ˇ ast GA C´
N´avrh projektu na podporu excelence v z´akladn´ım v´ yzkumu (d´ale n´avrh projektu) Datum pod´ an´ı n´ avrhu projektu: ˇ ıslo panelu(˚ C´ u): Registraˇcn´ı ˇc´ıslo:
totoˇ zn´ e s datem odesl´ an´ı n´ avrhu projektu prostˇ rednictv´ım ISDS
P104, P105 P104/12/G083
ˇ a NAVRHOVATEL UCHAZEC Uchazeˇ c:
ˇ Cesk´ e vysok´ e uˇ cen´ı technick´ e v Praze
ˇ IC:
68407700
S´ıdlo:
Zikova 1903/4, 16000 Praha 6
Navrhovatel:
prof. Dr. Ing Boˇ rek Patz´ ak
Pracoviˇstˇe navrhovatele:
Fakulta stavebn´ı, Th´ akurova 7, 16629 Praha 6
Rodn´e ˇc´ıslo:
7005150240
Telefon:
+420224354375
Fax:
+420224310775
E-mail:
[email protected]
SPOLUNAVRHOVATEL 1 Spoluuchazeˇ c 1:
Vysok´ e uˇ cen´ı technick´ e v Brnˇ e
ˇ IC:
00216305
S´ıdlo:
Anton´ınsk´ a 548/1, 60190 Brno
Spolunavrhovatel:
prof. Ing. Drahom´ır Nov´ ak, DrSc.
Pracoviˇstˇe spolunavrhovatele:
Fakulta stavebn´ı, Veveˇ r´ı 331/95, 60200 Brno
Rodn´e ˇc´ıslo:
6001150496
Telefon:
+420541147360
Fax:
+420541240994
E-mail:
[email protected]
1
ˇ ast GA C´
P104/12/G083
SPOLUNAVRHOVATEL 2 Spoluuchazeˇ c 2:
Centrum dopravn´ıho v´ yzkumu, v.v.i.
ˇ IC:
44994575
S´ıdlo:
ˇ L´ıˇ seˇ nsk´ a 33a, 63600 Brno-Zidenice
Spolunavrhovatel:
prof. Ing. Karel Posp´ıˇ sil, Ph.D., MBA
Rodn´e ˇc´ıslo:
6907283812
Telefon:
+420 548 423 755
Fax:
+420 548 423 748
E-mail:
[email protected]
SPOLUNAVRHOVATEL 3 Spoluuchazeˇ c 3:
Univerzita Karlova v Praze
ˇ IC:
00216208
S´ıdlo:
Ovocn´ y trh 5, 11636 Praha 1
Spolunavrhovatel:
ˇ ak, Ph.D. doc. RNDr. Jiˇ r´ı Z´
Pracoviˇstˇe spolunavrhovatele:
Pˇ r´ırodovˇ edeck´ a fakulta, Albertov 6, 12843 Praha 2
Rodn´e ˇc´ıslo:
7605262038
Telefon:
+420221951475
Fax:
+420221951452
E-mail:
[email protected]
N´ azev projektu ˇcesky: Centrum pro v´ıce´ urovˇ nov´ e a stochastick´ e modelov´ an´ı materi´ al˚ u, proces˚ u a konstrukc´ı (MULTAS) N´ azev projektu anglicky: Center for Multiscale and Stochastic Modeling of Materials, Processes and Structures (MULTAS) Kl´ıˇcov´ a slova ˇcesky: Spolehlivost, v´ıce´ urovˇ nov´ e modelov´ an´ı, multifyzik´ aln´ı modely Kl´ıˇcov´ a slova anglicky: Reliability, multiscale modelling, multiphysic Datum zah´ ajen´ı: 01/01/2012 Doba ˇreˇsen´ı (roky): 7 Zaˇrazen´ı do ˇc´ıseln´ıku CEP: JN: Stavebnictv´ı JM: Inˇ zen´ yrsk´ e stavitelstv´ı
2
ˇ ast GA C´
P104/12/G083
JJ: Ostatn´ı materi´ aly
Kopie opr´ avnˇen´ı k ˇcinnosti tvoˇr´ıc´ı souˇc´ ast ˇreˇsen´ı grantov´eho projektu ve smyslu Zad´ avac´ı dokumentace ˇcl. ´ ˇ ´ ´ ´ 4.2.1 NENI SOUCASTI NAVRHU PROJEKTU. Pod´ an´ım n´ avrhu prostˇrednictv´ım ISDS statut´arn´ı z´astupce uchazeˇce (statut´arn´ım org´anem je statut´arn´ı org´ an, popˇr. ˇclen nebo ˇclenov´e statut´ arn´ıho org´anu, osoba jimi povˇeˇren´a ˇci fyzick´a osoba-uchazeˇc) stvrzuje: ˇze navrhovatel je v pracovnˇepr´ avn´ım vztahu k uchazeˇci nebo tento vztah vznikne na z´akladˇe udˇelen´ı grantu, ˇze zajist´ı, aby navrhovatel po pˇridˇelen´ı grantu plnil vˇsechny povinnosti ˇreˇsitele vypl´ yvaj´ıc´ı ze z´akona ˇ ˇc. 130/2002 Sb., zad´ avac´ı dokumentace a smlouvy mezi poskytovatelem (GA CR) a pˇr´ıjemcem, ˇze se s navrhovatelem pˇred podpisem n´ avrhu projektu sezn´amili se zad´avac´ı dokumentac´ı a zavazuj´ı se dodrˇzovat jej´ı ustanoven´ı; ˇze vˇsechny u ´daje uveden´e v n´ avrhu projektu jsou pravdiv´e, u ´pln´e a nezkreslen´e a jsou totoˇzn´e s u ´daji v elektronick´e verzi n´ avrhu projektu podan´e pomoc´ı aplikace, a ˇze n´avrh projektu byl vypracov´an v souladu se zad´ avac´ı dokumentac´ı; ˇze vˇsichni spolunavrhovatel´e a spolupracovn´ıci uveden´ı v n´ avrhu projektu byli sezn´ameni s vˇecn´ ym obsahem n´ avrhu projektu i s finanˇcn´ımi poˇzadavky v nˇem uveden´ ymi a se zad´avac´ı dokumentac´ı; ˇze pˇred pod´ an´ım n´ avrhu projektu zajistili souhlas v´ yˇse uveden´ ych osob s u ´ˇcast´ı na ˇreˇsen´ı grantov´eho projektu uveden´eho v n´ avrhu projektu; ˇze projekt s totoˇznou nebo obdobnou problematikou nepˇrijal, nepˇrij´ım´ a a nepˇrijme podporu z jin´eho zdroje,
ˇ ˇze souhlas´ı, aby u ´daje uveden´e v n´ avrhu projektu byly pouˇzity pro vnitˇrn´ı informaˇcn´ı syst´em GA CR a uveˇrejnˇeny v rozsahu stanoven´em z´ akonem ˇc. 130/2002 Sb. a zad´avac´ı dokumentac´ı (viz ˇcl. 8.4). prof. Ing. V´aclav Havl´ıˇcek, CSc - rektor v. r.
3
ˇ ast G – Abstrakt C´
Navrhovatel: Registraˇcn´ı ˇc´ıslo: N´ azev projektu:
prof. Dr. Ing Boˇ rek Patz´ ak P104/12/G083 Centrum pro v´ıce´ urovˇ nov´ e a stochastick´ e modelov´ an´ı materi´ al˚ u, proces˚ u a konstrukc´ı (MULTAS)
Abstrakt - ˇ cesky
C´ılem navrhovan´eho projektu je propojen´ı kvalitativn´ıch z´akladn´ıch poznatk˚ u s aplikovan´ ym v´ yzkumem vedouc´ı k inovac´ım v oblasti numerick´ ych simulac´ı heterogen´ıch materi´al˚ u. Koncepce projektu je zaloˇzena na propojen´ı experiment˚ u a matematick´eho modelov´an´ı. V´ ystupem projektu budou v´ ypoˇcetn´ı modely, kter´e umoˇzn´ı predikci chov´ an´ı komlexn´ıch heterogenn´ıch materi´al˚ u se zarhnut´ım nejistot vstup˚ u a kvatifikaci nejistot na v´ ystupu. Modely budou validov´ any s vyuˇzit´ım existuj´ıc´ıch a novˇe obdrˇzen´ ych experiment´aln´ıch dat. Projekt tak´e umoˇzn´ı v´ yvoj viru´ aln´ıch test˚ u, kter´e umoˇzn´ı ˇc´asteˇcnˇe nahradit standartn´ı experiment´aln´ı testy pro z´ısk´ an´ı vstupn´ıch dat pro existuj´ıc´ı fenomenoligick´e modely na makro´ urovni. Tyto v´ ysledky v´ yznamnˇe pˇrispˇej´ı k dalˇs´ımu rozvoji materi´ alov´eho inˇzen´ yrstv´ı a pokroˇcil´e anal´ yzy konstrukc´ı. C´ıle projektu - ˇ cesky
(Tento text bude v pˇr´ıpadˇe udˇelen´e grantu uveden ve smlouvˇe o ˇreˇsen´ı projektu.) C´ılem projektu je v´ yvoj a verifikace v´ıce´ urovˇ nov´ ych konstitutivn´ıch model˚ u heterogen´ıch materi´ al˚ u, kter´ e propoj´ı z´ akladn´ı mechanismy na mikro´ urovni s n´ avrhov´ ymi postupy, vych´ azej´ıc´ı z pochopen´ı z´ akladn´ıch jev˚ u a uv´ aˇ zen´ım jejich statistick´ e povahy. Abstrakt - anglicky
The aim of the project is to bridge qualitative basic knowledge with applied research for the innovations through the basic oriented research in the area of computational simulations. The concept of this project is based on the principles of Integrated Computational Materials Engineering (ICME), which combines experimental data with theoretical modeling. Outputs of this project yield computational models, enabling predictions of structural systems from advanced materials including uncertainties on inputs and outputs. The models will be validated against existing experimental data and against new data obtained from complementary tests. The project will result also in the development of multiscale virtual tests which can partially replace standard tests for obtaining input data for existing computer codes working on the macro scale. This can significantly help to speed up the new developments in material science and advanced structural assessment.
4
ˇ ast GB – sumy C´
Uchazeˇc: Navrhovatel: Registraˇcn´ı ˇc´ıslo:
ˇ Cesk´ e vysok´ e uˇ cen´ı technick´ e v Praze – Fakulta stavebn´ı prof. Dr. Ing Boˇ rek Patz´ ak P104/12/G083
1. Celkov´e pˇredpokl´adan´e uznan´e n´aklady na ˇreˇsen´ı projektu ze vˇsech zdroj˚ u financov´an´ı na jednotliv´e roky jeho ˇreˇsen´ı (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
N´ aklady ze vˇsech zdroj˚ u financov´ an´ı
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Celkem
16915
16908
16908
16908
16908
16908
16908
118363
2. Celkov´e pˇredpokl´adan´e uznan´e n´aklady na ˇreˇsen´ı projektu z jednotliv´ ych zdroj˚ u za celou dobu jeho ˇreˇsen´ı (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Jednotliv´ e zdroje finanˇ cn´ıch prostˇ redk˚ u na ˇ reˇ sen´ı projektu
tis. Kˇ c
ˇ Celkov´e grantov´e prostˇredky poˇzadovan´e od GA CR
118363
Podpora z jin´ ych tuzemsk´ ych veˇrejn´ ych zdroj˚ u (z jin´e kapitoly st´atn´ıho rozpoˇctu nebo rozpoˇct˚ uu ´zemn´ıch st´ atn´ıch celk˚ u), pokud existuje
0
Podpora z ostatn´ıch veˇrejn´ ych zdroj˚ u (nepatˇr´ıc´ıch do st´atn´ıho rozpoˇct nebo rozpoˇct˚ uu ´zemˇ i v zahraniˇc´ı) n´ıch st´ atn´ıch celk˚ u), pokud existuje. (veˇrejn´e zdroje v CR
0
Podpora z neveˇrejn´ ych zdroj˚ u (zahraniˇcn´ı zdroje, neveˇrejn´e tuzemsk´e zdroje, vlastn´ı neveˇrejn´e zdroje), pokud existuje
0
Celkem
118363
ˇ 3. Celkov´e n´aklady na ˇreˇsen´ı projektu poˇzadovan´e od GA CR (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Vˇecn´e n´ aklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
5096
5089
5089
5089
5089
5089
5089
0
0
0
0
0
0
0
11819
11819
11819
11819
11819
11819
11819
16915
16908
16908
16908
16908
16908
16908
Investiˇcn´ı n´ aklady celkem Osobn´ı n´ aklady celkem N´ aklady na ˇ reˇ sen´ı projektu celkem
5
ˇ ast GB – rozpis C´
Uchazeˇc: Navrhovatel: Registraˇcn´ı ˇc´ıslo:
ˇ Cesk´ e vysok´ e uˇ cen´ı technick´ e v Praze – Fakulta stavebn´ı prof. Dr. Ing Boˇ rek Patz´ ak P104/12/G083
ˇ pro uchazeˇce Finanˇcn´ı prostˇredky poˇzadovan´e od GA CR (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Vˇ ecn´ e n´ aklady1
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Materi´ aln´ı n´ aklady
120
120
120
120
120
120
120
Cestovn´ı n´ aklady
400
400
400
400
400
400
400
N´ aklady na ostatn´ı sluˇzby a nemateri´ aln´ı n´aklady
320
320
320
320
320
320
320
Doplˇ nkov´e (reˇzijn´ı) n´ aklady
1107
1107
1107
1107
1107
1107
1107
Vˇ ecn´ e n´ aklady celkem
1947
1947
1947
1947
1947
1947
1947
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Investiˇ cn´ı n´ aklady (na poˇr´ızen´ı dlouhodob´eho hmotn´eho a nehmotn´eho majetku)2
Celkov´ a poˇr´ızovac´ı cena
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Investiˇ cn´ı n´ aklady celkem
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Osobn´ı n´ aklady (Podrobn´y rozpis v ˇc´asti
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
3117
3117
3117
3117
3117
3117
3117
GB – osobn´ı n´ aklady)3 Mzdy navrhovatele a spolupracovn´ık˚ u
1 Zad´ avac´ı
dokumentace 3.2.1 dokumentace 3.2.3 3 Zad´ avac´ı dokumentace 3.2.2 2 Zad´ avac´ı
6
ˇ ast GB – rozpis C´
P104/12/G083
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
300
300
300
300
300
300
300
60
60
60
60
60
60
60
Soci´ aln´ı a zdravotn´ı pojiˇstˇen´ı a SF (FKSP)
1217
1217
1217
1217
1217
1217
1217
Osobn´ı n´ aklady celkem
4694
4694
4694
4694
4694
4694
4694
Osobn´ı n´ aklady
Mzdy technick´ ych a administrativn´ıch pracovn´ık˚ u Ostatn´ı osobn´ı n´ aklady (celkem)
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
N´ aklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
6641
6641
6641
6641
6641
6641
6641
N´aklady z dalˇs´ıch zdroj˚ u pˇredpokl´adan´e za celou dobu ˇreˇsen´ı projektu (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
´ celov´ Uˇ a podpora – dotace
0
0
0
0
0
0
0
Podpora z ostatn´ıch tuzemsk´ ych veˇrejn´ ych zdroj˚ u
0
0
0
0
0
0
0
Podpora z neveˇrejn´ ych zdroj˚ u
0
0
0
0
0
0
0
7
ˇ ast GB – rozpis C´
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Vysok´ e uˇ cen´ı technick´ e v Brnˇ e – Fakulta stavebn´ı prof. Ing. Drahom´ır Nov´ak, DrSc. P104/12/G083
ˇ pro spoluuchazeˇce Finanˇcn´ı prostˇredky poˇzadovan´e od GA CR (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Vˇ ecn´ e n´ aklady1
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
81
81
81
81
81
81
81
Cestovn´ı n´ aklady
400
400
400
400
400
400
400
N´ aklady na ostatn´ı sluˇzby a nemateri´ aln´ı n´aklady
320
320
320
320
320
320
320
Doplˇ nkov´e (reˇzijn´ı) n´ aklady
1099
1099
1099
1099
1099
1099
1099
Vˇ ecn´ e n´ aklady celkem
1900
1900
1900
1900
1900
1900
1900
Materi´ aln´ı n´ aklady
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Investiˇ cn´ı n´ aklady (na poˇr´ızen´ı dlouhodob´eho hmotn´eho a nehmotn´eho majetku)2
Celkov´ a poˇr´ızovac´ı cena
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Investiˇ cn´ı n´ aklady celkem
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Osobn´ı n´ aklady (Podrobn´y rozpis v ˇc´asti
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
3282
3282
3282
3282
3282
3282
3282
GB – osobn´ı n´ aklady)3 Mzdy navrhovatele a spolupracovn´ık˚ u
1 Zad´ avac´ı
dokumentace 3.2.1 dokumentace 3.2.3 3 Zad´ avac´ı dokumentace 3.2.2 2 Zad´ avac´ı
8
ˇ ast GB – rozpis C´
P104/12/G083
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Mzdy technick´ ych a administrativn´ıch pracovn´ık˚ u
110
110
110
110
110
110
110
Ostatn´ı osobn´ı n´ aklady (celkem)
133
133
133
133
133
133
133
Soci´ aln´ı a zdravotn´ı pojiˇstˇen´ı a SF (FKSP)
1168
1168
1168
1168
1168
1168
1168
Osobn´ı n´ aklady celkem
4693
4693
4693
4693
4693
4693
4693
Osobn´ı n´ aklady
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
N´ aklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
6593
6593
6593
6593
6593
6593
6593
N´aklady z dalˇs´ıch zdroj˚ u pˇredpokl´adan´e za celou dobu ˇreˇsen´ı projektu (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
´ celov´ Uˇ a podpora – dotace
0
0
0
0
0
0
0
Podpora z ostatn´ıch tuzemsk´ ych veˇrejn´ ych zdroj˚ u
0
0
0
0
0
0
0
Podpora z neveˇrejn´ ych zdroj˚ u
0
0
0
0
0
0
0
9
ˇ ast GB – rozpis C´
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Centrum dopravn´ıho v´ yzkumu, v.v.i. prof. Ing. Karel Posp´ıˇsil, Ph.D., MBA P104/12/G083
ˇ pro spoluuchazeˇce Finanˇcn´ı prostˇredky poˇzadovan´e od GA CR (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Vˇ ecn´ e n´ aklady1
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
50
50
50
50
50
50
50
100
100
100
100
100
100
100
90
90
90
90
90
90
90
Doplˇ nkov´e (reˇzijn´ı) n´ aklady
330
330
330
330
330
330
330
Vˇ ecn´ e n´ aklady celkem
570
570
570
570
570
570
570
Materi´ aln´ı n´ aklady Cestovn´ı n´ aklady N´ aklady na ostatn´ı sluˇzby a nemateri´ aln´ı n´aklady
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Investiˇ cn´ı n´ aklady (na poˇr´ızen´ı dlouhodob´eho hmotn´eho a nehmotn´eho majetku)2
Celkov´ a poˇr´ızovac´ı cena
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Investiˇ cn´ı n´ aklady celkem
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Osobn´ı n´ aklady (Podrobn´y rozpis v ˇc´asti
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
984
984
984
984
984
984
984
GB – osobn´ı n´ aklady)3 Mzdy navrhovatele a spolupracovn´ık˚ u
1 Zad´ avac´ı
dokumentace 3.2.1 dokumentace 3.2.3 3 Zad´ avac´ı dokumentace 3.2.2 2 Zad´ avac´ı
10
ˇ ast GB – rozpis C´
P104/12/G083
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c) Osobn´ı n´ aklady
Mzdy technick´ ych a administrativn´ıch pracovn´ık˚ u Ostatn´ı osobn´ı n´ aklady (celkem) Soci´ aln´ı a zdravotn´ı pojiˇstˇen´ı a SF (FKSP) Osobn´ı n´ aklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
54
54
54
54
54
54
54
0
0
0
0
0
0
0
373
373
373
373
373
373
373
1411
1411
1411
1411
1411
1411
1411
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
N´ aklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
1981
1981
1981
1981
1981
1981
1981
N´aklady z dalˇs´ıch zdroj˚ u pˇredpokl´adan´e za celou dobu ˇreˇsen´ı projektu (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
´ celov´ Uˇ a podpora – dotace
0
0
0
0
0
0
0
Podpora z ostatn´ıch tuzemsk´ ych veˇrejn´ ych zdroj˚ u
0
0
0
0
0
0
0
Podpora z neveˇrejn´ ych zdroj˚ u
0
0
0
0
0
0
0
11
ˇ ast GB – rozpis C´
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Univerzita Karlova v Praze – Pˇ r´ırodovˇ edeck´ a fakulta ˇ ak, Ph.D. doc. RNDr. Jiˇr´ı Z´ P104/12/G083
ˇ pro spoluuchazeˇce Finanˇcn´ı prostˇredky poˇzadovan´e od GA CR (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Vˇ ecn´ e n´ aklady1
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
115
80
80
80
80
80
80
80
110
110
110
110
110
110
N´ aklady na ostatn´ı sluˇzby a nemateri´ aln´ı n´aklady
144
144
144
144
144
144
144
Doplˇ nkov´e (reˇzijn´ı) n´ aklady
340
338
338
338
338
338
338
Vˇ ecn´ e n´ aklady celkem
679
672
672
672
672
672
672
Materi´ aln´ı n´ aklady Cestovn´ı n´ aklady
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Investiˇ cn´ı n´ aklady (na poˇr´ızen´ı dlouhodob´eho hmotn´eho a nehmotn´eho majetku)2
Celkov´ a poˇr´ızovac´ı cena
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
0
Investiˇ cn´ı n´ aklady celkem
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
Osobn´ı n´ aklady (Podrobn´y rozpis v ˇc´asti
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
756
756
756
756
756
756
756
GB – osobn´ı n´ aklady)3 Mzdy navrhovatele a spolupracovn´ık˚ u
1 Zad´ avac´ı
dokumentace 3.2.1 dokumentace 3.2.3 3 Zad´ avac´ı dokumentace 3.2.2 2 Zad´ avac´ı
12
ˇ ast GB – rozpis C´
P104/12/G083
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
Mzdy technick´ ych a administrativn´ıch pracovn´ık˚ u
0
0
0
0
0
0
0
Ostatn´ı osobn´ı n´ aklady (celkem)
0
0
0
0
0
0
0
265
265
265
265
265
265
265
1021
1021
1021
1021
1021
1021
1021
Osobn´ı n´ aklady
Soci´ aln´ı a zdravotn´ı pojiˇstˇen´ı a SF (FKSP) Osobn´ı n´ aklady celkem
(finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
N´ aklady celkem
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
1700
1693
1693
1693
1693
1693
1693
N´aklady z dalˇs´ıch zdroj˚ u pˇredpokl´adan´e za celou dobu ˇreˇsen´ı projektu (finanˇcn´ı u ´daje se uv´ adˇej´ı jako celoˇc´ıseln´e hodnoty v tis´ıc´ıch Kˇ c)
1. rok
2. rok
3. rok
4. rok
5. rok
6. rok
7. rok
´ celov´ Uˇ a podpora – dotace
0
0
0
0
0
0
0
Podpora z ostatn´ıch tuzemsk´ ych veˇrejn´ ych zdroj˚ u
0
0
0
0
0
0
0
Podpora z neveˇrejn´ ych zdroj˚ u
0
0
0
0
0
0
0
13
Pˇ r´ıloha k GB – rozpis
Uchazeˇc: Navrhovatel: Registraˇcn´ı ˇc´ıslo:
ˇ Cesk´ e vysok´ e uˇ cen´ı technick´ e v Praze – Fakulta stavebn´ı prof. Dr. Ing Boˇ rek Patz´ ak P104/12/G083
Specifikace a zd˚ uvodnˇen´ı poˇzadavk˚ u pro 1. rok ˇreˇsen´ı Pˇ r´ıloha k GB – rozpis je ned´ılnou souˇc´ ast´ı n´avrhu projeku a obsahuje v souladu s ustanoven´ım Zad´avac´ı dokumentace 4.2.7 specifikaci a zd˚ uvodnˇen´ı kaˇzd´eho poˇzadavku uveden´eho v GB – rozpis a GB – osobn´ı n´ aklady.
