Prediksi 1 UN SMA IPS Matematika Kode Soal Doc. Version : 2011-06 halaman 1
01. (1) Jika jalan basah maka hari hujan (2) Jika hari tidak hujan maka jalan tidak basah (3) Jika jalan tidak basah maka hari tidak hujan Konvers, Invers, dan kontraposisi dari pernyataan “Jika hari hujan, maka jalan basah” secara berurutan adalah …. (A) 1, 2, dan 3 (B) 2, 1, dan 3 (C) 2, 3, dan 1 (D) 3, 2, dan 1 (E) 3, 1, dan 2 02. Pernyataan yang ekivalen dengan p
q
q
p
adalah …. (A) p q (B) q p (C) p q (D) p q (E) p q 03. (1) p
q (2) p q (3) p -q
p
q
p
q
q
r
p
q
Modus ponens, modus tollens, dan silogisme secara berurutan adalah …. (A) 1, 2, dan 3 (B) 2, 1, dan 3 (C) 2, 3, dan 1 (D) 3, 2, dan 1 (E) 3, 1, dan 2 04.
4
243 . 2-2 . 4 2
(A) (B) (C) (D) (E)
2
4
4
4
3
6
4
3
....
3
12
4
3
18
4
3
Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 1885 ke menu search.
Copyright © 2011 Zenius Education
Prediksi 1 UN SMA IPS Matematika, Kode Soal doc. version : 2011-06 | halaman 2
a
05. a
2
b
2
2
c .a.b
b c 2.a.c
2-b-c
....
(A) a . b . c 1
(B) a . b . c 1
1
1
(C) a b c (D) a + b + c (E) 5
06.
1 a b c
log 7 . 3 log 125 3
(A) (B) (C) (D) (E)
log 7
2
log 32
2
log 512 = ….
3 11 17 21 24
07. Berapa titikkah pada sumbu-x yang dipotong oleh kurva y = bx² + cx + a jika c² < 4ab? (A) 0 titik (B) 1 titik (C) 2 titik (D) Lebih dari 2 titik (E) Tak hingga titik 08. Titik eksterm dan jenisnya untuk grafik kurva fungsi y = -5x² + 30x + 1 adalah …. (A) (3, -46), minimum (B) (3, 46), maksimum (C) (-3, -89), minimum (D) (-3, -89), maksimum (E) (3, -46), maksimum 09. Fungsi kuadrat yang grafiknya melalui titik (2, -19) dan (1, -10) dan mempunyai sumbu simetri x = 3 adalah …. (A) y = 2x² - 12x + 19 (B) y = -2x² + 12x - 19 (C) y = 2x² - 12x + 19 (D) y = -3x² + 18x - 5 (E) y = 3x² - 18x + 5
Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 1885 ke menu search.
Copyright © 2011 Zenius Education
Prediksi 1 UN SMA IPS Matematika, Kode Soal doc. version : 2011-06 | halaman 3 1 x 10. Jika f 3 5x 1 , maka f(x) = ….? (A) 15x - 1
5x 1 3 5 (C) 3 x 1
(B)
(D) 15(x - 1) (E)
x 1 15
11. Invers dari fungsi f ( x )
5
3x 8 adalah …. 10
8 x 5 10 (A) 3
(B)
2
5x10 3 8
10 x 5 8 (C) 3
(D)
10 x 5 3 3
(E)
8x 10 5
5
3
12. Himpunan penyelesaian dari persamaan kuadrat 6x² - 29x + 28 = 0 adalah …. (A)
5 4 , 7 3
5 6
(B)
3,
(C)
7 4 , 2 3
(D)
3 6 , 4 7
(E)
7 3 , 6 4
13. Persamaan kuadrat 2x² - 6x + 10 = 0 memiliki akar-akar α dan β. Persamaan kuadrat baru yang akar-akarnya adalah …. (A) x² - 3x + 15 = 0 (B) -x² + 3x + 15 = 0 (C) 6x² - 2x - 10 = 0 (D) 5x² - x + 5 = 0 (E) 5x² + x + 5 = 0
dan
Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 1885 ke menu search.
