungan pemetaan Gap kompetisi menghasilkan bobot nilai Gap. Bobot nilai Gap setiap subkriteria ada pada tabel 4.2. Yaitu dengan mencocokan bobot dari masing-masing subkriteria dengan profil ideal maka akan di dapat selisih Gap, Berdasarkan nilai tersebut akan ditentukan nilai bobotnya dengan hasil selisih Gap tersebut akan di konversi dengan selisih gap dengan tabel 2.2, sehingga didapatkan bobot nilai Gap untuk setiap subkriteria.
dikelompokkan menjadi 2 kelompok yaitu Core Factor dan Secondary Factor. Tabel pengelompokan Core Factor dan Secondary Factor ditunjukkan oleh tabel 4.3 dan 4.4. Tabel 4.8. Tabel Pengelompokan aspek akademik Total Core Secondary No NIM IPK SKS Factor Factor 1 13.21668 5 5 5 5 2 13.21669 3 5 3 5 3 13.21670 4 5 4 5 4 13.21671 2 5 2 5
Perhitungan core factor aspek akademik dengan persamaan NCI =
∑ ∑
Tabel 4.7. Tabel Pemetaan Gap dengan NCI nilai rata-rata core factor , Kompetensi NC mewakili jumlah core factor dari No NIM IPK Total SKS Presensi UKM aspek akademik dan IC jumlah sub 1 13.21668 4 5 5 4 aspek kriteria. Jadi perhitungannya 2 13.21669 2 5 5 4 3 13.21670 3 5 5 4 adalah NCI(akademik) = hasilnya 4 13.21671 1 5 5 4 5. Profil Ideal 4 3 4 3 Perhitungan Secondary Factor 1 13.21668 0 0 1 1 aspek akademik dengan persamaan 2 13.21669 -2 0 1 1 ∑ 3 13.21670 -1 0 1 1 NSI = dengan NSI nilai rata-rata ∑ 4 13.21671 -3 0 1 1 Scondary factor, NS mewakili jumlah Bobot Nilai Gap core factor dari aspek akademik dan 1 13.21668 5 5 4.5 4.5 IS jumlah sub aspek. Jadi 2 13.21669 3 5 4.5 4.5 perhitungannya adalah 3 13.21670 4 5 4.5 4.5 . 4 13.21671 2 5 4.5 4.5 NSI(akademik) = hasilnya 4.5. .
4.4. Perhitungan Core Factor dan Secondary Factor Setelah didapatkan nilai bobot Gap dari setiap aspek kriteria langkah berikutnya adalah perhitungan pengelompokan Core Factor dan Secondary Factor. Setiap Aspek akademik dan aspek perilaku akan
Sistem pendukung keputusan…
Tabel 4.9. Tabel Pengelompokan aspek perilaku No
NIM
Presensi
UKM
Core Factor
Secondary Factor
1
13.21668
4.5
4.5
4.5
4.5
2
13.21669
4.5
4.5
4.5
4.5
3
13.21670
4.5
4.5
4.5
4.5
4
13.21671
4.5
4.5
4.5
4.5
105
POLITEKNOSAINS VOL. XIV NO. 2
September 2015
Perhitungannya sama dengan aspek akademik untuk aspek perilaku adalah sebagai berikut Perhitungan core factor aspek perilaku adalah NCI(perilaku) =
. .
=
4.5.
perhitungan Secondary perhitungannya NSI(perilaku) =
. .
= 4.5.
Untuk Factor adalah Dalam
pengelompokan siapa yang akan menjadi core factor dan secondary factor sangatlah penting dalam metode profile matching ini, yang nantinya akan menjadi penentu dalam perhitungan selanjutnya. Langkah selanjutnya adalah menghitung nilai total setiap aspek kriteria. 4.5. Perhitungan Nilai Total Aspek Kriteria Dari perhitungan core factor dan secondary factor dari tiap-tiap aspek, langkah selanjutnya menghitung nilai total dari tiap-tiap aspek yang diperkirakan berpengaruh pada kinerja tiap-tiap profil. Untuk menghitung nila total dari masing- masing aspek, mengunakan persamaan N = (X) % NCI + (X) % NSI Dengan N sebagai Nilai total aspek kriteria yang merupakan (x)% sebagai nilai persen dari NCI yaitu nilai rata-rata core factor ditambahkan dengan nilai prosentase yang dari NSI yaitu rata-rata secondary factor. Perhitungan nilai total terlebih dahulu menentukan nilai prosentase yang dimasukkan yaitu core factor dengan nilai 60% dan secondary factor dengan nilai 40%. Kemudian nilai core factor
Sistem pendukung keputusan…
dan secondary factor ini dijumlahkan sesuai persamaan tersebut. Nilai total aspek akademik adalah : NIM 13.21668 = 60% x 5 + 40% x5=5 NIM 13.21669 = 60% x 3 + 40% x 5 = 3.8 NIM 13.21670 = 60% x 4 + 40% x 5 = 4.4 NIM 13.21671 = 60% x 2 + 40% x 5 = 3.2 Nilai total aspek perilaku NIM 13.21668 = 60% 40% x 4.5 = 4.5 NIM 13.21669 = 60% 40% x 4.5 = 4.5 NIM 13.21670 = 60% 40% x 4.5 = 4.5 NIM 13.21671 = 60% 40% x 4.5 = 4.5
x 4.5 + x 4.5 + x 4.5 + x 4.5 +
Hasil perhitungan ditunjukkan pada tabel 4.5 dan 4.6 Tabel 4.10. Tabel perhitungan Nilai No
NIM
1 2 3 4
13.21668 13.21669 13.21670 13.21671
Core Factor 5 3 4 2
Secondary Factor 5 5 5 5
Nilai Total 5 3.8 4.4 3.2
total aspek akademik Tabel 4.11. Tabel perhitungan Nilai total aspek Perilaku No 1 2 3 4
NIM