Materi´ aln´ı n´ aklady Poloˇzka v ˇc´ astce 120 tis. Kˇc bude vyuˇzita na poˇr´ızen´ı chemik´ali´ı pro experiment´aln´ı program (plastifik´atory, provzduˇsnovadla, aditiva, pˇr´ımˇesy), alkalick´ ych aktiv´ator˚ u, sl´ınku; poˇr´ızen´ı studijn´ı a odborn´e literatury, n´ akup kancel´ aˇrsk´eho a spotˇrebn´ıho materi´ alu, drobn´ ych doplˇ nk˚ u v´ ypoˇcetn´ı techniky, n´apln´ı do tisk´aren, z´ alohovac´ıch m´edi´ı. Cestovn´ı n´ aklady ˇ astka 400 tis. Kˇc bude pouˇzita na ˇc´ C´ asteˇcnou u ´hradu cestovn´ıch n´aklad˚ u na n´asleduj´ıc´ı dom´ac´ı a zahraniˇcn´ı konference: 8th European Solid Mechanics Conference in Graz, Austria, July 9-13, 2012 10th World Congress on Computatinal Mechanics (WCCM 2012), Sao Paulo, Brasil 3rd International Congress of Theoretical and Applied Mechanics 2012, Vouliagmeni Beach, Athens, Greece, March 7-9, 2012, 23rd International Congress of Theoretical and Applied Mechanics (ICTAM2012), Beijing, China, 19 to 24 August, 2012. European Activities on Crystal Growth, ECCG-4, 17-22 June 2012, Glasgow 4th International Conference ”Smart Materials, Structures and Systems”, CIMTEC 2012, Italy 1st International Congress on Durability of Concrete, Trondheim, Norway, 18 - 21 June 2012
N´ aklady na ostatn´ı sluˇ zby a nemateri´ aln´ı n´ aklady ˇ astka 320 tis. Kˇc bude vyuˇzita na u C´ ´drˇzbu a opravy pˇr´ıstrojov´eho vybaven´ı a v´ ypoˇcetn´ı techniky. D´ ale budou ˇc´ asteˇcnˇe hrazeny z t´eto poloˇzky konferenˇcn´ı poplatky na konference (v souladu s pravidly zad´avac´ı dokumentace). Investiˇ cn´ı n´ aklady Investice z prostˇredk˚ u grantu nejsou poˇzadov´any. Mzdov´ e n´ aklady Mzdov´e n´ aklady v celkov´e v´ yˇsi 3477 tis. Kˇc jsou pl´anov´any pro ˇcleny ˇreˇsitelsk´eho t´ ymu 3117 tis. Kˇc a pro technick´ y person´ al 300 tis. Kˇc. V mzdov´ ych n´akladech ˇclen˚ u ˇreˇsitelsk´eho t´ ymu jsou zahrnuty i mzdy
14
P104/12/G083
Pˇr´ıloha k GB – rozpis
pro zapojen´e studenty, pˇrev´ aˇznˇe doktorsk´eho studia celkem se pˇredpokl´ad´a 6 student˚ u. Pˇredpokl´ad´a se zapojen´ı i dalˇs´ıch student˚ u magistersk´eho a doktorsk´eho studia, jejichˇz participace bude pokryta i z jin´ ych zdroj˚ u, pˇredevˇs´ım specifick´eho v´ yzkumu. Ostatn´ı osobn´ı n´aklady 60 tis. Kˇc jsou pl´anov´any specializovan´e program´ atorsk´e pr´ ace a konzultaˇcn´ı ˇcinnost. ˇ a vnitˇrn´ıch pˇredpis˚ ˇ Pozn´ amka: v souladu s pravidly GACR u CVUT v Praze se reˇzijn´ı n´aklady stanovuj´ı 20 % z celkov´ ych n´ aklad˚ u (1107 tis. Kˇc) a soci´ aln´ı a zdravotn´ı pojiˇstˇen´ı + FKSP pˇredstavuje 35 % ze mzdov´ ych n´ aklad˚ u (1217 tis. Kˇc).
15
Pˇ r´ıloha k GB – rozpis
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Vysok´ e uˇ cen´ı technick´ e v Brnˇ e – Fakulta stavebn´ı prof. Ing. Drahom´ır Nov´ak, DrSc. P104/12/G083
Specifikace a zd˚ uvodnˇen´ı poˇzadavk˚ u pro 1. rok ˇreˇsen´ı Pˇ r´ıloha k GB – rozpis je ned´ılnou souˇc´ ast´ı n´avrhu projeku a obsahuje v souladu s ustanoven´ım Zad´avac´ı dokumentace 4.2.7 specifikaci a zd˚ uvodnˇen´ı kaˇzd´eho poˇzadavku uveden´eho v GB – rozpis a GB – osobn´ı n´ aklady. Materi´ aln´ı n´ aklady Poloˇzka v ˇc´ astce 81 tis. Kˇc bude vyuˇzita na n´ akup v´ ypoˇcetn´ı techniky, kancel´aˇrsk´eho a spotˇrebn´ıho materi´ alu a drobn´ ych doplˇ nk˚ u v´ ypoˇcetn´ı techniky, n´ aplnˇe do tisk´aren, media a knihy. Cestovn´ı n´ aklady ˇ astka 400 tis. Kˇc bude pouˇzita na ˇc´ C´ asteˇcnou u ´hradu cestovn´ıch n´aklad˚ u na n´asleduj´ıc´ı dom´ac´ı a zahraniˇcn´ı konference (realizov´ ana ˇc´ ast, podle okolnost´ı moˇzn´ ych dalˇs´ıch zdroj˚ u financov´an´ı): IALCCE: the International Symposium on Life-Cycle Civil Engineering 2012 (www.ialcce2012.org) will be held at Vienna Hofburg Palace from October 3 to 6, 2012. 8th European Solid Mechanics Conference in Graz, Austria, July 9-13, 2012 10th World Congress on Computatinal Mechanics (WCCM 2012), Sao Paulo, Brasil 3rd International Congress of Theoretical and Applied Mechanics 2012, Vouliagmeni Beach, Athens, Greece, March 7-9, 2012, 23rd International Congress of Theoretical and Applied Mechanics (ICTAM2012), Beijing, China, 19 to 24 August, 2012. IABMAS 2012, Cernobbio, Como, Italy The 7th International Conference on Advances in Steel Structures ”ICASS 2012”,6.-8.4.2012, Nanjing (China) The 6th Conference on FRP Composites in Civil Engineering CICE 2012, 13.-15.6.2012, Roma (Italy) International Conference on Mechanics of Composite Materials, 28.5.-1.6.2012, Riga (Latvia) The 21st Specialty Conference on Cold-Formed Steel Structures, 24.-25.10.2012, St. Louis, Missouri (U.S.A.)
ˇ edsko fib Sympozium Concrete Structures for a Sustainable Community, 11 - 14. 6. 2012, Stockholm, Sv´ International Congress on Durability of Concrete - ICDC 2012, Trondheim, Norway QUIRT 2012 June 11-14 Naples Italy Concrete in the Low Carbon Era: 9-11 July Dundee 2012.
16
P104/12/G083
Pˇr´ıloha k GB – rozpis
18thWCNDT ( 18th World Conference of Non-destructive Testing) in Durban, South Africa from 16-20 April 2012.
N´ aklady na ostatn´ı sluˇ zby a nemateri´ aln´ı n´ aklady ˇ astka 320 tis. Kˇc bude vyuˇzita na u C´ ´drˇzbu a opravy vznikl´e v souvislosti s ˇreˇsen´ım projektu. D´ale budou ˇc´ asteˇcnˇe hrazeny z t´eto poloˇzky konferenˇcn´ı poplatky na konference (v souladu s pravidly zad´avac´ı dokumentace), podrobnˇeji rozeps´ any v cestovn´ıch n´akladech. Investiˇ cn´ı n´ aklady Investice z prostˇredk˚ u grantu nejsou poˇzadov´any. Mzdov´ e n´ aklady Mzdov´e n´ aklady 3392 tis. Kˇc jsou pl´ anov´ any pro ˇcleny ˇreˇsitelsk´eho t´ ymu 3276 tis. Kˇc a pro technick´ y person´ al 116 tis. Kˇc. Zde jsou zahrnuty i mzdy pro zapojen´e studenty, pˇrev´aˇznˇe doktorsk´eho studia celkem se pˇredpokl´ ad´ a 12 student˚ u. Ostatn´ı osobn´ı n´ aklady 133 tis. Kˇc jsou pl´ anov´any na zapojen´ı dalˇs´ıch student˚ u a specializovan´e program´ atorsk´e pr´ ace. ˇ a vnitˇrn´ıch pˇredpis˚ Pozn´ amka: v souladu s pravidly GACR u FAST VUT v Brnˇe se reˇ zijn´ı n´ aklady stanovuj´ı 20 % z celkov´ ych n´ aklad˚ u (1099 tis. Kˇc) a soci´ aln´ı a zdravotn´ı pojiˇ stˇ en´ı pˇredstavuje 34,42 % ze mzdov´ ych n´ aklad˚ u (1168 tis. Kˇc).
17
Pˇ r´ıloha k GB – rozpis
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Centrum dopravn´ıho v´ yzkumu, v.v.i. prof. Ing. Karel Posp´ıˇsil, Ph.D., MBA P104/12/G083
Specifikace a zd˚ uvodnˇen´ı poˇzadavk˚ u pro 1. rok ˇreˇsen´ı Pˇ r´ıloha k GB – rozpis je ned´ılnou souˇc´ ast´ı n´avrhu projeku a obsahuje v souladu s ustanoven´ım Zad´avac´ı dokumentace 4.2.7 specifikaci a zd˚ uvodnˇen´ı kaˇzd´eho poˇzadavku uveden´eho v GB – rozpis a GB – osobn´ı n´ aklady. Materi´ aln´ı n´ aklady ˇ astka 50 tis. Kˇc bude vyuˇzita na n´ C´ akup spotˇrebn´ıho materi´alu v souvislosti s vyuˇzit´ım rastrovac´ıho mikroskopu, kancel´ aˇrsk´eho materi´ alu, v´ ypoˇcetn´ı techniky a odborn´ ych publikac´ı souvisej´ıc´ıch s ˇreˇsen´ım projektu.
Cestovn´ı n´ aklady ˇ astka 100 tis. Kˇc bude pouˇzita na d´ılˇc´ı u C´ ´hradu cestovn´ıch n´aklad˚ u v souvislosti s u ´ˇcast´ı na dom´ac´ıch a zahraniˇcn´ıch konferenc´ıch (realizov´ ana ˇc´ ast, podle okolnost´ı moˇzn´ ych dalˇs´ıch zdroj˚ u financov´an´ı): The 2nd International Conference Microstructure Related Durability of Cementitious Composites, Amsterdam, Netherlands, April 11-13, 2012 XXII International Congress of Crystallography, Madrid, Spain, August 22-30, 2011 XIII International Congress on the Chemistry of Cement, Madrid, Spain, July 3-8, 2011 Euromat 2011, European Congress and Exhibition on Advanced Materials and Processes, Montpellier, France, September 12-15, 2011 International Congress on Durability of Concrete, Trondheim, Norway, June 17-21, 2012 INNOVATIVE MATERIALS AND TECHNOLOGIES FOR CONCRETE STRUCTURES, Balatonf¨ ured, Mad’arsko, September 22-23, 2011 International Symposium on Asphalt Emulsion Technology, Crystal City, Virginia, October 09-12, 2012 10th International Conference on Superplasticizers and Other Chemical Admixtures in Concrete, Prague, Czech Republic, October 28-31, 2012 12th International Conference on Recent Advances in Concrete Technology and Sustainability Issues, Prague, Czech Republic, October 31-November 2, 2012
N´ aklady na ostatn´ı sluˇ zby a nemateri´ aln´ı n´ aklady ˇ astka 90 tis. Kˇc bude vyuˇzita na u C´ ´drˇzbu a opravy pˇr´ıstrojov´e techniky vznikl´e v souvislosti s ˇreˇsen´ım projektu. D´ ale budou ˇc´ asteˇcnˇe hrazeny z t´eto poloˇzky konferenˇcn´ı poplatky na konference (v souladu s pravidly zad´ avac´ı dokumentace), podrobnˇeji rozeps´any v cestovn´ıch n´akladech. Investiˇ cn´ı n´ aklady 18
P104/12/G083
Pˇr´ıloha k GB – rozpis
Investice z prostˇredk˚ u grantu nejsou poˇzadov´any. Mzdov´ e n´ aklady Mzdov´e n´ aklady 1038 tis. Kˇc jsou pl´ anov´ any pro ˇcleny ˇreˇsitelsk´eho t´ ymu 984 tis. Kˇc a pro technick´ y person´ al 54 tis. Kˇc. Ostatn´ı osobn´ı n´ aklady nejsou pl´ anov´ any. ˇ a vnitˇrn´ımi pˇredpisy Centra dopravn´ıho v´ Pozn´ amka: v souladu s pravidly GACR yzkumu, v.v.i. se reˇ zijn´ı n´ aklady stanovuj´ı ve v´ yˇsi 20 % z celkov´ ych n´aklad˚ u (330 tis. Kˇc) a soci´ aln´ı a zdravotn´ı pojiˇ stˇ en´ı pˇredstavuje 36 % ze mzdov´ ych n´ aklad˚ u (373 tis. Kˇc).
19
Pˇ r´ıloha k GB – rozpis
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Univerzita Karlova v Praze – Pˇ r´ırodovˇ edeck´ a fakulta ˇ ak, Ph.D. doc. RNDr. Jiˇr´ı Z´ P104/12/G083
Specifikace a zd˚ uvodnˇen´ı poˇzadavk˚ u pro 1. rok ˇreˇsen´ı Pˇ r´ıloha k GB – rozpis je ned´ılnou souˇc´ ast´ı n´avrhu projeku a obsahuje v souladu s ustanoven´ım Zad´avac´ı dokumentace 4.2.7 specifikaci a zd˚ uvodnˇen´ı kaˇzd´eho poˇzadavku uveden´eho v GB – rozpis a GB – osobn´ı n´ aklady. Materi´ aln´ı n´ aklady Poloˇzka v ˇc´ astce 115 tis. Kˇc bude vyuˇzita na n´akup diamantov´ ych vrt´ak˚ u na odbˇer vzork˚ u (5 x 4 tis.), dvou geologick´ ych kompas˚ u typu Freiberg (2 x 20 tis.), dvou GPS pˇrij´ımaˇc˚ u typu Garmin s mapov´ ym podkladem (2 x 10 tis.), digit´ aln´ıho fotoapar´atu pro ter´enn´ı dokumentaci (cca 15 tis.), d´ale geologick´ ych map a zahraniˇcn´ı literatury. Cestovn´ı n´ aklady ˇ astka 80 tis. Kˇc bude pouˇzita na ter´enn´ı pr´ace ˇreˇsitelsk´eho t´ C´ ymu (cestovn´e, ubytov´an´ı, diety), celkem se poˇc´ıt´ a s cca 100 ˇclovˇekodny v ter´enu. N´ aklady na ostatn´ı sluˇ zby a nemateri´ aln´ı n´ aklady ˇ astka 144 tis. Kˇc bude vyuˇzita na ˇrez´ C´ an´ı vzork˚ u na texturn´ı mikroanal´ yzy a v´aleˇck˚ u pro mˇeˇren´ı magnetick´e anizotropie (25 tis.), zhotoven´ı zakryt´ ych v´ ybrus˚ u (50 x 300 Kˇc), geochemick´e anal´ yzy sloˇzen´ı hornin u firmy Activation Laboratories, Ltd, Ontario (10 x 2400 Kˇc), separace zirkon˚ u a monazit˚ u (10 tis.) a radiometrick´e datov´ an´ı metodou U-Pb na zirkonech nebo monazitech v geochronologick´e laboratoˇri Boise State University (2 x 35 tis.). Investiˇ cn´ı n´ aklady Investice z prostˇredk˚ u grantu nejsou poˇzadov´any. Mzdov´ e n´ aklady Mzdov´e n´ aklady 756 tis. Kˇc jsou pl´ anov´ any pro ˇcleny ˇreˇsitelsk´eho t´ ymu (180 tis. Kˇc) a byly vypoˇcteny v ˇ ak (tˇr´ıda AP3, 20%) souladu s vnitˇrn´ım mzdov´ ym pˇredpisem Univerzity Karlovy takto: spolunavrhovatel Z´ 77 tis., ˇclen t´ ymu Kachl´ık (tˇr´ıda AP3, 10%) 38 tis., ˇclen t´ ymu Verner (tˇr´ıda AP2, 20%) 65 tis., Ph.D. student 1 (S1, tˇr´ıda VP1, 100%) 288 tis., Ph.D. student 2 (S2, tˇr´ıda VP1, 100%) 288 tis. ˇ a vnitˇrn´ıch pˇredpis˚ Pozn´ amka: v souladu s pravidly GACR u PˇrF UK v Praze se reˇzijn´ı n´aklady stanovuj´ı jako 20 % z celkov´ ych n´ aklad˚ u (340 tis. Kˇc) a soci´aln´ı a zdravotn´ı pojiˇstˇen´ı pˇredstavuje 35 % ze mzdov´ ych n´ aklad˚ u (265 tis. Kˇc).
20
ˇ ast GB – osobn´ı n´ C´ aklady
Uchazeˇc: Navrhovatel: Registraˇcn´ı ˇc´ıslo:
ˇ Cesk´ e vysok´ e uˇ cen´ı technick´ e v Praze – Fakulta stavebn´ı prof. Dr. Ing Boˇ rek Patz´ ak P104/12/G083
Osobn´ı n´aklady pro uchazeˇce pro prvn´ı rok ˇreˇsen´ı Mzdy odborn´ ych pracovn´ık˚ u Pracovn´ı u ´vazek na ˇreˇsen´ı (v % u ´vazku)1
Poˇzadavky na mzdy od ˇ 2 GA CR
Jm´eno
Pˇr´ıjmen´ı
Boˇrek
Patz´ ak
30
288
Zdenˇek
Bittnar
20
192
Milan
Jir´ asek
20
192
Petr
Kabele
20
192
Michal
ˇ Sejnoha
20
192
V´ıt
ˇ Smilauer
20
144
Jan
Zeman
20
144
Martin
Kruˇz´ık
10
48
Jan
Chleboun
20
144
Jandera
Michal
20
96
Petr
ˇ Stemberk
20
144
Pavel
Demo
20
192
Jan
Kratochv´ıl
10
81
Pavel
Padevet
20
96
Jan
V´ıdeˇ nsk´ y
20
96
Jan
Pruˇska
20
96
Daniel
Rypl
10
72
Filip
Hejnic
20
96
Martin
Tipka
20
96
Jiˇr´ı
M´ aca
20
192
1V
procentech odpov´ıdaj´ıc´ıch rozsahu u ´vazku zamˇ estnanc˚ u na ˇreˇsen´ı grantov´ eho projektu. ˇ na prvn´ı rok se celkov´ a v´ yˇse hrub´ e mzdy nebo odmˇ eny, resp. jejich pomˇ ern´ aˇ c´ ast poˇ zadovan´ a z prostˇredk˚ u GA CR ˇreˇsen´ı grantov´ eho projektu. 2 Uv´ ad´ı
21
ˇ ast GB – osobn´ı n´aklady C´
P104/12/G083
Mzdy odborn´ ych pracovn´ık˚ u Jm´eno
Pˇr´ıjmen´ı
Ondˇrej
Zindulka
Pracovn´ ı u ´ vazek na ˇ reˇ sen´ ı (v % u ´ vazku)
ˇ Poˇ zadavky na mzdy od GA CR
20
144
s(5)
20
30
s(1)
20
30
s(2)
20
30
s(3)
20
30
s(4)
20
30
s(6)
20
30
Mzdy technick´ ych a administrativn´ıch pracovn´ık˚ u Souhrnn´ y pracovn´ı u ´vazek technick´ ych a administrativn´ıch pracovn´ık˚ u (v % u ´vazku)
ˇ 2 Poˇzadavky na mzdy od GA CR
80
300
Ostatn´ı osobn´ı n´ aklady (na z´akladˇe dohod o proveden´ı pr´ace nebo dohod o pracovn´ı ˇcinnosti) Typ ˇcinnosti (pracovn´ı n´ aplˇ n), popˇr´ıpadˇe jm´eno studenta Konzultace a specieln´ı program´ atorsk´e pr´ ace
Poˇzadavky 60
Zd˚ uvodnˇen´ı: V pr˚ ubˇehu projektu bude tˇreba pokr´ yt vyj´ımeˇcnˇe ˇcinnosti, kter´e instituce nezajiˇst’uje.
Pokud se budou pr´ ace na projektu u ´ˇ castnit studenti, uv´ ad´ı se jm´ eno a pˇr´ıjmen´ı s oznaˇ cen´ım (s)“. V pˇr´ıpadˇ e, ˇ ze studenti budou ” odmˇ en ˇov´ an´ı z poloˇ zky OON uv´ ad´ı se tyto u ´daje do pole “typ pracovn´ı ˇ cinnosti”.