Copyright © 2011 Zenius Education
Prediksi 1 UN SMA IPS Matematika, Kode Soal doc. version : 2011-06 | halaman 4
14. Jika akar-akar persamaan kuadrat x² - 5x + 7 = 0 adalah α dan β. Maka α²β + β²α = .... (A) -30 (B) -25 (C) -6 (D) 15 (E) 35 15. Batas-batas x yang memenuhi (x² - 3x + 2)(x² - 6x + 8) ≤ 0 adalah …. (A) 1 ≤ x < 2 atau 2 < x ≤ 4 (B) 1≤ x ≤ 4 (C) 1 ≤ x ≤ 2 atau x ≥ 4 (D) X ≤ 1 atau 2 ≤ x ≤ 4 (E) X ≤ 1 atau x ≥ 4 16. Himpunan penyelesaian dari sistem persamaan linear dua variable 6x 2 y 15x 8 y
3 53
Adalah x1 dan y1. 3x1 - 2y1 = …. (A) -1 (B) -2 (C) 0 (D) 2 (E) 4 17. 6 tahun yang lalu, umur Ani 15 kali umur Budi. 7 tahun lagi, umur Ani 2 kali umur Budi. Jika umur Ani dilambangkan dengan A dan umur Budi dilambangkan dengan B, pemodelan matematika dari situasi tersebut adalah …. (A)
15 A B A 2B
84 7
(B)
A 15B 84 A 2B 7
(C)
A 15B A 2B
42 7
(D)
A 15B 2A B
42 14
(E)
A 15B A 2B
84 14
Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 1885 ke menu search.
Copyright © 2011 Zenius Education
Prediksi 1 UN SMA IPS Matematika, Kode Soal doc. version : 2011-06 | halaman 5
18. Harga karcis bus untuk pelajar Rp 2.000 dan untuk umum Rp 3.000. dalam seminggu terjual 180 karcis dengan hasil penjualan Rp 440.000. karcis untuk pelajar yang terjual dalam minggu itu adalah …. (A) 80 (B) 100 (C) 120 (D) 125 (E) 130 19. Nilai maksimum fungsi f(x, y) = 6x + 10y pada daerah 5x + 3y ≤ 15 x+y≤0 x≥0 y≥0 adalah …. (A) 9 (B) 17 (C) 20 (D) 34 (E) 40 20. Tempat parkir seluas 600 m² hanya mampu menampung 58 bus dan mobil. Tiap mobil membutuhkan tempat 6 m² dan tiap bus 24 m². Biaya parkir tiap mobil Rp 500 dan bus Rp 750. Jika tempat parkir ini penuh, hasil dari biaya parkir maksimum adalah …. (A) Rp 18.750 (B) Rp 29.000 (C) Rp 32.500 (D) Rp 43.500 (E) Rp 72.500 21. Matriks A
2 1
B
4
q . p 5 dan matriks 11 Jika A x B = 27 maka p + 2q = ….
(A) (B) (C) (D) (E)
1 3 6 9 12
Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 1885 ke menu search.
Copyright © 2011 Zenius Education
Prediksi 1 UN SMA IPS Matematika, Kode Soal doc. version : 2011-06 | halaman 6
16 15 15 16 dan matriks
22. Matriks A 3 2
B
2 3 . Jika C adalah matriks dan
C = A x B maka diterminan matriks C = …. (A) 384 (B) 256 (C) 155 (D) 72 (E) 64 23. X adalah matriks persegi ordo 2 yang memenuhi 3 2 1 1
xX
1 0 0
1
X = …. 1 2
(A)
1 3
(B)
1 1
2 3
(C)
1 1
2 3
(D)
1 1
2 3
(E)
1 1
2 3
24. Jumlah n suku pertama deret aritmatika Sn = 5n2 + 7n. Suku ke-n deret tersebut adalah Un = …. (A) 10n + 2 (B) 10n + 7 (C) 10n - 3 (D) 10n + 5 (E) 10n - 8 25. Dari suatu deret geometri diketahui U1 . U2 . U3 . U4 . U6 = 32 maka U3 = …. (A)
1 4 1
(B) 2 (C) 2 (D) 4 (E) 8
Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 1885 ke menu search.
Copyright © 2011 Zenius Education
Prediksi 1 UN SMA IPS Matematika, Kode Soal doc. version : 2011-06 | halaman 7
lim
26.
x
( x2
2
(A) (B) (C) (D) (E) 27.
( x 2 )( x 3 1)
lim
x2
2x 3
3x 2
6x 1
....
-∞ -4 0 4 ∞
28. Jika f(x) = x² . (A)
....