Core Factor
13.21668 13.21669 13.21670 13.21671
4,5 4,5 4,5 4,5
Second ary Factor 4,5 4,5 4,5 4,5
Nilai Total 4,5 4,5 4,5 4,5
106
POLITEKNOSAINS VOL. XIV NO. 2
Berdasarkan perhitungan yang didapat bahwa sangatlah penting dalam hal memberikan nilai dari prosentase antara core factor dan secondary factor karena akan mempengaruhi hasil perhitungan total tersebut. Jika presentase diubah maka hasilnya akan berubah. Ini adalah salah satu kelebihan dalam metode profile matching dalam sebuah Sistem Pengambilan Keputusan. 4.6. Perhitungan Nilai Akhir Penentuan rangking adalah tahap akhir dari perhitungan dengan metode profile matching. Hasil akhirnya rangking dari mahasiswa yang yang tingkat keaktifan studinya tertinggi. Perhitungan penentuan rangking dihitung dengan hasil penjumlahan dari perkalian input prosentase untuk tiap-tiap kriteria dengan nilai total tiap aspeknya berdasarkan pada persamaan (2.5). Nilai akhir adalah % NCF + %NSF NIM 13.21668 = 60% x 5 + 40% x 4.5 = 4.8 NIM 13.21669 = 60% x 3.8 + 40% x 4.5 = 4.08 NIM 13.21670 = 60% x 4.4 + 40% x 4.5 = 4.44 NIM 13.21671 = 60% x 3.2 + 40% x 4.5 = 3.72 Tabel 4.12. Tabel perhitungan Nilai Akhir Aspek Aspek No NIM Akdemik Perilaku 1 13.21668 5 4,5 2 13.21669 3,8 4,5 3 13.21670 4,4 4,5 4 13.21671 3,2 4,5
Sistem pendukung keputusan…
September 2015
Perhitungan hasil akhir dipengaruhi penentuan besarnya prosentase yang ditentukan pada prosentase masing-masing aspek kriteria. Ini adalah salah satu kelebihan dalam metode profile matching dalam sebuah Sistem Pengambilan Keputusan. Keluaran yang dihasilkan dari sistem pendukung keputusan setelah melalui berbagai tahap perhitungan profile matching adalah perangkingan tertinggi ke terendah. Hasil dari perangkingan tertinggi yang akan direkomendasikan oleh sistem sebagai mahasiswa yang tingkat keaktifan studi yang tertinggi. KESIMPULAN Sistem Pendukung Keputusan dengan mengunakan metode Profile Matching mampu menghasilkan keputusan yang proposional sesuai dengan aspek kriteria, bobot nilai ideal dan presentase aspek kriteria yang ditentukan. Pemilihan aspek kriteria, sub aspek kriteria atau variabel penilaian serta penentuan standart nilai bobot ideal untuk setiap profil sangat berpengaruh dalam proses perhitungan profile matching menentukan perangkingan. Hasil penelitian dengan mengunakan metode profile matching mampu menunjukkan tingkat perangkingan dan hubungannya dengan Nilai tingkat keaktifan studi mahasiswa. Akhir 4,8 DAFTAR PUSTAKA 4,08 Costa, L. c. (2014). Application of 4,44 atificial neural networks in 3,72
107
POLITEKNOSAINS VOL. XIV NO. 2
history matching process. Petroleum and Engeneering , 1-6. Ghazvinia, M. K. (2011). Gender differences in factors affecting academic performance of high school students. Procedia Social and Behavioral Sciences Vol 15 , 1040-1045. Giaquinta, E. e. (2014). Motif matching using patterns. Theoretical Computer Science 548 , 1-13. Khosravi, K. P. (2013). Determination of Factors Affecting Student Satisfaction of Islamic Azad University. Procedia - Social and Behavioral Sciences, 84 , 579583. Pizzi, C. U. (2008). Fast Profile Matching Algorithems. Theoritical Computer Science 395 , 137 - 157. Qi Lu, M. e. (1998). Efficient profile matching for large scale Webcastin. Computer Networks and ISDN Systems 30 , 443 - 455. Rasul, B. (2011). A study of factors affecting students’ performance in examination at university level. Procedia Social and Behavioral Sciences 15 , 20422047. Sugiarti, Y. (2013). Analisa dan Perancangan UML (Unifified Modelling Language) Generated Vb.6. ISBN: 978-797-756-966-2. Yogyakarta: Graha Ilmu. Yunusa, W. S. (2001). Teacher-student relationship factor affecting motivation and academic achievement in ESL classroom.
Sistem pendukung keputusan…
September 2015
Procedia Social and Behavioral Sciences 15 , 2637-2641. Fowler, M. (2005). UML Distilled Edisi 3. Yogyakarta: Andi Offset. Kusrini. (2007). Konsep dan Aplikasi Sistem Pendukung Keputusan. Yogyakarta: Andi Offset. Munawar. (2005). Pemodelan Visual dengan UML, Edisi Pertama, ISBN:979-756-069-1. Yogyakarta: Graha Ilmu. Turban, E. (2005). Decicion Support System and Intellegent System. Yogyakarta: Andi Offset.
108