22
ˇ ast GB – osobn´ı n´ C´ aklady
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Vysok´ e uˇ cen´ı technick´ e v Brnˇ e – Fakulta stavebn´ı prof. Ing. Drahom´ır Nov´ak, DrSc. P104/12/G083
Osobn´ı n´aklady pro spoluuchazeˇce pro prvn´ı rok ˇreˇsen´ı Mzdy odborn´ ych pracovn´ık˚ u Pracovn´ı u ´vazek na ˇreˇsen´ı (v % u ´vazku)1
Poˇzadavky na mzdy od ˇ 2 GA CR
Jm´eno
Pˇr´ıjmen´ı
Drahom´ır
Nov´ ak
21
202
Amos
Dufka
5
24
Miroslav
Bajer
10
72
Patrik
Bayer
7
34
Lenka
Bodn´ arov´ a
10
48
Jiˇr´ı
Broˇzovsk´ y
5
36
Jiˇr´ı
Bydˇzovsk´ y
15
108
Petr
Danˇek
5
24
Rostislav
Drochytka
10
96
Jan
Eli´ aˇs
10
48
Petr
Frant´ık
10
48
Frantiˇsek
Girgle
10
48
Rudolf
Hela
5
36
Petr
Holcner
7
34
Miroslava
Hruz´ıkov´ a
7
26
Zdenˇek
Chobola
10
96
Jiˇr´ı
Kala
5
36
Zdenˇek
Kala
10
96
Marcela
Karmaz´ınov´ a
8
58
Zbynˇek
Kerˇsner
20
144
1V
procentech odpov´ıdaj´ıc´ıch rozsahu u ´vazku zamˇ estnanc˚ u na ˇreˇsen´ı grantov´ eho projektu. ˇ na prvn´ı rok se celkov´ a v´ yˇse hrub´ e mzdy nebo odmˇ eny, resp. jejich pomˇ ern´ aˇ c´ ast poˇ zadovan´ a z prostˇredk˚ u GA CR ˇreˇsen´ı grantov´ eho projektu. 2 Uv´ ad´ı
23
ˇ ast GB – osobn´ı n´aklady C´
P104/12/G083
Mzdy odborn´ ych pracovn´ık˚ u Jm´eno
Pˇr´ıjmen´ı
Michaela
Krm´ıˇckov´ a
Barbara
Kucharczykov´ a
Ivana
Lan´ıkov´ a
Jiˇr´ı
Pracovn´ ı u ´ vazek na ˇ reˇ sen´ ı (v % u ´ vazku)
ˇ Poˇ zadavky na mzdy od GA CR
15
72
5
24
10
48
Macur
8
58
David
Lehk´ y
20
96
Jindˇrich
Melcher
6
58
Lum´ır
Miˇca
5
24
Aleˇs
Nevaˇril
5
24
Lenka
Nevˇrivov´ a
10
48
Abayomi
Omishore
5
24
Luboˇs
Pazdera
10
96
V´ıt
Petr´ anek
10
48
Milan
Pilgr
5
24
Otto
Pl´ aˇsek
8
58
Pavel
Rovnan´ık
8
39
Pavla
Rovnan´ıkov´ a
5
48
Vlastislav
Salajka
5
36
Pavel
Schmid
10
48
Jaroslav
Smutn´ y
9
87
Radom´ır
Sokol´ aˇr
10
72
Alfred
Strauss
8
58
Richard
Svoboda
6
29
Milan
ˇ Smak
5
24
Petr
ˇ ep´ Stˇ anek
5
48
Bˇretislav
Tepl´ y
5
48
Jiˇr´ı
Vala
5
48
Jan
Vanˇerek
10
48
V´ aclav
Vesel´ y
17
82
Miroslav
Voˇrechovsk´ y
14
100
Nikol
ˇ zkov´ Ziˇ a
10
48
V´ aclav
Sad´ılek (s1)
10
36
Augustin
Leiter (s2)
12
44
24
ˇ ast GB – osobn´ı n´aklady C´
P104/12/G083
Mzdy odborn´ ych pracovn´ık˚ u Jm´eno
Pˇr´ıjmen´ı
Juraj
Chalmovsk´ y (s3)
Pracovn´ ı u ´ vazek na ˇ reˇ sen´ ı (v % u ´ vazku)
ˇ Poˇ zadavky na mzdy od GA CR
12
44
s4
8
28
s5
8
28
s6
10
36
s7
10
36
s8
10
36
s9
4
13
s10
4
13
s11
5
17
s12
20
72
Mzdy technick´ ych a administrativn´ıch pracovn´ık˚ u Souhrnn´ y pracovn´ı u ´vazek technick´ ych a administrativn´ıch pracovn´ık˚ u (v % u ´vazku)
ˇ 2 Poˇzadavky na mzdy od GA CR
29
110
Ostatn´ı osobn´ı n´ aklady (na z´akladˇe dohod o proveden´ı pr´ace nebo dohod o pracovn´ı ˇcinnosti) Typ ˇcinnosti (pracovn´ı n´ aplˇ n), popˇr´ıpadˇe jm´eno studenta (s)
Poˇzadavky 133
Zd˚ uvodnˇen´ı: Jedn´ a se o zapojen´ı student˚ u magistersk´eho a doktorsk´eho studia (cca 3-5 student˚ u), kteˇr´ı budou prov´ adˇet d´ılˇc´ı pr´ ace v´ ypoˇctov´e a experiment´ aln´ı.
Pokud se budou pr´ ace na projektu u ´ˇ castnit studenti, uv´ ad´ı se jm´ eno a pˇr´ıjmen´ı s oznaˇ cen´ım (s)“. V pˇr´ıpadˇ e, ˇ ze studenti budou ” odmˇ en ˇov´ an´ı z poloˇ zky OON uv´ ad´ı se tyto u ´daje do pole “typ pracovn´ı ˇ cinnosti”.
25
ˇ ast GB – osobn´ı n´ C´ aklady
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Centrum dopravn´ıho v´ yzkumu, v.v.i. prof. Ing. Karel Posp´ıˇsil, Ph.D., MBA P104/12/G083
Osobn´ı n´aklady pro spoluuchazeˇce pro prvn´ı rok ˇreˇsen´ı Mzdy odborn´ ych pracovn´ık˚ u Pracovn´ı u ´vazek na ˇreˇsen´ı (v % u ´vazku)1
Poˇzadavky na mzdy od ˇ 2 GA CR
Jm´eno
Pˇr´ıjmen´ı
Karel
Posp´ıˇsil
10
96
Petr
ˇ Senk
15
108
Josef
Stryk
15
108
Jiˇr´ı
Jedliˇcka
10
72
Radek
Matula
10
48
Ivo
Dost´ al
10
48
Aleˇs
Fr´ ybort
25
120
Dagmar
Posp´ıˇsilov´ a
10
48
Aleˇs
Kratochv´ıl
10
48
V´ıtˇezslav
Kˇriv´ anek
10
48
Jiˇr´ı
Huzl´ık
15
72
Roman
Liˇcbinsk´ y
25
120
Vilma
Jandov´ a
10
48
Mzdy technick´ ych a administrativn´ıch pracovn´ık˚ u Souhrnn´ y pracovn´ı u ´vazek technick´ ych a administrativn´ıch pracovn´ık˚ u (v % u ´vazku)
ˇ 2 Poˇzadavky na mzdy od GA CR
15
54
1V
procentech odpov´ıdaj´ıc´ıch rozsahu u ´vazku zamˇ estnanc˚ u na ˇreˇsen´ı grantov´ eho projektu. ˇ na prvn´ı rok se celkov´ a v´ yˇse hrub´ e mzdy nebo odmˇ eny, resp. jejich pomˇ ern´ aˇ c´ ast poˇ zadovan´ a z prostˇredk˚ u GA CR ˇreˇsen´ı grantov´ eho projektu. 2 Uv´ ad´ı
26
ˇ ast GB – osobn´ı n´aklady C´
P104/12/G083
Ostatn´ı osobn´ı n´ aklady (na z´akladˇe dohod o proveden´ı pr´ace nebo dohod o pracovn´ı ˇcinnosti) Typ ˇcinnosti (pracovn´ı n´ aplˇ n), popˇr´ıpadˇe jm´eno studenta
Poˇzadavky
Zd˚ uvodnˇen´ı: Pokud se budou pr´ ace na projektu u ´ˇ castnit studenti, uv´ ad´ı se jm´ eno a pˇr´ıjmen´ı s oznaˇ cen´ım (s)“. V pˇr´ıpadˇ e, ˇ ze studenti budou ” odmˇ en ˇov´ an´ı z poloˇ zky OON uv´ ad´ı se tyto u ´daje do pole “typ pracovn´ı ˇ cinnosti”.
27
ˇ ast GB – osobn´ı n´ C´ aklady
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Univerzita Karlova v Praze – Pˇ r´ırodovˇ edeck´ a fakulta ˇ ak, Ph.D. doc. RNDr. Jiˇr´ı Z´ P104/12/G083
Osobn´ı n´aklady pro spoluuchazeˇce pro prvn´ı rok ˇreˇsen´ı Mzdy odborn´ ych pracovn´ık˚ u Pracovn´ı u ´vazek na ˇreˇsen´ı (v % u ´vazku)1
Poˇzadavky na mzdy od ˇ 2 GA CR
Jm´eno
Pˇr´ıjmen´ı
Jiˇr´ı
ˇ ak Z´
20
77
Kryˇstof
Verner
20
65
V´ aclav
Kachl´ık
10
38
S
1
100
288
S
2
100
288
Mzdy technick´ ych a administrativn´ıch pracovn´ık˚ u Souhrnn´ y pracovn´ı u ´vazek technick´ ych a administrativn´ıch pracovn´ık˚ u (v % u ´vazku)
ˇ 2 Poˇzadavky na mzdy od GA CR
0
0
Ostatn´ı osobn´ı n´ aklady (na z´akladˇe dohod o proveden´ı pr´ace nebo dohod o pracovn´ı ˇcinnosti) Typ ˇcinnosti (pracovn´ı n´ aplˇ n), popˇr´ıpadˇe jm´eno studenta
Poˇzadavky
Zd˚ uvodnˇen´ı: Pokud se budou pr´ ace na projektu u ´ˇ castnit studenti, uv´ ad´ı se jm´ eno a pˇr´ıjmen´ı s oznaˇ cen´ım (s)“. V pˇr´ıpadˇ e, ˇ ze studenti budou ” odmˇ en ˇov´ an´ı z poloˇ zky OON uv´ ad´ı se tyto u ´daje do pole “typ pracovn´ı ˇ cinnosti”.
1V
procentech odpov´ıdaj´ıc´ıch rozsahu u ´vazku zamˇ estnanc˚ u na ˇreˇsen´ı grantov´ eho projektu. ˇ na prvn´ı rok se celkov´ a v´ yˇse hrub´ e mzdy nebo odmˇ eny, resp. jejich pomˇ ern´ aˇ c´ ast poˇ zadovan´ a z prostˇredk˚ u GA CR ˇreˇsen´ı grantov´ eho projektu. 2 Uv´ ad´ı
28
ˇ ast GD2 - bibliografie C´
Uchazeˇc: Navrhovatel: Registraˇcn´ı ˇc´ıslo:
ˇ Cesk´ e vysok´ e uˇ cen´ı technick´ e v Praze – Fakulta stavebn´ı prof. Dr. Ing Boˇ rek Patz´ ak P104/12/G083
´ Upln´ e bibliografick´ eu ´ daje o osmi nejv´ yznamnˇ ejˇ s´ıch v´ ysledc´ıch vˇ edeck´ e a v´ yzkumn´ eˇ cinnosti definovan´ ych v aktu´ alnˇ e platn´ e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje
V´ ysledek
K´ od druhu v´ ysledku
Poˇcet citac´ı (bez autocitac´ı) podle WOS
Impaktn´ı faktor ˇ casopisu nebo kategorie ERIH
1.
B. Patz´ ak and M. Jir´ asek. Adaptive resolution of localized damage in quasibrittle materials. Journal of Engineering Mechanics Division ASCE, 130:720– 732, 2004.
Jimp
22
0.980
2.
B. Patz´ ak and M. Jir´ asek. Process zone resolution by extended finite elements. Engineering Fracture Mechanics, 70(78):837–1097, May 2003.
Jimp
20
1.447
3.
M. Jir´ asek and B. Patz´ ak. Consistent tangent stiffness for nonlocal damage models. Computers and Structures, 80(14-15):1279–1293, June 2002.
Jimp
33
1.440
4.
B. Patz´ ak and Z. Bittnar. Design of object oriented finite element code. Advances in Engineering Software, 32(10-11):759–767, 2001.
Jimp
22
1.045
5.
B. Patz´ ak and Z. Bittnar. Modeling of fresh concrete flow. Computers and Structures, 87(15-16):962–969, 2009.
Jimp
0
1.440
6.
R. Chamrov´ a and B. Patz´ ak. Objectoriented programming and the extended finite-element method. Engineering and Computational Mechanics, 163(EM4):271–278, 2010.
Jneimp
0
7.
B. Patz´ ak, OOFEM - multiphysic parallel finite element sotware, www.oofem.org, 2011
R
0
1 Vyplnit
pouze pro ˇ casopisy nezaˇrazen´ e na WOS
29
Poˇcet citac´ı v oborech NRRE
ˇ Casopis je zaˇrazen v datab´ azi SCOPUS1
ˇ ast GD2 - bibliografie C´
P104/12/G083
´ Upln´ e bibliografick´e u ´daje o osmi nejv´ yznamnˇejˇs´ıch v´ ysledc´ıch vˇedeck´e a v´ yzkumn´e ˇcinnosti definovan´ ych v aktu´ alnˇe platn´e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje
8.
V´ ysledek
K´ od druhu v´ ysledku
Poˇcet citac´ı (bez autocitac´ı) podle WOS
B. Patz´ ak and Z. Bittnar. Rheology and simulation of fresh concrete flow. In M. Papadrakakis and B.H.V. Topping, editors, Trends in Engineering Computational Technology, chapter 4, pages 61–80. Civil-Comp Press Ltd, Stirling, 2008.
C
0
Impaktn´ı faktor ˇ casopisu nebo kategorie ERIH
Poˇcet citac´ı v oborech NRRE
ˇ Casopis je zaˇrazen v datab´ azi SCOPUS
Celkov´ e poˇ cty v´ ysledk˚ u definovan´ ych v aktu´ alnˇ e platn´ e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje od roku 2006 vˇ cetnˇ e (podle RIV): 1a. ˇcl´ anek v odborn´em periodiku impaktovan´em (druh v´ ysledku Jimp )
2
1b. ˇcl´ anek v odborn´em periodiku neimpaktovan´em (druh v´ ysledku Jneimp )
2
1c. ˇcl´ anek v ˇcesk´em odborn´em recenzovan´em ˇcasopise (druh v´ ysledku Jrec )
0
2a. odborn´ a kniha (druh v´ ysledku B)
0
2b. kapitola v odborn´e knize (druh v´ ysledku C)
2
3. ˇcl´ anek ve sborn´ıku (druh v´ ysledku D)
24
4. patent (druh v´ ysledku P)
0
5. uˇzitn´ y nebo pr˚ umyslov´ y vzor (druh v´ ysledku F)
0
6. poloprovoz, ovˇeˇren´ a technologie, odr˚ uda, plemeno (druh v´ ysledku Z)
0
7. prototyp, funkˇcn´ı vzorek (druh v´ ysledku G)
0
8. poskytovatelem realizovan´ y v´ ysledek (druh v´ ysledku H)
0
9. specializovan´ a mapa (druh v´ ysledku L)
0
10. certifikovan´ a metodika a postup (druh v´ ysledku N)
0
11. software (druh v´ ysledku R)
8
12. v´ yzkumn´ a zpr´ ava obsahuj´ıc´ı utajovan´e informace podle zvl´aˇstn´ıho pr´avn´ıho pˇredpisu (druh v´ ysledku V)
0
Celkov´ y poˇ cet citac´ı vˇ cetnˇ e autocitac´ı na vˇ sechny pr´ ace podle Web of Science H-index podle Web of Science
150 5
30
ˇ ast GD2 - bibliografie C´
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Vysok´ e uˇ cen´ı technick´ e v Brnˇ e – Fakulta stavebn´ı prof. Ing. Drahom´ır Nov´ak, DrSc. P104/12/G083
´ Upln´ e bibliografick´ eu ´ daje o osmi nejv´ yznamnˇ ejˇ s´ıch v´ ysledc´ıch vˇ edeck´ e a v´ yzkumn´ eˇ cinnosti definovan´ ych v aktu´ alnˇ e platn´ e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje
V´ ysledek
K´ od druhu v´ ysledku
Poˇcet citac´ı (bez autocitac´ı) podle WOS
Impaktn´ı faktor ˇ casopisu nebo kategorie ERIH
1.
´ NOVAK, D., STOYANOFF, S., HERDA, H. 1995. Error assessment for wind histories generated by autoregressive method. Structural Safety, 17(2), 79- 90. ISSN 0167-4730.
Jimp
2
2.276
2.
ˇ ´ M., NOVAK. ´ VORECHOVSK Y, D. 2009. Correlation control in smallsample Monte Carlo type simulations I: A simulated annealing approach. Probabilistic Engineering Mechanics 24(3)452-462. ISSN 0266-8920.
Jimp
0
1.221
3.
´ ´ D. 2006. ANN NOVAK, D., LEHKY, Inverse Analysis Based on Stochastic Small-Sample Training Set Simulation. Engineering Application of Artificial Intelligence, 19 (7), 731-740, ISSN 0952-1976.
Jimp
7
1.444
4.
ˇ ˇ BAZANT, Z.P., PANG, S.D., VORE´ ´ CHOVSKY, M., NOVAK, D. 2007. Energetic-Statistical Size Effect Simulated by SFEM with Stratified Sampling and Crack Band Model. International Journal of Numerical Methods in Engineering (John Wiley & Sons), 71 (11), 1297-1320, ISSN 0029-5981.
Jimp
4
2.025
5.
ˇ ˇ ´ BAZANT, Z.P., VORECHOVSK Y, ´ M., NOVAK, D. 2007. Asymptotic prediction of energetic-statistical size effect from deterministic finite element solutions. Journal of Engineering Mechanics (ASCE), 133 (2), 153-162, ISSN 0733-9399.
Jimp
2
0.980
1 Vyplnit
pouze pro ˇ casopisy nezaˇrazen´ e na WOS
31
Poˇcet citac´ı v oborech NRRE
ˇ Casopis je zaˇrazen v datab´ azi SCOPUS1
ˇ ast GD2 - bibliografie C´
P104/12/G083
´ Upln´ e bibliografick´e u ´daje o osmi nejv´ yznamnˇejˇs´ıch v´ ysledc´ıch vˇedeck´e a v´ yzkumn´e ˇcinnosti definovan´ ych v aktu´ alnˇe platn´e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje
V´ ysledek
K´ od druhu v´ ysledku
Poˇcet citac´ı (bez autocitac´ı) podle WOS
Impaktn´ı faktor ˇ casopisu nebo kategorie ERIH
6.
ˇ ´ BAZANT, Z.P., ZHOU, Y., NOVAK, D., DANIEL, I.M. 2004. Size effect on flexural strength of fiber-composite laminates. Journal of Engineering Materials and Technology - Transactions of the ASME. 126 (1), 29-37. ISSN 00944289.
Jimp
3
0.815
7.
ˇ ´ BAZANT, Z.P., NOVAK, D. 2000. Energetic-statistical size effect in quasibrittle failure at crack initiation. ACI Materials Journal, 97(3), 381-392, ISSN 0889-325X.
Jimp
10
0.896
8.
ˇ ´ BAZANT, Z.P., NOVAK, D. 2000. Probabilistic nonlocal theory for quasibrittle fracture initiation and size effect. I: Theory. Journal of Engineering Mechanics (ASCE), 126 (2),166-174, ISSN 0733-9399.
Jimp
9
0.980
Poˇcet citac´ı v oborech NRRE
ˇ Casopis je zaˇrazen v datab´ azi SCOPUS
Celkov´ e poˇ cty v´ ysledk˚ u definovan´ ych v aktu´ alnˇ e platn´ e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje od roku 2006 vˇ cetnˇ e (podle RIV): 1a. ˇcl´ anek v odborn´em periodiku impaktovan´em (druh v´ ysledku Jimp )
4
1b. ˇcl´ anek v odborn´em periodiku neimpaktovan´em (druh v´ ysledku Jneimp )
3
1c. ˇcl´ anek v ˇcesk´em odborn´em recenzovan´em ˇcasopise (druh v´ ysledku Jrec )
2
2a. odborn´ a kniha (druh v´ ysledku B)
0
2b. kapitola v odborn´e knize (druh v´ ysledku C)
8
3. ˇcl´ anek ve sborn´ıku (druh v´ ysledku D)
53
4. patent (druh v´ ysledku P)
0
5. uˇzitn´ y nebo pr˚ umyslov´ y vzor (druh v´ ysledku F)
0
6. poloprovoz, ovˇeˇren´ a technologie, odr˚ uda, plemeno (druh v´ ysledku Z)
0
7. prototyp, funkˇcn´ı vzorek (druh v´ ysledku G)
0
8. poskytovatelem realizovan´ y v´ ysledek (druh v´ ysledku H)
0
9. specializovan´ a mapa (druh v´ ysledku L)
0
10. certifikovan´ a metodika a postup (druh v´ ysledku N)
0
11. software (druh v´ ysledku R)
0
32
ˇ ast GD2 - bibliografie C´
P104/12/G083
Celkov´e poˇcty v´ ysledk˚ u definovan´ ych v aktu´ alnˇe platn´e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje od roku 2006 vˇcetnˇe (podle RIV):
12. v´ yzkumn´ a zpr´ ava obsahuj´ıc´ı utajovan´e informace podle zvl´aˇstn´ıho pr´avn´ıho pˇredpisu (druh v´ ysledku V) Celkov´ y poˇ cet citac´ı vˇ cetnˇ e autocitac´ı na vˇ sechny pr´ ace podle Web of Science H-index podle Web of Science
0 139 7
33
ˇ ast GD2 - bibliografie C´
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Centrum dopravn´ıho v´ yzkumu, v.v.i. prof. Ing. Karel Posp´ıˇsil, Ph.D., MBA P104/12/G083
´ Upln´ e bibliografick´ eu ´ daje o osmi nejv´ yznamnˇ ejˇ s´ıch v´ ysledc´ıch vˇ edeck´ e a v´ yzkumn´ eˇ cinnosti definovan´ ych v aktu´ alnˇ e platn´ e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje
V´ ysledek
K´ od druhu v´ ysledku
Poˇcet citac´ı (bez autocitac´ı) podle WOS
Impaktn´ı faktor ˇ casopisu nebo kategorie ERIH
1.
Stulirova, J., Pospisil, K. - Observation of Bitumen Microstructure Changesusing Scanning Electron Microscopy, ROAD MATERIALS AND PAVEMENT DESIGN, Vol. 9 Issue: 4 Pages: 745-754, 2008
Jimp
0
0.383
2.