0 3 6 9 12
x
(A) (B) (C) (D) (E)
x 2)
5
5
x 3 maka
d f ( x ) .... dx
x 13
5 5 13 x 13 13 5 3 x x (C) 5
(B)
26 5 3 x x 5 13 2 5 3 x x (E) 5
(D)
29. Garis singgung yang sejajar dengan garis y = 2x + 3 pada grafik y = x² + 4x + 5 adalah …. (A) y = 2x + 10 (B) y = 2x + 4 (C) y = 2x - 6 (D) y = 2x - 8 (E) y = 2x - 12 30. Grafik fungsi f(x) = x³ + 3x² + 5 turun untuk nilai x yang memenuhi …. (A) x < -1 atau x > 0 (B) x < x < 2 (C) -2 < x < 0 (D) x < 0 (E) x ≥ 0
Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 1885 ke menu search.
Copyright © 2011 Zenius Education
Prediksi 1 UN SMA IPS Matematika, Kode Soal doc. version : 2011-06 | halaman 8
31. Diketahui dua bilangan a dan b memenuhi a - b = 20. Nilai minimum dari a² + b² adalah …. (A) 100 (B) 200 (C) 300 (D) 400 (E) 600 32. Dari 5 kursi yang tersisa di sebuah pertunjukan teater, dua orang penonton yang baru datang harus ditempatkan oleh petugas. Banyaknya cara menempatkan dua orang penonton itu ke kursi yang tersisa adalah …. (A) 0 (B) 5 (C) 10 (D) 20 (E) 40 33. Seorang anak memiliki 3 buah topi, 5 baju, dan 5 celana. Banyaknya cara memakai pasangan topi, baju dan celana adalah …. (A) 13 (B) 15 (C) 30 (D) 45 (E) 75 34.
0, 2, 4, 6, 8 Berapa bilangan bulat antara 30 dan 70 yang terdiri dari bilangan-bilangan di atas adalah …. (A) 7 (B) 10 (C) 15 (D) 20 (E) 25
Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 1885 ke menu search.
Copyright © 2011 Zenius Education
Prediksi 1 UN SMA IPS Matematika, Kode Soal doc. version : 2011-06 | halaman 9
35. Sebotol tabung berisikan secara total 24 kelereng yang berwarna merah atau biru. Jika peluang mengambil sebuah kelereng merah 3
secara acak adalah 8 maka berapa banyakkah kelereng merah yang mesti ditambah supaya peluang pengambilan kelereng merah secara 1
acak menjadi 2 ? (A) 3 (B) 4 (C) 6 (D) 8 (E) 12 36. Dua dadu dilempar berulang-ulang sebanyak 48 kali. Frekuensi harapan munculnya angkaangka padakedua dadu yang jika dijumlahkan bernilai sebesar-besarnya 10 adalah …. (A) 11 (B) 12 (C) 22 (D) 36 (E) 44 37. Gambar di bawah menunjukkan sebuah piringan yang dibagi-bagi menjadi 6 daerah yang sama luasnya dan tiap daerah dilabeli sebuah angka. Di tengah-tengah piringan dipasang panah yang bisa diputar dengan bebas. Permainan dilakukan dengan memutar panah itu secara acak dan angka yang diambil adalah angka label dari daerah yang ditunjuk panah itu ketika berhenti berputar. Jika permainan dilakukan sebanyak 30 kali. Berapa kali-kah panah itu menunjuk ke bilangan genap atau lebih dari 5 ketika berhenti berputar?
5 8 2
(A) (B) (C) (D) (E)
6
9 3
5 10 15 20 25
Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 1885 ke menu search.
Copyright © 2011 Zenius Education
Prediksi 1 UN SMA IPS Matematika, Kode Soal doc. version : 2011-06 | halaman 10
38. median dari distribusi frekuensi berikut adalah …. Berat Badan Frekuensi 50 - 52
4
53 - 55
5
56 - 58
3
59 - 61
2
62 - 64
6
(A) (B) (C) (D) (E)
52,5 54,5 55,25 55,5 56,5
39. modus dari data pada diagram adalah ….
(A) (B) (C) (D) (E)
30,75 31,75 33,00 33,75 34,75
40. Variasi dari data 5, 5, 6, 7, 7 adalah …. (A) 0,5 (B) 0,8 (C) 1 (D) 1,6 (E) 2,0
Kunci dan pembahasan soal ini bisa dilihat di www.zenius.net dengan memasukkan kode 1885 ke menu search.
Copyright © 2011 Zenius Education