Your logo
4
Bioprocess Engineering Control - Spring 2013/2014
Pengendalian Bioproses Sistem pengendalian dan modifikasi pada bioreaktor pada berbagai tipe bioreaktor Dina Wahyu Indriani Keteknikan Pertanian- Mei 2013
Materi Kuliah Jadwal dan materi No
Materi
Submateri
Waktu
8
Mengetahui pengendalian bioproses dalam berbagai macam aplikasi/ penelitian
Contoh-contoh pengendalian dalam Bioproses
April (3)
9
Sistem Pengendalian konsentrasi pada bioreaktor fermentasi (2)
Konsep Pengendalian pada sistem fermentasi
April (4)
10
Sistem pengendalian pada bioreaktor pada berbagai tipe bioreaktor
Pemodelan pengendalian pada Bioreaktor fermentasi
May (1)
Resume dan Persiapan Presentasi
Contoh aplikasi pengendalian konsentrasi, suhu dan pH dalam penelitian
May (2)
12
Sistem Pengendalian Chemical Compund, Multistage Chemostat Systems.
Sistem pengendalian dalam mengetahui jumlah bakteri , Total Organic Compund, dalam bioreaktor fermentasi
May (3)
13
Sistem Pengendalian dalam aliran (Group Presentation)
Pengendalian aliran dalam bioreaktor fermentasi
May (4)
14
Presentasi Paper (Group Presentation)
11
à Page 2
May (5)
INTRODUCTION These chapters should give the reader an understanding of how real bioprocesses can be assembled. An important decision for constructing any process concerns the configuration the reactor system should take. Thus, our choice of reactor must be made in the context of the total process: biocatalyst, reactor, and separation and purification train.
CHOOSING THE CULTIVATION METHOD (1/4) One of the first decisions is whether to use a batch or continuous cultivation scheme. First, we can consider productivity. For a batch reactor, four distinct phases are present: lag phase, exponential growth phase, harvesting, and preparation for a new batch. (3.1) The total amount of cell mass produced comes from knowing the total amount of growth-extent-limiting nutrient present and its yield coefficient: (3.2)
CHOOSING THE CULTIVATION METHOD (2/4) The rate of cell mass production in one batch cycle (rb) is (3.3) The value for D optimal when simple Monod kinetics apply is given by eq. 6.83, and the corresponding X can be determined to be (3.4) Thus, the best productivity that could be expected from-a chemostat where Monod kinetics apply is Dopt • Xopt ,or (3.5)
CHOOSING THE CULTIVATION METHOD (3/4) Under normal circumstances So » Ks so the rate of chemostat biomass production, rc is approximately (3.6) The ratio for rate of biomass formation is (3.7) We would expect continuous systems to always have a significant productivity advantage for primary products. The first is that eq. 3.7 applies only to growth associated products. Many secondary products are not made by growing cells; growth represses product formation.
CHOOSING THE CULTIVATION METHOD (4/4) Another primary reason for the choice of batch systems over chemostats is genetic instability. Another consideration is operability and reliability. One other factor determining reactor choice is market economics. Most bioprocesses are based on batch reactors. Continuous systems are used to make single-cell protein (SCP), and modified forms of continuous culture.
MODIFYING BATCH AND CONTINUOUS REACTORS
Chemostat with Recycle (1/8) Figure 3.1.
MODIFYING BATCH AND CONTINUOUS REACTORS Chemostat with Recycle (2/8) Microbial conversions are autocatalytic, and the rate of conversion increases with cell concentration. Cell recycle increases the rate of conversion (or productivity) and also increases the stability of some systems (e.g., wastewater treatment) by minimizing the effects of process perturbation. A material balance on cell (biomass) concentration around the fermenter yields the following equation: (3.8) At steady state, and if dX1ldt = 0 and X0 = 0 (that is, sterile feed); then eq. 9.8 becomes (3.9)
Chemostat with Recycle (3/8) Since C > 1 and α (1- C) < 0, then µnet < D. That is, a chemostat can be operated at dilution, rate higher then the specific growth rate when cell recycle is used. A material balance for-growth-limiting substrate around the fermenter yields (3.10)
Chemostat with Recycle (4/8) At steady state, dS/dt = 0 and (3.11) Substitution of, eq. 9.9 when kd = 0 into eq. 9.11 yields (3.12) The steady-state cell concentration in a chemostat is increased by a factor of 1/(1 + α - αC) by cell recycle.
Chemostat with Recycle (5/8) The substrate concentration in the effluent is determined from eq. 3.9 and the Monod eq, where endogenous metabolism is neglected, and is (3.13) Then eq, 3.12 becomes (3.14)
Chemostat with Recycle (6/8) Figure 9.2.
Chemostat with Recycle (7/8) Contoh Soal. Dalam sebuah chemostat dengan cell recycle dalam gambar 3.1, fed- flow rate F = 100 ml/H dan volume culture V = 1000 ml. Sistem beroperasi dalam pengaturan jumlah glukosa, dan Yield Coeficient Yx/sM is 0.5 gdw cells/g substrate. Konsentrasi Glukosa dalam keadaan steady state feed adalah S0= 10 g glukosa / L. Kinetik konstans dalam organism adalah µnet = 0.2 h-1, Ks = 1 g glukosa / L. Nilai C adalah 1.5 dan ratio Recycle adalah alfa = 0.7. Sistem dalam keadaan steady state. a. Carilah kosentrasi substrate dalam recycle stream (S) b. Carilah Nilai Specifc Growth rate (µnet) dalam organism c. Carilah Nilai Konsentrasi Cell (biomass) dalam recycle stream d. Carilah NIlai konsentrasi cell dalam Centrifuge Effluent (X2)
Bioprocess Control Application
à Page 15
Assignments Tugas Mingguan
Pengumpulan Paper dan Naskah Resume
Q5. Paper and Resume?
Please submitted the assignments before next week, say 8 May. At class’s leader
à Page 16
Rumusan Perkuliahan Pengendalian Bioproses Pengukuran dan pengendalian bioproses merupakan matakuliah terapan dari Elektronika dan Intrumentasi, Sistem Kontrol, Matetmatika Terapan, Fisika serta Kinia dasar. Sistem Pengendalian Bioproses lebih difokuskan kepada arahan dan bimbingan kepada mahasiswa yang akan melakukan pengendalian bioproses dalam penelitian sehingga dasar serta konsep pengendalian yang diajarkan dalam matakuliah ini teraplikasikan. Selain itu sistem pengndalian yang terdapat dalam matakuliah ini merupakan sistem pengendalian yang difokuskan kepada bioproses. Sehingga mahasiswa dapat membedakan konsep proses dan bioproses. Keteknikan Pertanian Fakultas Teknologi Pertanian
E-Mail:
[email protected] Universitas Brawijaya – Malang Join UB be The Best
à Page 17