Korenska M, Pazdera L, Pospisil K, et al. - Detection of the reinforcementcorrosion in prestressed concrete girders, In Proc. 8th International Conference of the Slovenian Society for NonDestructive Testing on the Application of Contemporary Non-Destructive Testing in Engineering, Pages: 317-322, Published: 2005
D
0
3.
ˇ POSP´ISIL, Karel, ZEDN´IK, Petr. Limitation of geosynthetics usage on road subgrade. Transactions on Transport Sciences, 2008, no. 2., p. 69 78, ISSN 1802-971X (print version), ISSN 1802-9876 (on-line version)
Jrec
4.
Stryk, J., Pospisil, K., Kotes, P. - Systematic Decision Making Processes Associated with Maintenance and Reconstruction of Bridges, Pages: 174, CDV, 2009
B
1 Vyplnit
pouze pro ˇ casopisy nezaˇrazen´ e na WOS
34
Poˇcet citac´ı v oborech NRRE
ˇ Casopis je zaˇrazen v datab´ azi SCOPUS1
ˇ ast GD2 - bibliografie C´
P104/12/G083
´ Upln´ e bibliografick´e u ´daje o osmi nejv´ yznamnˇejˇs´ıch v´ ysledc´ıch vˇedeck´e a v´ yzkumn´e ˇcinnosti definovan´ ych v aktu´ alnˇe platn´e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje
V´ ysledek
K´ od druhu v´ ysledku
5.
Pospisil, K. Road Construction Testing. In MALDONADO, A., ARNAUD, J. Large-scale test facilitiesfor civil engineering, road and transport: European analysis and proposals. 1st ed. Paris : Laboratoire Central des Ponts et Chausees, 2006, ISBN 272082447-X
C
6.
Stryk, J., Pospisil, K. - Diagnostic Methods for Concrete and Bridgesby Acoustic Emission. In. Turk, A. S., Hocaoglu, K. A., Vertiy, A. A., Subsurface Sensing. pp. 844-860, Wiley, 2011, ISBN 978-0-470-13388-0
C
7.
ˇ MORAVEC, Martin, POSP´ISIL, Karel. Effectiveness of drainage grooves in road wearing course. Transactions on Transport Sciences, 2008, no. 3, p. 125 134. ISSN 1802-971X (print version), ISSN 1802-9876 (on-line version)
Jrec
8.
Pospisil K., Frybort A., Kratochvil A.et al: Scanning Electron Microscopy Method as a Tool for the Evaluationof Selected Material Microstructure. Transaction on Transport Sciences,2008, No.1, p.13-20. ISSN 1802-971X
Jrec
Poˇcet citac´ı (bez autocitac´ı) podle WOS
Impaktn´ı faktor ˇ casopisu nebo kategorie ERIH
Poˇcet citac´ı v oborech NRRE
ˇ Casopis je zaˇrazen v datab´ azi SCOPUS
Celkov´ e poˇ cty v´ ysledk˚ u definovan´ ych v aktu´ alnˇ e platn´ e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje od roku 2006 vˇ cetnˇ e (podle RIV): 1a. ˇcl´ anek v odborn´em periodiku impaktovan´em (druh v´ ysledku Jimp )
1
1b. ˇcl´ anek v odborn´em periodiku neimpaktovan´em (druh v´ ysledku Jneimp )
1
1c. ˇcl´ anek v ˇcesk´em odborn´em recenzovan´em ˇcasopise (druh v´ ysledku Jrec )
7
2a. odborn´ a kniha (druh v´ ysledku B)
1
2b. kapitola v odborn´e knize (druh v´ ysledku C)
2
3. ˇcl´ anek ve sborn´ıku (druh v´ ysledku D)
1
4. patent (druh v´ ysledku P)
0
5. uˇzitn´ y nebo pr˚ umyslov´ y vzor (druh v´ ysledku F)
9
6. poloprovoz, ovˇeˇren´ a technologie, odr˚ uda, plemeno (druh v´ ysledku Z)
0
35
ˇ ast GD2 - bibliografie C´
P104/12/G083
Celkov´e poˇcty v´ ysledk˚ u definovan´ ych v aktu´ alnˇe platn´e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje od roku 2006 vˇcetnˇe (podle RIV):
7. prototyp, funkˇcn´ı vzorek (druh v´ ysledku G)
0
8. poskytovatelem realizovan´ y v´ ysledek (druh v´ ysledku H)
0
9. specializovan´ a mapa (druh v´ ysledku L)
0
10. certifikovan´ a metodika a postup (druh v´ ysledku N)
3
11. software (druh v´ ysledku R)
0
12. v´ yzkumn´ a zpr´ ava obsahuj´ıc´ı utajovan´e informace podle zvl´aˇstn´ıho pr´avn´ıho pˇredpisu (druh v´ ysledku V)
0
Celkov´ y poˇ cet citac´ı vˇ cetnˇ e autocitac´ı na vˇ sechny pr´ ace podle Web of Science
3
H-index podle Web of Science
0
36
ˇ ast GD2 - bibliografie C´
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Univerzita Karlova v Praze – Pˇ r´ırodovˇ edeck´ a fakulta ˇ ak, Ph.D. doc. RNDr. Jiˇr´ı Z´ P104/12/G083
´ Upln´ e bibliografick´ eu ´ daje o osmi nejv´ yznamnˇ ejˇ s´ıch v´ ysledc´ıch vˇ edeck´ e a v´ yzkumn´ eˇ cinnosti definovan´ ych v aktu´ alnˇ e platn´ e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje
V´ ysledek
K´ od druhu v´ ysledku
Poˇcet citac´ı (bez autocitac´ı) podle WOS
Impaktn´ı faktor ˇ casopisu nebo kategorie ERIH
1.
ˇ ak J, Paterson SR (2005) CharacteZ´ ristics of internal contacts in the Tuolumne Batholith, central Sierra Nevada, California (USA): implications for episodic emplacement and physical processes in a continental arc magma chamber. GEOLOGICAL SOCIETY OF AMERICA BULLETIN 117: 12421255.
Jimp
18
3,101
2.
ˇ ak J, Holub FV, Verner K (2005): Z´ Tectonic evolution of a continental magmatic arc from transpression in the upper crust to exhumation of midcrustal orogenic root recorded by episodically emplaced plutons: the Central Bohemian Plutonic Complex (Bohemian Massif). INTERNATIONAL JOURNAL OF EARTH SCIENCES 94: 385400.
Jimp
14
2,445
3.
ˇ ak J, Schulmann K, Hrouda F (2005): Z´ Multiple magmatic fabrics in the S´ azava pluton (Bohemian Massif, Czech Republic): a result of superposition of wrench-dominated regional transpression on final emplacement. JOURNAL OF STRUCTURAL GEOLOGY 27: 805822.
Jimp
11
1,732
1 Vyplnit
pouze pro ˇ casopisy nezaˇrazen´ e na WOS
37
Poˇcet citac´ı v oborech NRRE
ˇ Casopis je zaˇrazen v datab´ azi SCOPUS1
ˇ ast GD2 - bibliografie C´
P104/12/G083
´ Upln´ e bibliografick´e u ´daje o osmi nejv´ yznamnˇejˇs´ıch v´ ysledc´ıch vˇedeck´e a v´ yzkumn´e ˇcinnosti definovan´ ych v aktu´ alnˇe platn´e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje
V´ ysledek
K´ od druhu v´ ysledku
Poˇcet citac´ı (bez autocitac´ı) podle WOS
Impaktn´ı faktor ˇ casopisu nebo kategorie ERIH
4.
ˇ ak J, Nahodilov´ Verner K, Z´ a R, Holub FV (2008): Magmatic fabrics and emplacement of the cone-sheet-bearing Kn´ıˇzec´ı Stolec durbachite pluton (Moldanubian Unit, Bohemian Massif): implications for mid-crustal reworking of granulitic lower crust in the Central European Variscides. INTERNATIONAL JOURNAL OF EARTH SCIENCES 97: 1933.
Jimp
10
2,445
5.
ˇ ak J, Klom´ınsk´ Z´ y J (2007): Magmatic structures in the Krkonoˇse-Jizera Plutonic Complex, Bohemian Massif: evidence for localized multiphase flow and small-scale thermal-mechanical instabilities in a granitic magma chamber. JOURNAL OF VOLCANOLOGY AND GEOTHERMAL RESEARCH 164: 254267.
Jimp
9
1,921
6.
ˇ ak J, Paterson SR, Memeti V (2007): Z´ Four magmatic fabrics in the Tuolumne batholith, central Sierra Nevada, California (USA): implications for interpreting fabric patterns in plutons and evolution of magma chambers in the upper crust. GEOLOGICAL SOCIETY OF AMERICA BULLETIN 119: 184201.
Jimp
8
3,101
7.
ˇ ak J, Paterson SR (2006): Roof and Z´ walls of the Red Mountain Creek pluton, eastern Sierra Nevada, California (USA): implications for process zones during pluton emplacement. JOURNAL OF STRUCTURAL GEOLOGY 28: 575587.
Jimp
6
1,732
8.
ˇ ak J, Verner K, T´ Z´ ycov´ a P (2008) Multiple magmatic fabrics in plutons: an overlooked tool for exploring interactions between magmatic processes and regional deformation? Geological Magazine 145, 537-551.
Jimp
4
2,059
38
Poˇcet citac´ı v oborech NRRE
ˇ Casopis je zaˇrazen v datab´ azi SCOPUS
ˇ ast GD2 - bibliografie C´
P104/12/G083
Celkov´ e poˇ cty v´ ysledk˚ u definovan´ ych v aktu´ alnˇ e platn´ e Metodice hodnocen´ı v´ ysledk˚ u v´ yzkumu a v´ yvoje od roku 2006 vˇ cetnˇ e (podle RIV): 1a. ˇcl´ anek v odborn´em periodiku impaktovan´em (druh v´ ysledku Jimp )
21
1b. ˇcl´ anek v odborn´em periodiku neimpaktovan´em (druh v´ ysledku Jneimp )
0
1c. ˇcl´ anek v ˇcesk´em odborn´em recenzovan´em ˇcasopise (druh v´ ysledku Jrec )
0
2a. odborn´ a kniha (druh v´ ysledku B)
0
2b. kapitola v odborn´e knize (druh v´ ysledku C)
0
3. ˇcl´ anek ve sborn´ıku (druh v´ ysledku D)
0
4. patent (druh v´ ysledku P)
0
5. uˇzitn´ y nebo pr˚ umyslov´ y vzor (druh v´ ysledku F)
0
6. poloprovoz, ovˇeˇren´ a technologie, odr˚ uda, plemeno (druh v´ ysledku Z)
0
7. prototyp, funkˇcn´ı vzorek (druh v´ ysledku G)
0
8. poskytovatelem realizovan´ y v´ ysledek (druh v´ ysledku H)
0
9. specializovan´ a mapa (druh v´ ysledku L)
0
10. certifikovan´ a metodika a postup (druh v´ ysledku N)
0
11. software (druh v´ ysledku R)
0
12. v´ yzkumn´ a zpr´ ava obsahuj´ıc´ı utajovan´e informace podle zvl´aˇstn´ıho pr´avn´ıho pˇredpisu (druh v´ ysledku V)
0
Celkov´ y poˇ cet citac´ı vˇ cetnˇ e autocitac´ı na vˇ sechny pr´ ace podle Web of Science H-index podle Web of Science
190 9
39
ˇ ast GE C´
Uchazeˇc: Navrhovatel: Registraˇcn´ı ˇc´ıslo:
ˇ Cesk´ e vysok´ e uˇ cen´ı technick´ e v Praze – Fakulta stavebn´ı prof. Dr. Ing Boˇ rek Patz´ ak P104/12/G083
´ Udaje o bˇeˇz´ıc´ıch, navrhovan´ ych a ukonˇcen´ ych projektech uchazeˇce Ne´ upln´e uveden´ı u ´daj˚ u bude d˚ uvodem k vyˇrazen´ı n´ avrhu projektu z t´eto veˇrejn´e soutˇeˇze
Projekty v souˇcasn´e dobˇe podporovan´e Poskytovatel:
GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
P105/10/1402 – MuPIF-N´ astroj pro komplexn´ı multifyzik´ aln´ı simulace
Podpora tis. Kˇc
1686
Doba ˇreˇsen´ı od-do (roky)
2010-01-01 – 2012-12-31
Pracovn´ı u ´vazek:
10%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
ˇ CVUT, Fakulta stavebn´ı - ˇ reˇ sitel
Poskytovatel:
GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
P108/11/1243 – Large-Strain Model for Failure of Trabecular Bone
Podpora tis. Kˇc
4286
Doba ˇreˇsen´ı od-do (roky)
2011-01-01 – 2013-12-31
Pracovn´ı u ´vazek:
15%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
CVUT, Fakulta stavebn´ı - spoluˇ reˇ sitel
Poskytovatel:
GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
103/09/2009 – Isogeometric Analysis in Structural Mechanics
Podpora tis. Kˇc
1153
Doba ˇreˇsen´ı od-do (roky)
2009-01-01 – 2011-12-31
Pracovn´ı u ´vazek:
10%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
ˇ CVUT, Fakulta stavebn´ı - spoluˇ reˇ sitel
40
ˇ ast GE C´
P104/12/G083
Poskytovatel:
GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
P105/10/1682 – Solution of large hydro-thermomechanical problems using adaptive hp-FEM
Podpora tis. Kˇc
3598
Doba ˇreˇsen´ı od-do (roky)
2010-01-01 – 2012-12-31
Pracovn´ı u ´vazek:
5%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
ˇ CVUT, Fakulta Stavebn´ı - spoluˇ reˇ sitel
Poskytovatel:
ˇ MSMT
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
MSM 6840770003 – Algorithms for Computer Simulation and Application in Engineering
Podpora tis. Kˇc
0
Doba ˇreˇsen´ı od-do (roky)
2005-01-01 – 2011-12-31
Pracovn´ı u ´vazek:
0%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
ˇ CVUT, Fakulta stavebn´ı - ˇ clen ˇ reˇ sitelsk´ eho t´ ymu
V souˇcasn´e dobˇe nejsou ˇz´adn´e navrhovan´e projekty. ˇ ukonˇ Pˇ rehled hodnocen´ı grantov´ ych projekt˚ u GA CR cen´ ych v posledn´ıch tˇ rech letech, u kter´ ych byl navrhovatel ˇ reˇ sitelem nebo spoluˇ reˇ sitelem: Registraˇcn´ı ˇc´ıslo
Hodnocen´ı
103/06/1845
splnˇeno
103/07/1455
splnˇeno
106/08/1508
splnˇeno
41
ˇ ast GE C´
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Vysok´ e uˇ cen´ı technick´ e v Brnˇ e – Fakulta stavebn´ı prof. Ing. Drahom´ır Nov´ak, DrSc. P104/12/G083
´ Udaje o bˇeˇz´ıc´ıch, navrhovan´ ych a ukonˇcen´ ych projektech spoluuchazeˇce Ne´ upln´e uveden´ı u ´daj˚ u bude d˚ uvodem k vyˇrazen´ı n´ avrhu projektu z t´eto veˇrejn´e soutˇeˇze
Projekty v souˇcasn´e dobˇe podporovan´e Poskytovatel:
ˇ GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
P105/11/1385 – Inverzn´ı probl´ emy spolehlivosti konstrukc´ı
Podpora tis. Kˇc
2979
Doba ˇreˇsen´ı od-do (roky)
2011-01-01 – 2013-12-31
Pracovn´ı u ´vazek:
10%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
VUT v Brnˇ e, fakulta stavebn´ı - navrhovatel
Poskytovatel:
ˇ GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
P105/10/1156 – Komplexn´ı modelov´ an´ı betonov´ ych konstrukc´ı
Podpora tis. Kˇc
4899
Doba ˇreˇsen´ı od-do (roky)
2010-01-01 – 2012-12-31
Pracovn´ı u ´vazek:
10%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
VUT v Brnˇ e, fakulta stavebn´ı - navrhovatel
Poskytovatel:
ˇ GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
P104/10/2359 – Pˇ retv´ arn´ e vlastnosti beton˚ u vyˇ sˇ s´ıch pevnost´ı
Podpora tis. Kˇc
3606
Doba ˇreˇsen´ı od-do (roky)
2010-01-01 – 2012-12-31
Pracovn´ı u ´vazek:
15%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
VUT v Brnˇ e, fakulta stavebn´ı - ˇ clen t´ ymu
42
ˇ ast GE C´
P104/12/G083
Projekty v souˇcasnosti navrhovan´e k podpoˇre Poskytovatel:
ˇ GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
P407/12/0532 – Alcohol and drug addiction modelling by artificial neural networks (ADAM)
Podpora tis. Kˇc
1584
Doba ˇreˇsen´ı od-do (roky)
2012-01-01 – 2014-12-31
Pracovn´ı u ´vazek:
15%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
VUT v Brnˇ e, fakulta stavebn´ı - spolunavrhovatel
ˇ ukonˇ Pˇ rehled hodnocen´ı grantov´ ych projekt˚ u GA CR cen´ ych v posledn´ıch tˇ rech letech, u kter´ ych byl spolunavrhovatel ˇ reˇ sitelem nebo spoluˇ reˇ sitelem: Registraˇcn´ı ˇc´ıslo
Hodnocen´ı
103/07/0760
vynikaj´ıc´ı
103/08/0752
dosud nehodnoceno
43
ˇ ast GE C´
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Centrum dopravn´ıho v´ yzkumu, v.v.i. prof. Ing. Karel Posp´ıˇsil, Ph.D., MBA P104/12/G083
´ Udaje o bˇeˇz´ıc´ıch, navrhovan´ ych a ukonˇcen´ ych projektech spoluuchazeˇce Ne´ upln´e uveden´ı u ´daj˚ u bude d˚ uvodem k vyˇrazen´ı n´ avrhu projektu z t´eto veˇrejn´e soutˇeˇze
Projekty v souˇcasn´e dobˇe podporovan´e Poskytovatel:
ˇ Grantov´ a agentura Cesk´ e republiky
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
GA103/09/1499 – V´ıcekan´ alov´ y georadar
Podpora tis. Kˇc
1788
Doba ˇreˇsen´ı od-do (roky)
2009-01-01 – 2011-12-31
Pracovn´ı u ´vazek:
5%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
pˇ r´ıjemce
Poskytovatel:
ˇ Grantov´ a agentura Cesk´ e republiky
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
GA104/10/1430 – Neline´ arn´ı ultrazvukov´ a defektoskopie
Podpora tis. Kˇc
510
Doba ˇreˇsen´ı od-do (roky)
2010-03-01 – 2012-12-31
Pracovn´ı u ´vazek:
5%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
spolupˇ r´ıjemce
Projekty v souˇcasnosti navrhovan´e k podpoˇre Poskytovatel:
ˇ Grantov´ a agentura Cesk´ e republiky
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
P104/12/0747 – Monitorov´ an´ı a anal´ yza koroze v´ yztuˇ zn´ e oceli
Podpora tis. Kˇc
1051
Doba ˇreˇsen´ı od-do (roky)
2012-01-01 – 2014-12-31
Pracovn´ı u ´vazek:
5%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
spolunavrhovatel 44
ˇ ast GE C´
P104/12/G083
ˇ ukonˇ Pˇ rehled hodnocen´ı grantov´ ych projekt˚ u GA CR cen´ ych v posledn´ıch tˇ rech letech, u kter´ ych byl spolunavrhovatel ˇ reˇ sitelem nebo spoluˇ reˇ sitelem: Registraˇcn´ı ˇc´ıslo
Hodnocen´ı
103/06/1711
splnˇeno
45
ˇ ast GE C´
Spoluuchazeˇc: Spolunavrhovatel: Registraˇcn´ı ˇc´ıslo:
Univerzita Karlova v Praze – Pˇ r´ırodovˇ edeck´ a fakulta ˇ ak, Ph.D. doc. RNDr. Jiˇr´ı Z´ P104/12/G083
´ Udaje o bˇeˇz´ıc´ıch, navrhovan´ ych a ukonˇcen´ ych projektech spoluuchazeˇce Ne´ upln´e uveden´ı u ´daj˚ u bude d˚ uvodem k vyˇrazen´ı n´ avrhu projektu z t´eto veˇrejn´e soutˇeˇze
Projekty v souˇcasn´e dobˇe podporovan´e Poskytovatel:
ˇ GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
P210/11/1168 – Vznik kompoziˇ cn´ı a texturn´ı zonality v mˇ elce uloˇ zen´ ych granitoidn´ıch plutonech
Podpora tis. Kˇc
2731
Doba ˇreˇsen´ı od-do (roky)
2011-01-01 – 2013-12-31
Pracovn´ı u ´vazek:
20%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
Pˇ r´ırodovˇ edeck´ a fakulta, Univerzita Karlova v Praze - ˇ reˇ sitel
Poskytovatel:
ˇ GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
205/09/0630 – Geochemick´ a variabilita mafick´ ych ˇ ziln´ ych hornin
Podpora tis. Kˇc
2397
Doba ˇreˇsen´ı od-do (roky)
2009-01-01 – 2012-12-31
Pracovn´ı u ´vazek:
10%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
Pˇ r´ırodovˇ edeck´ a fakulta, Univerzita Karlova v Praze - ˇ clen t´ ymu
46
ˇ ast GE C´
P104/12/G083
Projekty v souˇcasnosti navrhovan´e k podpoˇre Poskytovatel:
ˇ GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
SP210313379 – Prevarisk´ y a varisk´ y v´ yvoj tepelskobarrandiensk´ e jednotky
Podpora tis. Kˇc
3609
Doba ˇreˇsen´ı od-do (roky)
2012-01-01 – 2014-12-31
Pracovn´ı u ´vazek:
20%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
Pˇ r´ırodovˇ edeck´ a fakulta, Univerzita Karlova v Praze - ˇ clen t´ ymu
Poskytovatel:
ˇ GACR
Reg. ˇc. a zkr´ acen´ y n´ azev projektu
– Kaldery jako indik´ atory term´ aln´ıho a mechanick´ eho v´ yvoje magmatick´ ych krb˚ u
Podpora tis. Kˇc
6931
Doba ˇreˇsen´ı od-do (roky)
2012-01-01 – 2014-12-31
Pracovn´ı u ´vazek:
30%
ˇ sitelsk´e pracoviˇstˇe - role: Reˇ
Pˇ r´ırodovˇ edeck´ a fakulta, Univerzita Karlova v Praze - navrhovatel
ˇ ukonˇ Pˇ rehled hodnocen´ı grantov´ ych projekt˚ u GA CR cen´ ych v posledn´ıch tˇ rech letech, u kter´ ych byl spolunavrhovatel ˇ reˇ sitelem nebo spoluˇ reˇ sitelem: Registraˇcn´ı ˇc´ıslo
Hodnocen´ı
205/07/P226
vynikaj´ıc´ı
47
Czech Science Foundation - Part GC Project Description Applicant: prof. Dr. Ing Bořek Patzák Name of the Project: Center for Multiscale and Stochastic Modeling of Materials, Processes and Structures (MULTAS) A. Motivation Sustainable development largely depends on innovations in material design and associate technologies. Innovations can no longer rely solely on experience of past decades. The existing numerical models are mostly macroscopic and empirical, obtained by fitting parameters to macroscopic properties. This is insufficient for the research of emerging advanced materials, modern structures and complex processes. The principal objective of MULTAS is to develop and verify multiscale models that connect the characteristics of underlying mechanisms with real design procedures based on sound scientific understanding of the material behavior and an adequate description of uncertainty. Increasing power of numerical computations enables to simulate ever more complex problems describing various human activities and natural phenomena. Qualitative knowledge of underlying physico-chemical processes occurring in materials on several scales can be translated into research tools predicting performance under realistic and extreme working conditions. The tools will assist material scientists in design of advanced materials with predictable performance, in optimization of durability and reliability with respect to embedded energy, green gas production, raw material consumption and multifunctionality. The main challenge for new research consists in development of (a) sophisticated models that provide a mathematical description of the relevant phenomena and (b) advanced numerical methods that can solve the mathematical problems in an efficient way. The majority of construction materials are of heterogeneous and porous nature, often with an evolving microstructure affected by coupled hygro-thermo-mechanical, chemical, and in some cases even biological processes. The modeling and simulation process must be complemented by (c) methodologies for systematic acquisition of input information (parameters describing materials, geometry, initial conditions etc.) and (d) means to validate the models and estimate their reliability and sensitivity to uncertainties of inputs. The flowchart of project methodology is presented in Fig. 1.
Input Tests on different scales
Mathematical models on several scales with uncertanities
Calibration
Computational models on several scales with uncertanities
Validation Model prediction
Verification
Figure 1: The flowchart of computational science integrating verification and validation steps. The majority of current models use the deterministic approach. In reality, structures exhibit uncertainties due to the inherent randomness in parameters specifying the material properties, loading and geometry. A better understanding of the effects of such randomness on structural performance is central to describing more accurately the reliability of the structure by the tools of structural reliability, computational stochastic mechanics and soft computing.
B. State of the Art Virtually all natural and engineering materials are on a certain scale heterogeneous – porous or cracked media, biological, polycrystalline and composite materials are typical examples. Various phenomena occurring on the macroscopic scale are caused by different physical, chemical and mechanical processes and their interplay occurring at lower scales [Ulm et al., 1998]. There is a strong dependence of the global behavior on properties, morphology and geometry of the microstructure. Often, the microstructure is evolving, driven by chemo-thermo-mechanical processes, affected by environmental and loading conditions on the macroscopic scale. The randomness of intrinsic properties and uncertainty in boundary and initial conditions have to be taken into account to obtain reliable predictions [Hlaváček et al., 2004]. The input data often describe coefficients of partial differential equations of mathematically expressed underlying physical processes. Existing data are biased with uncertainties, and small-scale experiments need to be executed for higher accuracy [Hlaváček et al., 2004, Babuška, 2007]. For multiscale modeling, intrinsic material data can be assessed by advanced characterization techniques, e.g. by environmental scanning electron microscopy, calorimetry, microtomography, porosimetry, nanoindentation or other mechanical tests [Ulm et al., 1998, Bentz 2007]. Complementary tests on higher scales are required for more complex calibration procedures. The mathematical treatment of multiscale phenomena and related physical processes leads to a multitude of open problems, both in the validation of computational models, and in the formal verification of existence and uniqueness of solutions and convergence of corresponding numerical algorithms. As discussed in [Steinhauser, 2008], electronic, atomistic, microscopic, mesoscopic and continuum methods are applied on various scales. Due to the uncertain (or even partially unknown) material characteristics, as well as to the uncertain time-variable loads, the standard solution methods are unavailable or insufficient. Numerous problems of technical significance are ill-posed and require artificial regularization [Isakov, 2006], based e.g. on the least-squares approach, studied in [Bochev & Gunzburger, 2009]. Engineering approaches apply the conjugate gradient algorithm to the direct, sensitivity and adjoint analysis to obtain the optimal least-squares solution [e.g. Zabaras, 2004]. The insufficiency of naive averaging in representative volume elements (especially in the anisotropic case) was the motivation for the development of various mathematical homogenization theories, based on the extension of the notion of strong or weak limits to their new types, especially for periodic or quasi-periodic material structures, as the H-convergence, the G-convergence, or the two-scale convergence, discussed in [Cioranescu & Donato, 1999]; some convergence results for the finite element approximations can be found in [Efendiev & How, 2009]. Computational homogenization framework [Geers et al., 2010] addresses both up- and down-scaling directions with resolved geometry of each constituent at the level of the representative volume element. The most challenging micromechanical models for post-cracking behavior of short-fiber reinforced concrete with brittle matrix were described in [Li et al., 1991], pull-out of the fibers after crack initiation in [Naaman et al., 1991] and stochastic modeling of bundles for representation of tensile response of multifilament yarns in [Chudoba et al., 2006] and [Vořechovský et al., 2006]. After proper calibration, the models showed predictive capabilities for randomly oriented and continuous aligned reinforcement [Hinzen and Brameshuber, 2007]. From the general perspective, phenomena relevant to integrity, durability and reliability of multi-scale mechanical systems are described by non-convex models with uncertain, rapidly oscillating, input data. This represents a challenging mathematical task, for which only a few partial results are available so far. Even for systems with deterministic parameters, the most comprehensive treatment is due to [Mielke & Timofte, 2007], who analyzed variational models for rate-independent systems described by convex energies, with particular application to plasticity. Extension of this work towards general non-convex models [Mielke 2005], related to localized phenomena typical of damage, fracture and fatigue processes, and their numerical treatment remains an open problem. Phase transformations in natural rocks from solid to liquid (and vice versa) in response to changing pressure and temperature play a key role in a variety of geological processes at all scales [e.g., Brown, 1994]. When the phase transformations occur, solid rocks turn into multiphase mixtures with complex rheological behavior. The mechanics of solid–melt mixtures has been examined either through experimental deformation of partially melted rocks [Rosenberg & Handy, 2005] or using greatly simplified models, e.g., percolation theory [Vigneresse et al., 1996] or assuming that solid–melt mixtures behave as granular materials [Petford & Koenders, 1998]. Advanced multiphysics approach, which is the most appropriate for thorough understanding of processes in and rheological behavior of such mixtures, has been applied only sporadically [e.g., Bergantz & Ni, 1999; Burgisser & Bergantz, 2002; Bea et al., 2010]. The modeling of complex geodynamic processes requires development of robust and efficient numerical methods for analysis of problems involving the interaction of fluids and structures, accounting for free-surface evolution [Onate
et al., 2004]. Such problems have been traditionally handled in a partitioned manner by solving iteratively the discretized equations for the flow and the solid domain separately. Governing equations for the fluid have been based on the Eulerian or Arbitrary Lagrangian-Eulerian descriptions. These approaches suffer from many disadvantages, for example, treatment of the convective terms and incompressibility constraints, need for interface and free-surface tracking, interaction between the fluid and solid domains, efficient updating of finite element meshes. Many of these problems naturally vanish when the governing equations are formulated using the Lagrangian description for both solid and fluid phases. The existing particle-based methods include the Finite Point Method [Onate et al., 1996] and Particle Finite Element Method [Idelsohn et al., 2004]. The solution to the variety of complex engineering problems involving uncertainty regarding mechanical properties and/or the excitations they are subjected to must be found by means of simulation. The only currently available universal method for accurate solution of such stochastic mechanics problems is the Monte Carlo technique. Additionally, sensitivity and reliability analyses can be performed with minimal effort. Apart from the crude Monte Carlo simulation, also other techniques for reliability analyses have been developed in the last three decades. The best known are the Latin Hypercube Sampling (LHS), Curve Fitting, Importance Sampling, Adaptive Sampling, Line Sampling and Subset Simulation. LHS was first proposed by [Conover 1975] and later elaborated mainly by [Iman and Conover, 1980]. The available approaches to uncertainty quantification can be broadly classified as the worst scenario method and probabilistic methods [Hlaváček et al., 2004]. In the former approach, a criterion of interest is introduced, which measures the performance of the solution. The objective is then to maximize the criterion over the set of admissible input data that represents the uncertainty in inputs. The maximum criterion value is related to the lowest (i.e., worst) performance allowed by uncertain input data. Despite the vast potential of the worst scenario method to address both theoretically and numerically a wide range of relevant engineering problems, as is evidenced by extensive examples collected in [Hlaváček et al., 2004], its application to multi-scale problems is much less developed. In particular, the most recent results of [Nechvátal, 2010] are related to a non-linear elliptic equation of monotone type. We believe that their further generalization to problems of inelastic continuum mechanics provides an exciting research agenda. It is worth noting that the worst scenario method also appears in the course of solving sub-problems arising in a fuzzy set theory approach to problems burdened with uncertain data. Inverse problems play an important role in many branches of science, mathematics and engineering. An inverse problem is a general framework that is used to convert observations and measurements into information about a physical object or system that we are interested in. The solution of an inverse problem provides access to physical parameters (model parameters, design parameters) that cannot be directly observed. This procedure is known under different names, e.g. inverse analysis, identification, or model updating. The goal is to identify parameters of a computational model by matching its response to available data measured on a real physical system (e.g. a structure). In the context of engineering computational mechanics based on the finite element method, typical inverse analysis tasks include: extracting information on the loads acting on a structure from the observation of the response, e.g. displacements, stresses [Maincon, 2004ab]; damage detection of dynamically loaded structures using structural health monitoring data (for the application in bridge engineering, approaches called ―model updating‖ have been developed [Huth et al., 2005, Fang et al., 2005, Deix & Geier, 2004, Lehký & Novák, 2009a]); fracture mechanical parameters identification of quasi-brittle materials [Planas et al., 1999, Fairbairn et al., 1999, Kučerová et al., 2004, Novák & Lehký, 2006, Lehký et al., 2010a]; statistical inverse analysis – identification of statistical material parameters using random measured data in form of histograms or probability distributions [Strauss et al., 2004, Lehký & Novák, 2009b]; and inverse reliability analysis – determination of design parameters (deterministic or random material properties, geometry, etc.) related to particular limit states (both ultimate and serviceability) to achieve target reliability levels expressed by theoretical failure probabilities or reliability indexes [e.g. Der Kiureghian et al., 1994, Li & Foschi, 1998, Lehký & Novák, 2010].
C. Substantiation of the project, its goals and multidisciplinary character The proposed Center of Excellence will aim at basic oriented research in the field of computational simulations, which are necessary for development and assessment of next generation technologies and materials as well as for further enhancement of basic research. The main advancement with respect to previous similar projects consists in the fact that the topic will be approached from a complex and multidisciplinary perspective, focusing not only on formulation of mathematical models and numerical methods for their solution, but also addressing the issues of input data acquisition and proper treatment of uncertainties involved in the simulation process. The Center will focus on understanding the fundamental mechanisms (processes) of the studied problems (as opposed to just phenomenologically reproducing them) and on developing the underlying theories and methods necessary for their modeling. As such, the Center is expected to build up a broad knowledge base in mathematics, physics and geology,
which will have a potential further use both in applied research in engineering and in basic research in natural sciences. The project focuses on multiscale assessment of heterogeneous materials, which is a complex process that includes not only the improvement of knowledge on material microstructure and its behavior across multiple scales, but also requires the development and use of advanced numerical tools to solve the mathematical problems. Moreover, new experimental methods and techniques need to be developed to identify and measure properties and statistical characteristics of materials at those scales at which fundamental processes are recognized, to provide necessary inputs for modeling and calibration at intermediate scales. Validation of the whole process is an important part, providing necessary feedback for potential adjustments. The project aims for the development of novel techniques and tools for multi-scale assessment, based on the analysis of non-convex inelastic material models with uncertain input data. Specific techniques and models will be developed to enable future practical solution of challenging problems in science and engineering. These problems include geodynamic processes, such as continental underthrusting, development of orogenic root and high topography, magma transport and related exchanges of mass and energy within the thickened orogenic crust, and subsequent orogenic collapse; advanced modeling of secondary cementitious materials (slag, fly ash); assessing the influence of technological parameters on transport and mechanical properties of composites. In addition, advanced modeling relies on topochemical representation of microstructures, significantly influencing evolution and degradation processes, which in turn have a strong impact on structure reliability and integrity. Modeling of coupled physico-chemical processes in heterogeneous, partly saturated porous materials can greatly enhance our understanding of complex multidisciplinary phenomena such as polymerization, carbonation, selfhealing, leaching, embrittlement, to mention a few. Classification of advanced structural materials according to their resistance to progressive failure (tensile, shear, compressive) will be performed. Depending on the specific model used for the description of failure, parameters characterizing the material can have different meanings and are not directly comparable. Therefore, an attempt should be made to develop a general unified approach in order to enable comparison of failure resistance of different materials (with different characteristic lengths and failure modes). Research activities in computational modelling and simulation of thermomechanical behavior of advanced materials and structures will focus on open problems in mathematical analysis (certain types of scale convergence) and in numerical analysis (algorithms for ill-posed problems, regularization techniques etc.) This is expected to lead to progress in the mathematical theory of homogenization, validated by extensive computational and experimental work. Another objective will be the development of a theoretical basis and tools for routine application of soft-computing methods for different types of tasks. The primary interest will be focused on inverse problems. This part of the project builds on previous achievements of the team. New developments in theory as well as applications include: investigation of different alternatives of artificial neural networks (beyond classical backpropagation type, like radial basis neural network, etc.), testing for inverse analysis purposes, analysis of sensitivity-based approaches and their role in neural network training, verification of possibilities for preparation of virtual training sets with emphasis on small-sample simulation, development of a methodology for deterministic and statistical parameter identification based on random response measurements using fracture tests of various testing configurations, and development of a methodology for damage detection of dynamically loaded structures using health monitoring data. In the area of new testing methods, the goal is to assess quickly, non-destructively and cheaply material and structure properties by using acoustics methods, such as the acoustic emission, the frequency inspection, and the non-linear ultrasonic defectoscopy. Such an assessment will rationalize maintenance of structures and their elements, which will become substantially simpler and cheaper if early defect detection is accomplished. Research into new testing methods will be focused on the determination of the chemo-thermo-mechanical parameters of composite materials, taking into account size effects and uncertainty.
D. Cooperation between partners, synergy effect and integration of research potential To reach the objectives and ambitions of the project, a combination of knowledge from several disciplines is needed. While the expertise in individual topics is extremely high, there remain many gaps that may be filled only by a multidisciplinary project. Such project involves a number of cross-cutting activities that are important for reaching its objectives. Combination of expertise in data acquisition and material testing, mathematical and statistical modeling,
physics, chemistry, geology and computing is needed to reach the goals. None of the partners involved has the potential to reach these objectives alone. Individual partners traditionally cultivate the knowledge in particular areas of research, with specific resources and facilities. Therefore, this project and its topic represent a challenging platform for mutual collaboration, resource sharing and exchange of knowledge among partners.
Management structure It is recognized that the success of the project depends not only upon sound scientific and technical plans but also on an efficient and effective project management team. The MULTAS project involves 4 independent organizations and thus a close collaboration among the project partners is necessary. To facilitate the project implementation, a simple reporting and management structure has been established consisting of the following structures: Project Coordinator (PC), Project Coordination Committee (PCC) and Scientific Committee (SC).
GA CR Controlling
Reporting
Project Coordinator (PC)
Project Coordination Committee (PCC)
Scientific Committee (SC) WP1 leader
WP2 leader
WP3 leader
WP4 leader
The overall coordination of the project will be carried out by the Project Coordinator – Prof. Dr. Ing. Bořek Patzák. Strategic decisions will be consulted within the Project Coordination Committee, consisting of the applicant and coapplicants. The WP leaders will report directly to the PCC on financial management issues and progress of the project implementation. The Scientific Committee will be responsible of the day-to-day management and will oversee the scientific and technical matters of the project. An important task of the SC is the risk management related to the project implementation and, more importantly, the quality control management. The SC ensures that project results are widely disseminated through international publications and presentations at conferences. The SC will be comprised of all Work Package Leaders and its meetings will be chaired by the Project Coordinator. The members of the SC will meet once every six months.
E. The center rationale and justification of its importance MULTAS will bridge qualitative basic knowledge with applied research for the innovations through the basic oriented research in the area of computational simulations. The concept of this project is based on the principles of Integrated Computational Materials Engineering (ICME) [Allison, 2006], which combines experimental data with theoretical modeling. Outputs of this project yield computational models that enable predictive analysis of structural systems made of advanced materials including uncertainties on inputs and outputs. The models will be validated against existing experimental data and against new data obtained from complementary tests. The benefits from these models will be demonstrated on the tasks connected to the solution of current global problems – saving energy through the new principles of energy efficient buildings and the theoretical support of the development of durable materials for traffic infrastructure. The project will also result into the development of multiscale virtual tests which can partially replace standard tests and provide input data for existing computer codes working on the macro scale. This can significantly help to speed up the new developments in material science. Based on the financial support from Structural Funds, new research infrastructures (ADMAS, UCEEB) will be built in Brno and close to Prague. These infrastructures will be equipped with complementary testing machines that will significantly enhance the potential of partners.
F. Objectives and methods The project will be implemented in four work packages (WPs), each consisting of several tasks. The responsible investigator (WP leader) of each WP is underlined. In addition, task leaders are indicated in each task title.
Work package number Work package title
1 Methodologies and inputs for multiscale models
Participant Activity
CTU
BUT
CUNI
CDV
X
X
X
X
Objectives: Develop methodologies for data acquisition and validation of multiscale models, using scanning electron microscopy, energy-dispersive x-ray analysis, porosimetry, computed microtomography and nanoindentation. Characterize supplementary cementitious materials by their chemical and phase composition, particle distribution and pozzolanic activity; study their hydration using calorimetric and DTA measurements. Study the formation of mineral anorthite during firing and the effect of its content on the properties of fired ceramic body; study the influence of different CaO sources on ceramic properties. Develop a methodology for accelerated durability tests, study the influence of microstructure on durability. Clarify the relation between morphology, composition of base materials and properties of asphalts. In general, the objectives are to gather representative data for studied phenomena in involved materials and to design experiments supplying the missing data.
Description of work Task 1.1 Data acquisition from small-scale experiments (CTU) Background Besides existing data, new data are often required for further calibration and validation stages. The missing data will be obtained by small-scale experiments combined with modeling. Work plan, concepts and methods Missing data for desired physical quantities are obtained from small-scale experiments. These include SEM, EDX, porosimetry, μCT, mechanical tests, and nanoindentation. Data are used in upscaling direction and also in downscaling identification of constituent properties. Achievements Data collection for multiscale models of heterogeneous porous materials. Database for inorganic porous materials. Methodologies for data acquisition based on modeling needs. Milestones M 1.1.1: (2012): Data acquisition from submicrometer scale: nanoindentation, SEM, EDX, porosimetry, μCT. M 1.1.2: (2012): Database of binary images of real microstructure with a direct link to tools and models for micromechanical simulations. M 1.1.3: (2014): Data acquisition from small-scale mechanical tests.
Task 1.2 Durability and surface treatment (BUT) Background Durability of materials depends on the material properties, shape of the structural element, external loading and aggressivity of the environment. Surface treatment has a significant influence on the durability, limiting the penetration of corrosive agents into the pore structure of materials and substantially reducing the degradation process. Work plan, concepts and methods Research will be based on laboratory implementation of accelerated testing materials; monitoring the impact of type and concentration of corrosive environment on the microstructure and mechanical parameters. The results will be complemented by theoretical interpretations in order to proceed to possible generalizations. Achievements New knowledge on the influence of the material microstructure on durability. New methodologies for accelerated durability testing. New surface treatments and verification of their impact on durability. Milestones M1.2.1 (2014): Development of surface treatments improving the durability of materials. M1.2.2 (2014): Development of methods of accelerated corrosion tests. M1.2.3 (2018): General theory for durability of new materials.
Task 1.3 Acquisition of geological data (CUNI)
Background Acquisition of input data for simulations in geology has certain specifics: (a) dimensions of geological bodies are on the scale of kilometers, properties can be sampled only point-wise and sparsely, (b) material volumes for testing are much smaller, (c) mechanical properties exhibited during the geological processes (at high temperatures and pressures) cannot be directly measured, (d) time scales are orders of magnitude larger than in the laboratory experiments, (e) data exhibit high uncertainties and scatter. Work plan, concepts and methods The input parameters of 3D geometry of the modeled domains, i.e. soft and hot crust in front of a rigid indenter (WP4 Task 4.1), will be taken from field observations, geologic mapping, and available data (gravimetry). The key input data for the modeling (WP3 Tasks 3.2 and 3.3, WP4 Task 4.1), however, will include rock compositions, fabrics, microstructural characteristics, and textures of the examined rocks (migmatites and granites) that will be obtained from geochemical, petrographic, and three-dimensional quantitative microstructural analyses and from measurements of anisotropy of magnetic susceptibility (AMS). The stochastic methods developed in WP2 will be employed to account for uncertainties and scarcity of data. Achievements: Detailed characterization of material parameters and anisotropy of the rocks, detailed geologic maps of the key domains, and interpretation of the subsurface shape, extent, and dimensions of geologic units in question. Milestones M1.3.1 (2013): All rock types sampled and analyzed, gravimetric interpretation. M1.3.2 (2015): New data on magnetic anisotropy and textures of the migmatites and granites.
Task 1.4 Scanning Electron Microscopy Method as a Tool for the Evaluation of Selected Material Microstructure (CDV) Background Bitumen is the residue from the vacuum distillation of petroleum oil, consisting of two main fractions: asphaltenes and maltenes. Its rheological and mechanical properties, controlled by the chemical and physical interactions of individual fractions, are highly dependent on the temperature. Chemical composition and structure of bitumen influence temperature dependence and mechanical properties. Relations among bitumen composition, structure and production qualities are not yet sufficiently explained. Admixtures and additions are added to concrete to obtain special properties of fresh or hardened concrete. Usage of several types of additions (fly ash, slag, silica fume, fine grounded limestone or additives (plasticizers, accelerators, stabilizers, air-entered agents, etc.) is common. The structure of hydration products in concrete microstructure in short time after concrete mixing is well known. The question is how admixtures influence the long-time evolution of properties. Work plan, concepts and methods Techniques of oil phase elimination for preparation of samples based on the dissolution and filtration techniques of asphalt binders from different producers will be developed. They will enable to study the relation between morphology, composition and properties of asphalt and its degradation processes. Using a scanning electron microscope and an energy-dispersive x-ray analyzer, the effect of admixtures on hydration process, chemical composition and mutual ratio among formed hydration products will be evaluated. Achievements Identification of the sample preparation method not impacting the internal microstructure. Clarification of the relation between morphology, composition of base materials and properties of produced asphalts subsequently used for asphalt mixtures designed for roads. Determination of chemical compounds contained in admixtures and additions and of their effect on hydration development, mortar microstructure and changes of material properties. Milestones M1.4.1 (2012): Suitable techniques of oil phase elimination for preparation of the asphalt binder samples. EDX quantitative analysis of minerals in concrete or mortar. M1.4.2 (2013): Relation between morphology, composition and properties of base materials designed for roads. New knowledge of the relationship between concrete or mortar microstructure and their properties. M1.4.3 (2016): Methodologies for identification of asphalt and concrete microstructure.
Task 1.5 Concrete and mortars (BUT) Background A need to reduce carbon dioxide emissions, which are produced during cement production, leads to a design of high-performance materials utilizing supplementary cementitious materials (SCM). Simultaneously, SCMs can considerably contribute to improved mechanical properties and higher corrosion resistance against aggressive substances. Non-traditional SCMs, which nowadays start to play a more
significant role, are reactive micro- and nanoparticles. They can improve concrete workability and strength, increase resistance against water penetration, and help to control the leaching of calcium. Work plan, concepts and methods Selected reactive particles will be characterized by their chemical and phase composition, specific surface area, particle size distribution and pozzolanic activity. Their hydration will be studied using calorimetric and DTA measurements and the morphology of hardened paste will be investigated (SEM analysis with EDAX probe, mercury porosimetry). Additional steps include: (i) testing of the technological, mechanical, and fracture-mechanical properties; (ii) design and verification of technology regarding specific characteristics of SMC; (iii) tests of the durability of concrete with selected aggressive, both to chemical agents, as well as under negative temperatures; (iv) monitoring of changes in the chemical and phase composition. Achievements Development of new materials utilizing supplementary cementitious materials (SCM). Development of concrete with special properties (high strength, waterproof, etc.). Development of lightweight self-compacting concrete. Development of new methodologies for concrete testing. Milestones M1.5.1 (2013): New methods for testing of fresh concrete, suitable for lightweight self-compacting concrete. M1.5.2 (2015): Development of new concretes with special properties. M1.5.3 (2018): Development of materials utilizing supplementary cementitious materials.
Task 1.6 Advanced ceramics (BUT) Background Advanced anorthite ceramics shows very advantageous mechanical properties especially in comparison with traditional porcelain ceramics based on mullite-glass phase-quartz-cristobalite according to mineralogical composition. To prepare anorthite ceramics, it is necessary to find optimal conditions (granulometry, water content and composition of raw material mixture, firing curve etc.) for anorthite crystallization in connection with properties of anorthite ceramic body. Work plan, concepts and methods Properties of raw materials mixture and green body depending on used binder – mixing water, drying shrinkage, drying sensitivity, strength of green body. Possibility of reduction of mixing water – utilization of deflocculants. Firing of test samples according to different firing curves. Thermodilatometric and thermomechanical analysis for investigation of such processes during the firing. Properties of fired test samples according to EN ISO 10545 (strength, modulus of elasticity, frost resistance, chemical resistance) depending on microstructure of the fired body. Achievements Procedure leading to formation of mineral anorthite during the firing of ceramic body and quantification of the effect of anorthite content on the properties of fired ceramic body. Characterization of the influence of different CaO source (aluminous cement, Ca(OH)2, calcite, wollastonite, marble, gypsum) and type of kaolinic clay on the properties of anorthite ceramic body. Description of the behavior of aluminous cement in the mixture with non-plastic ceramic raw materials during the firing. Milestones M1.6.1 (2013): Formation of mineral anorthite during the firing of ceramic body and effect of anorthite content on the properties of fired ceramic body. M1.6.2 (2013): Determination of the influence of different CaO (aluminous cement, Ca(OH)2, calcite, wollastonite, marble, gypsum) and clay source on the properties of anorthite ceramic body. M1.6.3 (2018): Determination of properties of anorthite ceramics depending on microstructure of the body – difference between traditional porcelain ceramics and anorthite ceramics.
Work package number Work package title Participant Activity
2 Reliability and soft computing CTU
BUT
X
X
CUNI
CDV
Objectives: Research and application in the field of structural safety and reliability. Utilization of nonlinear finite element tools and Monte Carlo type simulations is essential for modeling of random behavior and the reliability assessments. Recently it has been realized that such methodology is not sufficient and that new research in stochastic computational mechanics is needed. Development of new approaches is stimulated e.g. by the need of parameter identification when using computationally demanding nonlinear finite element calculations. Soft computing tools aim to exploit the tolerance for imprecision, uncertainty and partial truth to
achieve tractability, robustness and low solution cost. The objective is to progress the development of new methodologies for reliability assessment of structures, inverse analysis, identification, modeling of integrity and failure, stochastic modeling of materials and structures.
Description of work Task 2.1 Stability, integrity and failure (BUT) Background Specialized parameters characterizing the material with respect to its failure behavior depend on the utilized approach and are not able to provide a general description. Therefore, an attempt should be made to develop a general unified approach in order to enable comparison of different materials (with different characteristic lengths, different types of failure behavior, etc.). An approach relating the amount of dissipated energy to the volume of failed material (including the distribution of failure intensity over the process zone) seems to be reasonable and has been already tested for tensile failure of quasi-brittle materials. Its extension to other failure modes is considered. Subsequently, more general types of loading (dynamical effects, impact loading, fatigue, etc.) will be taken into account. Work plan, concepts and methods Dynamical simulations of various nonlinear phenomena using techniques of physical discretization of a continuum. Utilization of various branches of the fracture mechanics theory. Classification of advanced structural materials according to their failure resistance (tensile, shear, compressive). Stability assessment of selected structures, determination of bifurcation points, transient dynamical behavior, generic properties of nonlinear systems (deterministic chaos, bifurcation points, basin boundaries, fractal analysis), analysis of post-critical states, simulation of unstable processes. Achievements Convergence properties of computational modeling and simulation approaches, including the homogenization techniques and the sense of convergence on periodic and non-periodic material structures. Proper formulations of direct, sensitivity and adjoint problems and their relation to the evaluation of integrity, durability, safety, reliability and other quantities of advanced building materials of technical significance. Milestones M2.1.1 (2013): Complex strategy of failure modeling. M2.1.2 (2015): Multilevel assessment of stability problems. M2.1.3 (2017): Strategy of integrity assessment. M2.1.4 (2018): General connections of integrity, stability and failure modeling.
Task 2.2 Simulation techniques in stochastic mechanics (BUT) Background These simulation techniques cover techniques for representation of random material properties, microstructure and geometry and also efficient methods of approximation of probabilistic integrals featured in the mentioned types of analyses. Work plan, concepts and methods The multi-scale modeling strategy that will be pursued within this project follows the chain of assumptions made for the initiation and development of a representative crack bridge (microscale), development of interacting multiple crack bridges under tensile loading (mesoscale) and directional dependency of the damage patterns on the reinforcement orientation (macroscale). Existing models disregard the effect of scatter in the response, but a complete probabilistic characterization of the crack bridge response is indispensable for a reliable prediction. In other words, the usually applied approach does not exploit the full potential of the statistical representation of the crack bridge response. The potential of a thoroughly applied probabilistic description shall be exploited within this task. Achievements Extension of statistical and reliability techniques suitable for reliability assessment at the level of both random variables and random fields. Formulation of a new micromechanical model that enables full probabilistic determination of composite behavior. Digital representation of microstructure within the framework of discrete modeling techniques. Milestones M2.2.1 (2013): Multi-scale modeling framework bridging micro and macro scales by applying the crackcentered homogenization technique transforming the statistical representation of the material structure into smeared, directionally dependent damage functions that describe the inelastic behavior within a representative volume element will be developed. M2.2.2 (2015): Simulation methods for digital microstructure representation within the framework of discrete modeling techniques will be developed. M2.2.3 (2016): Two modeling platforms of physical discretization, namely for the Discrete Element Method and for the lattice-particle model, will be developed and utilized for computer simulations.
Task 2.3 Inverse analysis (BUT) Background The new inverse analysis technique has been developed recently by the team responsible for the task. It is based on the combination of a statistical simulation of Monte Carlo type and an artificial neural network. It will serve as a basis for further development of a theoretical basis and practical inverse analysis tools. Work plan, concepts and methods Development of methodology and tools for deterministic and statistical parameter identification based on random response measurements using fracture tests of various testing configurations. Emphasis on development of methodology for damage detection of dynamically loaded structures using structural health monitoring data and piezoelectric transducers. Verification using real data and experiments. Extension of proposed methodology towards inverse reliability analysis for full probabilistic design concept. Achievements New approaches based on new types of artificial neural networks. Development of methodology for inverse reliability analysis. Verification of theoretical aspects like overtraining of networks, design of a neural network. Application to identification of model parameters for modeling of quasibrittle failure of concrete and fiber–reinforced concrete elements. Application to damage identification of bridges based on dynamic measurements. Application to inverse reliability based design. Milestones M2.3.1 (2013): System for deterministic and statistical parameter identification based on random response measurements using fracture tests of various testing configurations. Verification using real experiments. M2.3.2 (2014): New types of artificial neural networks will be utilized and tested in the concept of inverse analysis. M2.3.3 (2015): Methodology for damage identification of dynamically loaded structures will be developed and supported by numerical as well as laboratory and in-situ experiments. M2.3.4 (2017): Inverse reliability based design concept will be developed and supported by numerical analyses. Procedure will be verified in applications from bridge engineering field.
Task 2.4 Fuzzy approaches and reliability (BUT) Background If the a priori information on the process studied does not enable to generate the initial structure of a stochastic model, the inaccuracy and inconsistence of input information will be taken into consideration by fuzzy-random quantities or by fuzzy quantities. In these cases the available information on the process studied will be used to identify the membership functions of input fuzzy numbers. Work plan, concepts and methods The fuzzy analysis will be solved mostly on calculation models, the input and output of which are fuzzy numbers defined based on a set of real numbers. In general, the fuzzy arithmetic is based on the so-called extension principle which enables to transfer any set within crisp sets to an operation in fuzzy sets. Achievements The fuzzy probabilistic studies will evaluate the uncertainty of procedures and methods securing the reliability by predicting the limits of actual actions of load-carrying steel structures. The ultimate limit state will be studied. The significance of input variables will be assessed. Variables with the dominant influence on the ultimate limit state will be analyzed. The result will be the refinement of theoretical basis of modeling and the complex analysis of uncertainty of fuzzy and random character. Milestones M2.4.1 (2013): Identification of fuzzy, stochastic and fuzzy random uncertainty of the limit states of simple types of structures. Literature search and acquisition of available data on geometric and material characteristics. M2.4.2 (2015): Mathematical description of characteristic types of uncertainties that are not of a stochastic character. Selection and adaptation of software instruments. Description of input and output parameters and their constitutive relations. M2.4.3 (2016) Numerical simulation based on iterative solution of computational models. Fuzzy analysis of deterministic and stochastic response of selected types of steel structures. M2.4.4 (2018) Analysis of fuzzy and random uncertainty of limit states according to the Eurocodes.
Task 2.5 Worst-case scenario method and multi-scale energetic systems (CTU) Background So far, the worst-case scenario method has been used mainly for single-scale problems. Its extension towards multi-scale models will contribute to the development of theoretically supported robust design tools for engineering materials.
Work plan, concepts and methods Establishing the connection between the Mielke-Theil energetic framework and the worst-case scenario method in the multi-scale setting. We will depart from the treatment of single-scale convex problems, such as small-strain plasticity with hardening, for which a number of results are currently available [Hlaváček et al., 2004], and extend it to incorporate the multi-scale convergence results due to [Nechvátal, 2010]. Extension of the analysis to general non-convex systems, with a number of potential applications. The solution methods will incorporate the techniques specified in Task 3.1, extended by numerical sensitivity analysis and optimization methods to solve the worst-case maximization problem. Achievements Development of a mathematical framework connecting the mathematical tools of multi-scale analysis with the worst-case scenario method. Rigorous analysis of uncertainty propagation in multi-scale systems and its efficient numerical treatment. Application of the general theory to relevant engineering models. Milestones M2.5.1 (2013): Connection between the theory of rate-independent systems and the worst-case scenario method is established. M2.5.2 (2015): Multi-scale extension for convex systems is formulated and supported with numerical experiments, based on results of task 3.1. M2.5.3 (2016) [internal]: Based on outcomes of task 3.1, an appropriate strategy to address non-convex models will be selected. M2.5.4 (2018): General theory for multi-scale version of the worst-case scenario method is developed and supported by numerical experiments.
Work package number Work package title
3 Multiscale and multiphysics modeling of complex heterogeneous materials.
Participant Activity
CTU X
BUT
CUNI
CDV
X
Objectives: Extend the state-of-the-art techniques of multi-scale modeling to systems described by non-convex energies and uncertain input data. Formulate advanced regularized multi-scale and multi-physics models for inelastic deformation and dissipative processes in heterogeneous materials. Improve the understanding and description of fundamental multi-physics processes playing an important role in the behavior of heterogeneous materials. Tailor the properties of man-made heterogeneous porous materials, based on description of their evolving micro/nanostructure and identification of the weakest points. Develop tools interconnecting chemistry, physics for tailored design. Improve the understanding of geodynamic processes and provide descriptive and predictive models of continental underthrusting, development of orogenic root and high topography, magma transport and related exchanges of mass and energy within the thickened orogenic crust, and subsequent orogenic collapse.
Description of work Task 3.1 Multi-scale homogenization techniques for heterogeneous materials (CTU) Background Most man-made engineering materials, as well as biological tissues and other natural materials, have a complex internal structure, with characteristic heterogeneities at different scales, often spanning many orders of magnitude. Classical material models usually have a phenomenological character and reflect the actual processes in the material only indirectly. A deeper insight into the link between the internal structure of materials and their properties can be provided by multi-scale approaches, considering also the interplay among various mechanical, physical and chemical processes on various scales. The existing techniques for homogenization of rate-independent processes are available for the systems described by convex energies, which fail short in describing the localized phenomena. To address the issues of
integrity and durability, these techniques must be extended to the non-convex case and to models with uncertain input data. Work plan, concepts and methods We will employ the rational-mechanical approach and the concept of the global energetic solution introduced by [Mielke & Theil, 1999]. During the last decade, such setting was successfully used to analyze a wide range of inelastic continuum models such as classical and gradient plasticity, models of shape memory alloys, fracture, damage, delamination or ferromagnetism. Three major aspects will be addressed: (i) the development of multi-scale homogenization techniques for abstract rateindependent systems and their approximation, (ii) application of the general results to particular classes of nonconvex continuum models and (iii) numerical simulations supporting the theoretical developments. Tools and methods for multi-scale description of inelastic deformation processes and mass and energy transport in heterogeneous materials will be analyzed, further developed and integrated. Efficient numerical algorithms for large-scale simulations will be implemented, verified and optimized. The main challenge is the bridging of spatial and temporal scales over many orders of magnitude. A promising technique, so far not fully exploited, is the incorporation of fine-scale characteristics and processes by additional non-standard terms of the coarse-scale models. Such enrichments, formulated within the framework of generalized continua based on integral-type nonlocal variables, higher-order gradients or additional kinematic variables, have already been used for the regularization of mechanical failure models. The influence of the boundary shape, internal interfaces and discontinuous material properties can be properly taken into account only if the corresponding fine-scale phenomena are resolved. Achievements General methodology for matching of a generalized continuum model to detailed solutions obtained by a finescale model. Improved regularized model for localized failure of quasibrittle materials, giving realistic results for non-trivial benchmark examples that mimic the typical features of real-life problems. Extension of the mechanical model to couplings with heat and mass transfer and with chemical or biological processes in the microstructure. Novel mathematical results for the treatment of mechanical systems described by non-convex energies in the multi-scale setting. Application of the theory to relevant engineering problems, including the numerical aspects. Convergence properties of computational modelling and simulation approaches, including the homogenization techniques and the sense of convergence on periodic and non-periodic microstructures. Mathematical support of identification of material characteristics, with the relationship to the optimal arrangement and planning of inexpensive experiments. Milestones M 3.1.1 (2013) Available energy-based framework for multi-scale plasticity will be extended to the general setting, including numerical approximation results. M 3.1.2 (2013) [internal] An appropriate strategy to treat non-convex systems will be selected, based on the foreseen developments in this active research field. M 3.1.3 (2016) General framework for the treatment of non-convex systems is developed, with emphasis on qualitative properties of the solution and approximation results. M 3.1.4 (2018) The proposed theory is applied to relevant engineering models and supported with results of numerical benchmark problems.
Task 3.2 Multi-physics models for heterogeneous materials (CTU) Background Many materials are of heterogeneous and porous nature, and a realistic assessment of their performance requires taking into account the interplay among various mechanical, physical and chemical processes on various scales. In the case of geodynamic processes, material models for solid rocks are relatively well established (REFS) but representation of geomaterials during phase transition still represents a challenge, which must be addressed from a multi-physics perspective. Work plan, concepts and methods In view of the underlying heterogeneous microstructure, which drives not only the mechanical but also the physical response, the analysis will utilize the classical concepts of hierarchical modeling combined with detailed geometrical models based on Statistically Equivalent Periodic Unit Cell (SEPUC) using the methodologies developed in Task 3.1. Homogenization techniques will be employed in order to obtain the equivalent macroscopic thermal and mechanical properties. The mesoscopic properties of individual phases and evolving rheological behavior of these melt-solid compounds will be modeled for both static and dynamic conditions (tectonic deformation). The key input parameters for the multi-physics modeling are the melt viscosity and topology and three-dimensional ge-
ometry of melt regions within the modeled rock (WP1 Task 1.3); these parameters will be obtained from natural examples of various textural types of migmatites and granites. Achievements Extension of the mechanical model based on a generalized continuum to couplings with heat and mass transfer and with chemical or biological processes in the microstructure. Assessment of the effects of fully coupled heat and moisture transport in the analysis of large-scale historic structures on their integrity when combined with mechanical sources of loads. Constitutive (thermal and mechanical) models for partially molten rocks in different phases. Milestones M 3.2.1 (2012): Selection of thermal and mechanical constitutive models for components of partially molten rock on mesoscale and establishment of phase-transformation conditions on mesoscale. M 3.2.1 (2014): Macroscopic (homogenized) thermal and mechanical constitutive laws and phasetransformation conditions for partially molten rock (at various levels of solidification).
Task 3.3 Development of advanced numerical tools for simulation of processes at multiple scales (CUNI) Background In recent years, the geodynamic processes that lead to the formation and destruction of mountain belts have been the subject of intense fundamental research, which is mostly based on field observations, theoretical considerations and simplified modeling. We intend to develop advanced models of physical phenomena governing the processes in question and combine them with the power of state-of-art numerical methods to simulate these processes more realistically. Simulations have to capture the highly nonlinear behavior of the solid phase, flow and strain in multiphase mixtures (magma), fluid-solid interaction, evolving boundaries and phase transformations (rock melting, magma solidification), nonlinear heat conduction and advection in the solid and fluid phases, respectively, heat production or consumption, metamorphic reactions, and radioactive decay. Considering the portfolio of man-made materials (ceramics, concrete, or porous glasses), understanding their heterogeneous structure on multiple scales is a crucial factor for their enhancement. Their properties are easily engineered by changing the material inputs. Numerical tools could also assist in experimental design. Such conjecture has recently been pioneered by the GEMS software [Lothenbach & Winnefeld, 2006], allowing accurate chemical predictions of heterogeneous components in hydrating cementitious binders and the design of more durable and reliable materials from a chemical standpoint. Further extension to mechanical behavior is largely missing. Work plan, concepts and methods In the geodynamic simulations, the mechanical model will be based on governing equations for solid and fluid domains, with both domains evolving in time and space. The mechanical model will be coupled with heat transport, with internal heat sources and temperature-dependent coefficients. To capture large displacements and evolving domains, a Lagrangean formulation will be adopted. The particle finite element method [Oñate et al. 2004] will be considered, combined with the constitutive models developed in WP3, and implementation of thermo-mechanical coupling and phase transformations. Numerical and semi-analytical homogenization methods (finite elements, mean-field approach) will be employed for the analysis of available results from XRD, μCT, ESEM or GEMS software. Kinetics of material evolution will be taken into account, emphasizing highly porous initial stages of material formation. These tools allow correlating the input variations in material data with homogenized properties on a higher scale. Elasticity, linear time-dependent deformations, fracture energy and material strength, all evolving in time, will be simulated. Nanomechanics of forming gels, which are the main binders in cementitious systems, will be deduced from macroscale data. In this sense, downscaling technique is the only way of meeting the results from molecular dynamics (already published) and unknown micro-scale behavior. The tools will also incorporate the effect of carbon nanotubes as a nanoreinforcement, largely impacting the resulting properties of heterogeneous manmade materials. The mechanics of nanoreinforcement for fracture remains an open problem. Achievements Buildup of microstructural and micromechanical models for man-made heterogeneous binders. Correlation and sensitivity to input data. Nanomechanics of gels and carbon nanoreinforcement. Development of numerical techniques for solving problems involving solids under large deformations, fluid flow, evolving boundaries, phase transformations and fluid-solid interaction.
An integrated computational tool enabling quick estimates of both mechanical and non-mechanical parameters of an arbitrary class of heterogeneous materials with random or disordered microstructures. This tool will be initiated through the analysis of poly(siloxane) matrix based textile composites, closed-cell metallic foams and the above mentioned binders. Milestones M 3.3.1 (2015): Multiscale tools for elasticity, time-dependent behavior, fracture M 3.3.2 (2016): Nanoscale mechanics of carbon nanoreinforcement M 3.3.3 (2013): Tools for generating SEPUC from available binary images of real microstructures stored in a built-in database (2D, 3D). M 3.3.4 (2015): Synergy of micromechanical models and tools for detailed simulation of real microstructures given in terms of SEPUC. M 3.3.5 (2012): Modification of the PFEM method to accommodate the specifics of geodynamic simulations or selection of another numerical method. M 3.3.6: (2014) Completed implementation of a numerical method for geodynamic processes into an in-house software package, verification. M 3.3.7: (2016) Implementation of constitutive laws developed in Task 3.2.
Work package number Work package title
4 Start date
Month 1
Verification, validation and simulation
Participant Activity
CTU
BUT
CUNI
CDV
X
X
X
X
Objectives: Advanced modeling and simulations of geodynamic processes which will advance fundamental knowledge in the Earth sciences. Validation and verification of the developed models and implemented numerical methods. Validation of new achievements developed within the previous WPs in the context of assessment of structures and materials. Optimisation and verification of the behavior of construction elements, units and load-bearing systems will be carried out, taking into account real geometric, material and structural characteristics. All of these activities will be addressed from the point of view of the life cycle of building objects and the principles of sustainable development.
Description of work Task 4.1 Simulations of geodynamic processes (CUNI) Background Since the 1960s and 1970s, when the plate-tectonic paradigm was formulated in the Earth sciences, a number of studies have emphasized the key role of magmas in the formation and destruction of mountain belts. We intend to develop advanced models of physical phenomena governing the processes in question and combine them with the power of state-of-art numerical methods to simulate the geodynamic processes more realistically. Results of these numerical simulations will advance the fundamental knowledge in the Earth sciences namely by (a) complementing data obtained through field-oriented research with information that is not physically measurable and (b) providing means for validation of existing and newly developed hypotheses. Work plan, concepts and methods We plan to develop a set of numerical models to examine the mechanical conditions and potential driving forces for this core complex formation, which cannot be solved using geologic data. For the geometry and rock characteristic obtained in Task 1.3, we will examine how changing parameters (temperature, tectonic stress, rheology) will influence the displacement of rocks and thus under which mechanical conditions the core complex may have formed. The problem will be, in principle, modeled on the macroscale, where host rocks and magma will be treated as continua using homogenization based methods, taking into account the multi-physics character of the problems (Tasks 3.1 and 3.2). Achievements The results of this task will advance basic research in Earth sciences by complementing experimental research
and validating hypotheses. Using this particular case example of a migmatite–granite complex, a general geological model for magma generation, exhumation of partially molten rocks, and their changing rheological behavior during orogenesis will be developed. Milestones M 4.1.1: (2014) Modeling changes in rheological behavior of migmatites during partial melting and emplacement mechanisms of granites. M 4.1.2: (2015) Modeling transport through fractured brittle host rock. M 4.1.3: (2017) Modeling of the large-scale exhumation. M 4.1.4: (2018) A synthesis on rheological transitions in multiphase magma–partially molten rocks.
Task 4.2 Concrete structures design, strengthening, optimization (BUT) Background In advanced countries, a substantial attention has been paid to innovative approaches in design, implementation and management of construction activities. It is tightly connected to the challenges in the related fundamental research because suggested design parameters for construction components should optimally reflect the requirements mainly posed on their target properties. New materials such as highperformance concrete, fiber-reinforced polymers (FRP) and engineered composites are applied in concrete structure design, and suitable theoretical optimization models must be developed. These models have to consider that the optimal design parameters must also satisfy lifetime related requirements. Work plan, concepts and methods Using experimental testing, mathematical modeling and theoretical validation, we will define advanced models and constitutive relations for composite concrete structures design. Analysis of challenging problems of optimal structural design has to consider life time aspects and involve stochastic parameters to reflect the actual requirements recently posed on concrete structures in the model building phase (life-time related, environmental, weather-related, seismic, targeted attack). Achievements Development and description (modeling) of modern composite concrete-based structures, development, testing and design rules for new advanced strengthening techniques, sophisticated models for optimized design of concrete structures with verification tools; algorithmic improvements based on advanced data structures; modification of decomposition and penalty-based algorithms. Milestones M 4.2.1 (2013): Fire resistance of FRP strengthening and reinforcing systems, design rules. M 4.2.2 (2015): Formulation of time-dependent models (aging of structures), robust optimization models and further alternatives, comparisons. M 4.2.3 (2017): Advanced composite structures. M 4.2.4 (2018): Advanced Monte Carlo techniques for a posteriori solution verification (prestressed and nonprestressed concrete structures), a priori modeling for improvement of solution quality (design examples).
Task 4.3 Advanced Metal Structures (BUT) Background Reliable and effective structural design can be achieved by of the utilization of advanced materials, such as advanced metals (progressive steels), aluminium alloys, structural glass and fibre-reinforced polymers. Using their non-traditional combinations in load-carrying structural members is one of the pathways to high reliability and economy. Work plan, concepts and methods Combined use of theoretical and experimental methods of analysis. The experimental tests (loading tests and tests of mechanical properties) as a base for the creation, verification and calibration of static models. Achievements Enhancement of the knowledge of the actual behavior and resistance of structural members composed of advanced materials based on metals, structural glass and fiber-reinforced polymers and their combinations, for the extension of existing conceptual bases for the structural design. Evaluation and generalization of experimental verification results using theoretical methods based on mathematical approaches. Milestones M 4.3.1 (2014): Advanced structural members composed of introduced materials (see above) are investigated on the base of experimental verification and the connection with theoretical structural analysis is established. M 4.3.2 (2016): The results of numerical analyses are verified on the base of evaluated experimental results and in connection with general design approaches. M 4.3.3 (2018): Generalization based on the integration of the results of previous experimental and theoretical analyses leads to the completion and extension of existing design methods.
Task 4.4 Geotechnics and Traffic Problems (BUT/CDV) Background Geomaterials generally exhibit a highly non-linear behavior and their properties are more variable than for other materials. It has been outlined in several studies that the compositional or structural inhomogeni-
ties and crystal microstructure of geomaterials could play a significant role in the mechanical response of geomaterials subjected to loading and in the resistance to damage or failure. Work plan, concepts and methods The research is both experimental and theoretical. Laboratory tests will be done in order to determine the input parameters for different constitutive models. Additional experiments will be focused on the evaluation of material properties with respect to their structural as well as chemical composition. In the theoretical part, the influence of different constitutive models on the predicted behavior of geotechnical structures will be studied, and a methodology for assessment of dynamic properties of railway tracks will be developed. Achievements. Investigation of properties of various geomaterials. Focus on macro-scale and micro-scale determination of compositional, mechanical, and physical properties. These properties will be investigated for natural materials alone, as well as for natural material mixtures with other compounds (cement, lime, synthetics fibers etc.). Evaluation of trail track sections for rail fastening with high elasticity, and comparison with the common structure of ballasted track. Milestones M 4.4.1 (2014): Current theoretical background. Initial phase of laboratory testing. M 4.4.2 (2015): Evaluation of material properties with respect to their structural and chemical composition. M 4.4.3 (2016): Research activities will be focused on analysis of railway structure parameters at dynamic loading. M 4.4.4 (2018): Summary and interpretation of obtained results from laboratory and numerical analysis.
G. Time schedule, and stages The project is implemented in four work packages, representing different stages in developing the project objectives. The core theory and models, supplemented by input acquisition and validation, will be developed concurrently by the cooperating partners with expertise in the relevant areas. The timing of the different WPs and their tasks (Gantt chart) is shown in the following table. Task 1.1 1.2 1.3 1.4 1.5 1.6 2.1 2.2 2.3 2.4 2.5 3.1 3.2 3.3 4.1 4.2 4.3 4.4
Y12 Y13 Y14 Y15 Data acquisition from small-scale experiments Durability and surface treatment Acquisition of geological data Scanning electron microscopy Concrete and mortars Advanced ceramics Stability, integrity and failure Simulation techniques in stochastic mechanics Inverse analysis Fuzzy approaches and reliability Worst-case scenario method Multi-scale homogenization techniques Multi-physics models for heterogeneous materials Development of advanced numerical tools Simulations of geodynamic processes Concrete structures design and optimization Advanced metal structures Geotechnics and traffic problems Table 1: Timing of individual tasks (shaded) and milestones ()
Y16
Y17
Jimp – papers in scientific journals with impact factor Jneimp – papers in scientific journals 1
App. number per year
Methodology for evaluation of research organizations, Office of the Government of the Czech Republic.
Number per project
12 15
H. Expected achievements Achievements according to methodology 1
Y18
Jrec – papers in reviewed national journals 15 B – book 2 C – chapter in a book 10 D – paper in proceedings 22 Table 2: Summary of expected achievements (according to methodology)
I. International cooperation CTU has an active cooperation with Northwestern University, Evanston, USA (Z.P. Baţant) in mechanics of quasibrittle materials; University of Tokyo, Japan (K. Maekawa) in modeling and testing of cementitious composites; University of Texas at Austin, USA (I. Babuška) in worst-case scenario methods; Technical University of Eindhoven, The Netherlands (M. Geers) in damage processes in discrete systems; Vienna University of Technology, Vienna, Austria (P.K. Zysset) in bone mechanics; University of Glasgow, United Kingdom (P. Grassl) in meso- and macroscopic modeling of concrete; Nanocem (international consortium) in nanoscience of cement; and with three universities participating in joint organization of a series of international conferences CFRAC (Technical University of Catalonia in Barcelona - X. Oliver, Ecole Centrale de Nantes - N. Moës, Ecole Normale Supérieure de Cachan - O. Allix); Danish Technological Institute, Denmark (L.N. Thrane) in SCC design. BUT has an established cooperation with RWTH Aachen University, Aachen, Germany (R. Chudoba) in stochastic mechanics of reinforced composites, Northwestern University, Evanston, USA (Z.P. Baţant) in size effects in and reliability of quasibrittle structures, University of Minnesota, Minnesota, USA (J.-L. Le) in fatigue of quasibrittle materials, Technical University of Denmark, Denmark (J. Skoček) in discrete lattice-particle modeling, IKI, BOKU, Vienna, Austria (K. Bergmeister) in inverse analysis and damage identification, University Fortalesa, Brazil, in concrete structures, and with Texas University Austin, USA (D. Morton) in design of concrete. CUNI has an established cooperation with University of Southern California, Los Angeles, USA (S.R. Paterson) in pluton emplacement processes and physical processes in magma chambers, and with University of Salzburg, Austria (F. Finger) in monazite geochronology and metamorphic and igneous petrology. CDV has an international cooperation with Federal Highway Research Institute, Germany, in pavement testing and design, and with Commission of the European Communities, Brussels (A. Mitsos). The international cooperation is documented in detail in attachments.
J. Available resources and their sharing The partners involved in the center will commit a core of key resources in terms of expertise and facilities in order to implement the project. The key areas of commitment by respective partners are as follows: CTU has advanced facilities for micro- and nano-level mechanical testing - Nanotest nanoindenter (Micro Materials, UK), Tribolab nanoindenter (Hysitron, USA), Nanohardness tester (CSM Instruments, Switzerland), Environmental scanning electron microscope XL30 ESEM-TMP, Philips, and Atomic force microscope (DME Denmark). The Department of Mechanics has a cluster computer for numerical simulations as well as access to university high-performance computing resources. CUNI has Multi-function spinner Kappabridge MFK-1A (made by Agico, Inc.) at Laboratory of Rock Magnetism (Faculty of Science, Charles University in Prague) – the world’s most sensitive commercially available instrument for measuring the bulk magnetic susceptibility and its anisotropy in rocks and other materials. Website: www.natur.cuni.cz/~jirizak/lrm.htm BUT has the AE Location Analyzer LOCAN 320, a 6-channel measuring apparatus (two channels to pick-up signals, four channels for crack localisation), DAKEL XEDO -8 equipment for acoustic emission evaluation, RTE made by TESTINA, equipment for Impact-echo measurement, MSNVS01, equipment for non-linear acoustic spectroscopy, Confocal Microscope Olympus Lext 3100 with Atomic Field Microscope Module, airconditioned room. CDV has scanning electron microscope Tescan Vega II LSU, which allows working in high, middle or low vacuum mode, with secondary (SE) or backscattered (BSE) electron detectors, SEM equipped with Energydispersive x-ray analyser (EDX), Energy-dispersive x-ray analyser.
K. Structure of the team, personal resources, and competence of the applicants All the project partners have adequate human and material resources available to them to support this project. Especially the knowledge resources of the research partners are undoubtedly the biggest asset. A clear benefit is derived from the overlapping interests of several of the committed partners. The listing in Table 3 illustrates the scientific and knowledge potential of the key personnel.
During the solution of the project, a strong involvement of PhD as well as MSc students is planned, particularly at CTU, BUT, and CUNI. The knowledge acquired in the project will be directly used to improve the education process. Involvement of students in such a long-term project will enrich the universities involved and contribute to the scientific and professional growth of the young generation of researchers. Name Institution Expertise H Cit Jimp Np/Ip M. Jirásek CTU Material modeling 17 844 21 2/7 M. Šejnoha CTU Composites 7 179 20 5/0 B. Patzák CTU Computational mechanics 5 142 9 5/0 Z. Bittnar CTU Computational mechanics 6 97 28 14/2 J. Kratochvíl CTU Solid state physics 17 1052 25 4/2 P. Demo CTU Solid state physics 8 268 19 5/0 P. Kabele CTU Constitutive modeling 4 56 5 5/0 V. Šmilauer CTU Inorganic binders 2 26 8 2/1 J. Zeman CTU Theoretical mechanics 7 157 20 1/4 M. Kruţík CTU Applied mathematics 7 196 23 1/1 J. Chleboun CTU Applied mathematics 4 32 4 0/1 Z. Keršner BUT Fracture mechanics 2 11 5 7/0 M.Vořechovský BUT Stochastic mechanics 7 91 12 5/2 J. Vala BUT Applied mathematics 3 35 10 1/0 D. Lehký BUT Soft computing 1 12 2 1/0 D. Novák BUT Structural reliability 7 139 15 10/2 A. Strauss BUT Inverse analysis 4 48 22 4/2 Z. Kala BUT Fuzzy logic 6 104 5 6/0 P. Rovnaníková BUT Structural chemistry 6 75 19 20/0 P. Bayer BUT Structural chemistry 3 22 9 0/0 P. Rovnaník BUT Material degradation 3 18 10 1/0 R. Hela BUT Concrete technology 1 1 7 15/2 Z. Chobola BUT Applied physics 2 5 16 8/0 L. Pazdera BUT Applied physics 2 2 11 1/0 P. Štěpánek BUT Concrete structures 1 6 1 12/2 J. Melcher BUT Metal structures 4 39 3 14/0 J. Smutný BUT Traffic 2 2 4 4/0 J. Ţák CUNI Structural geology and tectonics 9 99 27 0/5 D. Pospíšilová-Vašíčková CDV Scanning electron microscopy 3 20 4 0/0 I. Dostál CDV Microstructure analysis 2 10 2 2/1 Table 3: Key persons and their expertise (H = H-factor, Jimp = number of papers in journals with impact factor during the last 10 years, Cit = number of citations, Np/Ip = number of national/international projects during the last 10 years).
L. Bibliography Allison, J, Backmann, D, Christodoulou, L. Integrated Computational Materials Engineering: A new paradigm for the global materials profession, JOM, 25-27, 2006. Babuška, I., Nobile, F. and Tempone R. Reliability of Computational Science, Numerical Methods in Partial Differential Equations, 753-784, 2007. Baţant. Z.P. Can Multiscale-Multiphysics Methods Predict Softening Damage and Structural Failure? International Journal for Multiscale Computational Engineering, 8: 61—67, 2010. Bea, F., Crystallization Dynamics of Granite Magma Chambers in the Absence of Regional Stress: Multiphysics Modeling with Natural Examples. Journal of Petrology, 51(7): 1541-1569, 2010. Bea, F., Crystallization Dynamics of Granite Magma Chambers in the Absence of Regional Stress: Multiphysics Modeling with Natural Examples. Journal of Petrology, 51(7): 1541-1569, 2010. Bentz, D. P.: Verification, Validation, and Variability of Virtual Standards, 12th International Congress on the Chemistry of Cement, 2007. Bergantz, G.W., & Ni, J., A Numerical Study of Sedimentation by Dripping Instabilities in Viscous Fluids. International Journal of Multiphase Flow, 25: 307–320, 1999. Bochev, P.B. and Gunzburger, M.D. Least-Squares Finite Element Methods. Springer, New York, 2009. Brown, M., The Generation, Segregation, Ascent and Emplacement of Granite Magma: the Migmatite-to-CrustallyDerived Granite Connection in Thickened Orogens. Earth-Science Reviews, 36: 83–130, 1994.
Brown, M., Crustal melting and melt extraction, ascent and emplacement in orogens: mechanisms and consequences. Journal of the Geological Society, London, 164: 709-730, 2007. Brown, M., Solar, G.S., Shear-zone Systems and Melts: Feedback Relations and Self-organization in Orogenic Belts. Journal of Structural Geology, 20: 211–227, 1998. Burgisser, A., & Bergantz, G.W., Reconciling Pyroclastic Flow and Surge: the Multiphase Physics of Pyroclastic Density Currents. Earth and Planetary Science Letters, 202: 405–418, 2002. Chudoba, R., Vořechovský, M. and Konrad, M. Stochastic modeling of multi-filament yarns. I. Random properties within the cross-section and size effect. International Journal of Solids and Structures, vol. 43, no. 3-4, pp. 413434, 2006. Cioranescu, D. and Donato, P. An Introduction to Homogenization. Oxford University Press, 1999. Conover, W. J., On a Better Method for Selecting Input Variables, 1975, unpublished Los Alamos National Laboratories manuscript, reproduced as Appendix A of ―Latin Hypercube Sampling and the Propagation of Uncertainty in Analyses of Complex Systems‖ by J.C. Helton and F.J. Davis, Sandia National Laboratories report SAND2001-0417, printed November 2002., Deix, S., Geier, R. Updating FE-models using experimental modal analysis for damage detection and systém identification in civil structures. Third European Conference on Structural Control, 3ECSC, Vienna University of Technology, Vienna, Austria, 2004. Der Kiureghian A., Zhang Y. & Li C.C. Inverse reliability problem. Journal of Engineering mechanics, 120(5): 11541159, 1994. Efendiev, Y. and Hou, T. Y. Multiscale Finite Element Methods – Theory and Applications. Springer, New York, 2009. Fairbairn, E.M.R., Paz, C.N.M., Ebecken, N.F.F., Ulm, F.J. Use of neural networks for fitting of FE probabilistic scaling model parameters. International Journal of Fracture, 95: 315-324, 1999. Fang, X., Luo, H., Tang, J. Structural damage detection using neural network with learning rate improvement. Computers and Structures, 83, 2150-2161, 2005. Geers, M.G.D., Kouznetsova, V.G. and Brekelmans, W.A.M. Multi-scale computational homogenization: Trends and challenges. Journal of Computational and Applied Mathematics, 234:2175—2182, 2010. Hill, R. Elastic properties of reinforced solids - Some theoretical principles. Journal of the Mechanics and Physics of Solids, 11: 357--372, 1963. Hinzen, M. and Brameshuber, W. Influence of short fibres on strength, ductility and crack development of textile reinforced concrete, High performance fiber reinforced cement composites (HPFRCC5): Proceedings of the 5th International RILEM Workshop, Mainz, Germany, Eds. Rheinhardt, H. W.; Naaman A. F., Bagneux: RILEM, pp. 105–112, 2007. Hlaváček,I., Chleboun, J., and Babuška, I. Uncertain input data problems and the worst scenario method, NorthHolland Series in Applied Mathematics and Mechanics, Elsevier, 2004. Hollister, L.S., Crawford, M.L., Melt-enhanced Deformation: A Major Tectonic Process. Geology, 14: 558-561, 1986. Huth, O., Feltrin, G., Maeck, J., Kilic, N., Motavalli, M. Damage identification using modal data: Experiences on a prestressed concrete bridge. Journal of Structural Engineering, ASCE, 131:12, 1898-1910, 2005. Idelsohn, S. R., Oñate, E. and Del Pin, F. The particle finite element method: a powerful tool to solve incompressible flows with free-surfaces and breaking waves, Int. J. Numer. Meth. Eng., 61 (7), 964–989, 2004. Iman, R.C. and W. J. Conover, Small Sample Sensitivity Analysis Techniques for Computer Models with an Application to Risk Assessment, Communications in Statistics: Theory and Methods, A9 (17), 1749–1842, 1980. Isakov, V. Inverse Problems for Partial Differential Equations. Springer, New York, 2006. Kučerová, A., Lepš, M., Zeman, J. Soft computing methods for estimation of microplane model parameters. In: Computational Mechanics Conference, WCCM VI in conjuction with APCOM´04, Beijing, China, Tsinghua University, Press & Springer-Verlag, 2004. Lehký, D. & Novák, D. Artificial Intelligence: New Research, chapter 7: ANN Inverse Analysis in Stochastic Computational Mechanics. Randal B. Bernstein & Wesley N. Curtis (eds.), Nova Science Publishers, Hauppauge NY, USA, 323-350, 2009b. Lehký, D. & Novák, D. Neural network based damage detection of dynamically loaded structures. 11th International Conference on Engineering Applications of Neural Networks (EANN 2009), London, Great Britain, 17-27, 2009a. Lehký, D., Novák, D. An artificial neural network approach to solve inverse reliability problems. In: International Symposium on Reliability Engineering and Risk Management (ISRERM2010), Shanghai, China, 564-570, 2010. Lehký, D., Novák, D., Červenka, V. Shear failure of large concrete beams: Part I – Material parameters identification. In: The 3rd International Congress of the International Federation for Structural Concrete (fib), Washington, D.C., USA, 2010a. Li, H. & Foschi, R.O. An inverse reliability method and its application. Structural Safety, 20: 257-270, 1998. Li, V.C, Wang, Y. and Backer, S. A micromechanical model of tension-softening and bridging thoughening of short fiber reinforced brittle matrix composites. Journal of the Mechanics and Physics of Solids 39(5), pp. 607–625,
1991. Ljung, L. System Identification – Theory For the User, 2nd ed., PTR Prentice Hall, Upper Saddle River, N.J., 1999. Lothenbach, B. and Winnefeld, F. (2006), Thermodynamic modeling of the hydration of Portland cement, Cement and Concrete Research, 36(2), 209-226. Maincon, P. Inverse FEM I: Load and response estimates from measurements. In: Progress in Structural Engineering, Mechanics and Computation, Zingoni (ed.), Taylor & Francis Group, London, 967-971, 2004a. Maincon, P. Inverse FEM II: Dynamic and non-linear problems. In: Progress in Structural Engineering, Mechanics and Computation, Taylor & Francis Group, London, 991-995, 2004b. McBirney, A.R., & Murase, T., Rheological Properties of Magmas. Annual Review of Earth and Planetary Sciences, 12, 337–357, 1984. Mielke, A. and Timofte, A.M.. Two-scale homogenization for evolutionary variational inequalities via the energetic formulation. SIAM Journal on Mathematical Analysis, 39: 642-668. 2007. Mielke, A. and Theil, F. A mathematical model for rate-independent phase transformations with hysteresis. In H.-D. Alber, R. Balean, and R. Farwig, editors, Proceedings of the Workshop on Models of Continuum Mechanics in Analysis and Engineering, pages 117-129. Shaker-Verlag, 1999. Mielke, A. Evolution in rate-independent systems (ch. 6). In C. Dafermos and E. Feireisl, editors, Handbook of Differential Equations, Evolutionary Equations, volume 2, pages 461-559. Elsevier B.V., 2005. Milton, G.W. The theory of composites. Cambridge Monographs on Applied and Computational Mathematics, Cambridge University Press, 2002. Möller,B. and Reuter,U. Uncertainty Forecasting in Engineering, Springer Press, p.202, 2007. Naaman, A.E. et al. Fiber Pullout and Bond Slip I: Analytical study. Journal of Structural Engineering, vol. 117, no. 9, pp. 2769-2790, 1991. Nechvátal, L. Homogenization with uncertain input parameters. Mathematica Bohemica, 135:393-402. ISSN: 08627959, 2010. Novák, D. & Lehký, D. ANN Inverse Analysis Based on Stochastic Small-Sample Training Set Simulation. Journal of Engineering Application of Artificial Intelligence, 19: 731-740, 2006. Oñate E., Idelsohn S. R., Zienkiewicz O. C., Taylor R. L. and Sacco C. A stabilized finite point method for analysis of fluid mechanics problems, Comput. Meth. Appl. Mech. Eng., 139 (1–4), 315–346, 1996. Oñate, E., S. R. Idelsohn, et al., The Particle Finite Element Method. An Overview. International Journal of Computational Methods, 1(2): 267-307, 2004. Ostoja-Starzewski, M. Microstructural Randomness and Scaling in Mechanics of Materials. Modern Mechanics and Mathematics, Chapman and Hall/CRC, 2007. Petford, N., & Koenders, M.A., Granular Flow and Viscous Fluctuations in Low Bagnold Number Granitic Magmas. Journal of the Geological Society, London, 155: 873–881, 1998. Planas, J., Guinea, G. V., Elices, M. Size effect and inverse analysis in concrete fracture. International Journal of Fracture, Vol. 95, Kluwer Academic Publisher, 367-378, 1999. Rosenberg, C.L., Handy, M.R., Experimental Deformation of Partially Melted Granite Revisited: Implications for the Continental Crust. Journal of Metamorphic Geology, 23: 19–28, 2005. Steinhauser, M.O. Computational Multiscale Modelling of Fluids and Solids. Springer, Berlin, 2008. Strauss A., Lehký, D., Novák, D., Bergmeister, K., Santa, U. Probabilistic response identification and monitoring of concrete structures. Third European Conference on Structural Control, 3ECSC, Vienna University of Technology, Vienna, Austria, 2004. Torquato, S. Random Heterogeneous Materials. Interdisciplinary Applied Mathematics, Springer Verlag, 2001. Ulm, F.-J. and Coussy, O.: Couplings in early-age concrete: From material modeling to structural design, International Journal of Solids and Structures 35, 1998, 4295-4311. Vigneresse, J.L., et al., Rheological Transitions during Partial Melting and Crystallization with Application to Felsic Magma Segregation and Transfer. Journal of Petrology, 37: 1579–1600, 1996. Vořechovský, M. and Chudoba, R. Stochastic modeling of multi-filament yarns: II. Random properties over the length and size effect. International Journal of Solids and Structures, vol. 43, no. 3-4, pp. 435-458, 2006. Zabaras, N. Inverse Problems in Heat Transfer. Handbook on Numerical Heat Transfer, Chap.17, John Wiley & Sons, Hoboken, 2004. Zadeh, L.A. From Circuit Theory to System Theory, In Proc. of Institute of Ratio Eng.,50: 856-865,1962. Ţák, J., et al., The Generation of Voluminous S-type Granites in the Moldanubian Unit, Bohemian Massif, by Rapid Isothermal Exhumation of the Metapelitic Middle Crust. Lithos, 121: 25-40, 2011. Zimmermann, H.J. Fuzzy Sets Theory and its Applications, Kluwer Academic Publishers, Boston, 1991.
Czech Science Foundation - Part GD1 Applicant and Co-applicants Applicant: Prof. Dr. Ing. Bořek Patzák
Personal data: Birth date/place: May 15, 1970 / Prague, Czech Republic Business Address: Department of Mechanics, Faculty of Civil Engineering, Czech Technical University, Thákurova 7, 166 29 Prague, Czech Republic Home Address: Jana Zajíce 14, 170 00 Prague, Czech Republic Phone: +42-02-24354375; e-mail:
[email protected]
Education: 1993 – MSc (Ing.), Czech Technical University, Faculty of Civil Engineering, Finished with honors.
1997 - PhD (Dr.) - Czech Technical University, Faculty of Civil Engineering. Professional positions: 1997–2000 Assistant professor, Department of Structural Mechanics, CTU Prague, Faculty of Civil
Engineering. 2000–2002 Research engineer, EPFL, Department of Civil Engineering, Laboratory of Structural and Continuum Mechanics, Switzerland. 2002-2010 Associate professor, Department of Mechanics, CTU Prague, Faculty Civil Engineering. 2010-present Professor, Department of Mechanics, CTU Prague, Faculty Civil Engineering. Research interests:
Computational mechanics, Finite element method, material modeling of heterogeneous materials, fracture mechanics, dynamic load balancing on heterogeneous parallel architectures, high performance parallel computing and software development Selected research projects documenting research and activities EU 7th Framework project TAILORCRETE, “New Industrial technologies for tailor-made concrete structures at mass customized prices”, ref. no. 228663, (work package leader), 2009-2012. Project No. MSM 6840770003 of Ministry of Education of the Czech Republic, "Algorithms for Computer Simulation and Application in Engineering“, (research team member). Grant No. 103/04/1394 of Grant Agency of Czech Republic „Simulation of Fresh Concrete Flow“ (responsible investigator), 2004–2006. Grant No. 103/06/1845 of Grant Agency of Czech Republic „Algorithms for Representation of Moving Boundaries“ (responsible investigator), 2006–2008. Grant No. P105/10/1402 of Grant Agency of Czech Republic „MuPIF – a multi-physic integration framework” (responsible investigator), 2010-2012. Grant No. P105/10/1682 of Grant Agency of Czech Republic, “Solution of large hydro-thermo-mechanical problems using adaptive hp-FEM”, 2010-2012. Grant No. 103/09/2009 of Grant Agency of Czech Republic, “Isogeometric Analysis in Structural Mechanic”, 20092011. Open source finite element code OOFEM, www.oofem.org, (lead developer), 1997-2011.
1
Publications: Author and co-author of 2 chapters in books and more than 60 papers in journals and conference proceedings International cooperation: Dr. Peter Grassl, School of Engineering, University of Glasgow, UK – numerical modeling of fracture processes Dr. Daniel Balint, Department of Mechanical Engineering, Imperial College, London, UK – numerical modeling of evolving discontinuities Dr. Lars Nyholm Thrane, Danish Technological Institute, DK – numerical modeling of concrete casting Large community of OOFEM developers and users, www.oofem.org
2
Czech Science Foundation - Part GD1 Applicant and Co-applicants Co-applicant: Prof. Ing. Karel Pospíšil, Ph.D., MBA Personal data: Birth date/place: July 28, 1969 / Brno, Czech Republic Business Address: CDV – Transport Research Centre, Lisenska 33a, 636 00 Brno, Czech Republic Home Address: Kainarova 79, 616 00 Brno, Czech Republic Phone: +420 – 548 423 716; e-mail:
[email protected] Education: 1992 – Ing. (MSc.), Faculty of Civil Engineering, Brno University of Technology 2002 – Ph.D., Jan Perner Faculty of Transport, University of Pardubice, dissertation topic: "Subgrade modulus of deformation" 2007 – MBA, BIBS/Nottingham Trent University, dissertation topic “Strategic management of research institution”, degree awarded with distinction Professional positions: 1992 – 1994 Designer, later chief designer of highways in Germany, TVP-ZS Brno, Czech Rep. 1994 – 2000 Chief designer of hihways in own company IngSoft, spol. s. r.o., Brno, Czech Rep. 2000 – present CDV – Transport Research Centre: 2000 – Researcher 2001 – 2006 Head of Infrastructure Research Department (approx. 20 employees) 2007 – present Director of the institution (approx. 130 employees) 2004 – present Jan Perner Faculty of Transport: 2004 – 2005 Senior lecture at Department of Transport Structures 2005 – 2010 Associated Professor (Habilitate) in the field of Transport Infrastructure 2010 – present Professor in the field of Transport Infrastructure 2009 – present Member of the Board, Technology Agency of the Czech Republic 2010 – present Member of the R&D Council (Czech governmental advisory body) 2010 – present Member of Conduct of Research Committee, TRB of National Academies, USA Scientific secondments: 2000 – LCPC – Central Laboratory for Bridges and Highways, Paris/Nantes, France 2001 – VTRC – Virginia Transport Research Council, Charlottesville, VA, USA 2006 – TRL – Transport Research Laboratory, Crowthorne, UK Research interests: Degradation processes in building materials, microstructure of materials, behaviour of multilayer systems in geotechics and pavement structures, theoretical approaches to non-destructive testing
Memberships: Member of FEHRL Directors Board (Forum of European National Highway Research Laboratories) President, Public Applied Research Institutions Board, Member, Member, Monitoring Committee of Operational Programme Enterprise and Innovations, Member, Czech Governmental Board of Road Safety, Editor-in-Chief of Transactions on Transport Sciences journal, Member, Scientific Board of Minister of Transport of the Czech Republic, Member, Scientific Board of Brno University of Technology School of Civil Engineering, Member, Scientific Board of Pardubice University and its School of Transportation, Member of Board of Trustees of Grant Agency of Academy of Sciences of the Czech Republic, Member, Technical Board of Director General of the Czech Highway Administration, Evaluator of national grants in the Czech and Slovak Republics, evaluator of projects submitted to EU Structural Funds, Voting member at five committees of ASTM International, Member, International Society of Concrete Pavements Selected research projects documenting research and activities in reliability topic: European Frameworks Projects: MTKD-CT-2005-029556: TITaM (Transport Infrastructure Technologies and Management), 2006 – 2008, coordinator, responsible investigator, participating countries CZ, UK, GE G7RT-CT-2001-05057: TREE (Transport Research Equipment in Europe), 2002 – 2004, responsible investigator for the Czech participation, leader of four group (members from: AT, CZ, GE, ES, FR, PL, SV, UK) TST5-CT-2006-031467: SPENS (Sustainable Pavements for European New Member States), 2006 – 2009, responsible investigator for the Czech participation TST5-CT-2006-031272: ARCHES (Assessment and Rehabilitation of Central European Highway Structures), 2006 – 2009, responsible investigator for the Czech participation TCA5-CT-2006-031457: CERTAIN (Central European Research in Transport Infrastructure), 2006 – 2010, responsible investigator for the Czech participation Czech National Projects: CE803120108 Monitoring methodology of reinforced and pre-stressed concrete structures, Ministry of Transport, 2001-2003, responsible investigator 1P05OC005 Indexes for evaluation of pavements from Czech Republic importance point of view, Ministry of Education, Youth and Sport, 2005-2008, responsible investigator CG711-082-910 Drainage systems of pavement, bridges and tunnels, Ministry of Transport, 20072010, responsible investigator GA103/09/1499 Multichannel georadar as a tool for pavement and bridge damages monitoring, Grant Agency of the Czech Republic, 2009 – 2011, responsible investigator Publications: Author and co-author of 2 books and more than 100 papers in journals and conference proceedings incl. 10 registered design models and 6 European patents applications. International cooperation: In addition to above mentioned international projects and participation in international professional bodies, there is a cooperation between applicant and: Dr. Celik Ozyildirim, Virginia Transport Research Council, USA, topic: Concrete structures Dr. Richard Woodward, TRL–Transport Research Laboratory, UK, topic: ground penetrating radar Dr. Jozef Komačka, Associated Professor, University of Zilina, Slovakia, topic: pavement issues
Czech Science Foundation - Part GD1 Applicant and Co-applicants Co-applicant: Prof. Ing. Drahomír Novák, DrSc.
Personal data: Birth date/place: January 15, 1960 / Prostějov, Czech Republic Business Address: Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Veveří 331/95, 602 00 Brno, Czech Republic Home Address: Šaumannova 10, 615 00 Brno, Czech Republic Phone: +420-5-41147360; e-mail:
[email protected]
Education: 1984 - Faculty of Civil Engineering, Technical University of Brno 1990 - Ph.D. degree on the topic "Analysis of random behavior of RC beams" 2000 – DrSc. degree from CTU Prague on topic “Aspects of concrete structures: Reliability, degradation and size effect”
Professional positions: 1984 – 1987 Designer, design office Brnoprojekt, Czech Republic 1994 – Associate Professor degree on the topic "Reliability-based optimization and sensitivity analysis of structures" 1987 – 2003 Lecturer, then Associate Professor of Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Czech Republic 2003 – Prof. degree in the field “Theory of Structures” 2003 – now Head of Institute of Structural Mechanics, Faculty of Civil Engineering, Brno University of Technology, Czech Republic 2010 – now Vicedean for Science and Research, Faculty of Civil Engineering, Brno University of Technology, Czech Republic
Visiting positions: 1989 (2 months) – School of Civil Engineering, Kyoto University, Japan 1990, 1994 – Institute of Engineering Mechanics, University of Innsbruck, Austria 1991 – 93 (18 months) – School of Civil Engineering, Kyoto University, Japan, graduated from "Int. Course of Kyoto University" 1996, 1998, 2002 – Faculty of Engineering, Kasetsart University, Bangkok, Thailand 1997, 1999, 2000, 2001, 2003 – Northwestern University, Evanston, USA (prof. Z. P. Bažant) 2007, 2008 – visiting professor of IKI, BOKU University, Vienna, Austria
1
Research interests: Structural safety and reliability, stochastic computational mechanics, stochastic finite elements, random fields, Monte Carlo simulation techniques, risk assessment, fracture mechanics, size effect, stochastic optimization, inverse analysis, identification, reliability-based optimization, finite element modeling, concrete, quasi-brittle materials.
Memberships: Member of Engineering Academy of Czech Republic (elected in 2009), member of Czech Society for Mechanics, member of the international associations FraMCoS, IASSAR, IABMAS, Member of Czech Technical Standardization Committee – TNK 38, member of ASRANET and IABMAS, Member of Editorial board of journal “Materials & Reliability“, member of Scientific Board of Brno University of Technology, member of fib – Int. Federation of Structural Concrete, Commision 2 – Safety and Performance Concepts (corr. member).
Selected research projects documenting research and activities in reliability topic: • Grant No. 103/02/1030 of Grant Agency of Czech Republic „Nonlinear fracture mechanics of concrete based on stochastic finite elements“ (responsible investigator), 2002–2004 • Fulbright scholarship for research project "Nonlocal Weibull theories and statistical size effect ", in cooperation with prof. Z. P. Bažant, Northwestern University, USA, 1999 • International project “Structural Analysis and Reliability Assessment (SARA)”, Brenner Autobahn, Italy, head of Brno team, 2000–2008 • Grant No. 103/04/2092 of Grant Agency of Czech Republic „Model identification and optimization at material and structural levels” (responsible investigator), 2004–2006 • Project of Ministry of Education of the Czech Republic Clutch No. 1K04110 „Statistical aspects of size effect influence on structural reliability“ (responsible investigator), 2004–2007 • Project Information Society No. 1E125S001 – VITESPO of Academy of Science of Czech Republic “Virtual testing of safety and reliability of structures”, 2004–2007 • Project RLACS – Eurostars, Risk and Life-time analysis of concrete structures (co-investigator), 2008-2011 • Grant No. 103/07/0760 of Grant Agency of Czech Republic „Soft computing in structural mechanics (SCOME)” (responsible investigator), 2006–2009 • Grant No. 103/08/0752 of Grant Agency of Czech Republic „ Soil-structure interaction stochastic modeling (SISMO)” (responsible investigator), 2007–2010 • Grant No. P105/10/1156 of Grant Agency of Czech Republic „ Complex modeling of concrete structures: Aspects of nonlinearity, reliability, life-cycle and risk (COMOCOS)” (responsible investigator), 2010–2012 • Grant No P105/11/1385 of Grant Agency of Czech Republic „ Inverse structural reliability problems (INSREL)” (responsible investigator), 2011–2013 • Research centre CIDEAS, head of Structural Mechanics - reliability Brno team, 2005-2012 Publications: Author and co-author of 2 books and more than 200 papers in journals and conference proceedings
International cooperation: Prof. Konrad Bergmeister, IKI BOKU University, Vienna, Austria – health monitoring, structural reliability, damage identification Prof. Zdeněk P. Bažant, Northwestern University, Evanston, USA – size effect, Weibull theories Dr. Wimon Lawanwisut, IMSL, L.t.d., Bangkok, Thailand – strengthening of concrete structures Prof. Hitoshi Akita, Sendai University, Sendai, Japan – uniaxial tension of concrete
2
Czech Science Foundation - Part GD1 Applicant and Co-applicants Co-applicant: Doc. RNDr. Jiří Žák, Ph.D.
Personal data: Birth date/place: May 26, 1976 / Plzeň, Czech Republic Business Address: Institute of Geology and Paleontology, Faculty of Science, Charles University in Prague, Albertov 6, 128 48 Prague, Czech Republic Home Address: Ohradní 1335, 140 00 Prague, Czech Republic Phone: +42-02-221951475; e-mail:
[email protected] Education: 1997 – Bc., Geological Sciences, Charles University in Prague 1998/1999 – Undergraduate fellowship at Imperial College, London, UK 2000 – Mgr., Petrology and Structural Geology, Charles University in Prague 2004 – Ph.D., Geological Sciences, Charles University in Prague Professional positions: 2002–2010 - Research Assistant, Institute of Geology and Paleontology, Faculty of Science, Charles University in Prague 2010/present - Associate Professor of Geology, Institute of Geology and Paleontology, Faculty of Science, Charles University in Prague Research interests:
Structural geology, tectonics, magmatic processes, rock magnetism, Precambrian geology. • • • • • •
Selected research projects documenting research and activities Grant No. 258203 of Agency of Charles University "Separation of pre-Variscan and Variscan deformations in the Teplá-Barrandian unit: geodynamic implications" (research team member), 2008– 2010. Grant No. 205/07/P226 of the Grant Agency of the Czech Republic "Relationship between faults and plutons: implications for interactions between tectonic and magmatic processes in magmatic arcs and orogenic belts" (principal investigator), 2007–2009. Grant No. 205/07/0783 of Grant Agency of the Czech Republic "Pre-Variscan and Variscan tectonometamorphic evolution and magmatism of the Krkonoše-Jizera Crystalline Unit" (research team member), 2007–2009. Grant No. KJB300120702 of Grant Agency of the Czech Academy of Sciences "Fabric patterns of granite diapirs in static and dynamic conditions: integrated analogue, field, and numerical approaches" (research team member), 2007–2009. Grant No. 131607 of Grant Agency "Structural, textural and thermal evolution of granite diapirs" (research team member), 2007–2008. Grant No. KJB3111403 of Grant Agency of the Czech Academy of Sciences "Processes along internal boundaries in magma chambers and their significance for interpreting rheology, fabric formation and emplacement mechanisms" (principal investigator), 2004–2006.
Publications: Author and co-author of 27 original research papers in international journals with IF and of 2 papers in other peer-reviewed journals. For the full list of publications, check at http://prfdec.natur.cuni.cz/~jirizak International cooperation: • Prof. Scott R. Paterson, Department of Earth Sciences, University of Southern California, USA – pluton emplacement processes, physical processes in magma chambers • Prof. Fritz Finger, Division of Mineralogy, University of Salzburg, Austria – igneous petrology, monazite geochronology
>;r F-1 o trt
23. F J I
z
r o ?z n6 > w
z9
Hffi c! c:
oo (tt I
7>, > !
q
P r rzn
z /p
i=$;Egsui,iiq o ' sr;E siFp €E i5 z o -
z
Fl
I a
Fil
= a
2
a -l
=€
> 6 lat F
o a
<X I
-
I
oX 4A -o
l ;E
= = . =
3v z =
F
>
!
e
\
€
= e -
".r '42
> U
z'= *E oe) I
I
72
:
-Hffi
\s -s \
=t6l ax-{t
>d
< 2 -<J' ZU -)>
* !-l --{ x
9 X
- t
:
cd
=F
;d
'r
!i.
,i
s:
ilq
Ed
r!
a<
s'
F$:
:* F r's z 3-i o
ivs. E X S
> , h
s
az ?, zr
2<
r:
F
> '
z+
t 6
>
i i
sF H
I
. A
q
*
s o
k.
O
s, F
t
sF
*
(+
S
r
q.!
:
g
{
,!
si
:* i's $3
F{
:S
'-.
S a I
H
t:/t
(+
(t) (+
()
ts. <
CD
6
-
lx F e> r s A : t
o o f-t
'
(
r+
6
-
:. b
A
* *
7 rt
CD -.
|-:
o (a
|
2iV
Numer. Math. (2003) 93: 583–610 Digital Object Identifier (DOI) 10.1007/s002110200400
Numerische Mathematik
Effects of uncertainties in the domain on the solution of Dirichlet boundary value problems Ivo Babuˇska1, , Jan Chleboun2, 1 2
TICAM, The University of Texas at Austin, TX 78713, USA; e-mail:
[email protected] ˇ a 25, Mathematical Institute, Academy of Sciences of the Czech Republic, Zitn´ Prague 115 67, Czech Republic; e-mail:
[email protected]
Received October 16, 2001 / Revised version received January 16, 2002 / c Springer-Verlag 2002 Published online: April 17, 2002 –
Summary. A domain with possibly non-Lipschitz boundary is defined as a limit of monotonically expanding or shrinking domains with Lipschitz boundary. A uniquely solvable Dirichlet boundary value problem (DBVP) is defined on each of the Lipschitz domains and the limit of these solutions is investigated. The limit function also solves a DBVP on the limit domain but the problem can depend on the sequences of domains if the limit domain is unstable with respect to the DBVP. The core of the paper consists in estimates of the difference between the respective solutions of the DBVP on two close domains, one of which is Lipschitz and the other can be unstable. Estimates for starshaped as well as rather general domains are derived. Their numerical evaluation is possible and can be done in different ways. Mathematics Subject Classification (1991): 65N99, 65N12, 35J25
1 Introduction The paper deals with uncertain boundary in the definition of Dirichlet boundary value problems. A boundary value problem is defined by a domain, an equation in the domain, and a condition given along the boundary of the domain. It is common to assume that the three inputs are known exactly though The research was funded partially by the National Science Foundation under the grants NSF–Czech Rep. INT-9724783 and NSF DMS-9802367 Support for Jan Chleboun coming from the Grant Agency of the Czech Republic through grant 201/98/0528 is appreciated
MATHEMATICS OF COMPUTATION Volume 71, Number 240, Pages 1339–1370 S 0025-5718(01)01359-X Article electronically published on June 14, 2001
EFFECTS OF UNCERTAINTIES IN THE DOMAIN ON THE SOLUTION OF NEUMANN BOUNDARY VALUE PROBLEMS IN TWO SPATIAL DIMENSIONS ˇ IVO BABUSKA AND JAN CHLEBOUN Abstract. An essential part of any boundary value problem is the domain on which the problem is defined. The domain is often given by scanning or another digital image technique with limited resolution. This leads to significant uncertainty in the domain definition. The paper focuses on the impact of the uncertainty in the domain on the Neumann boundary value problem (NBVP). It studies a scalar NBVP defined on a sequence of domains. The sequence is supposed to converge in the set sense to a limit domain. Then the respective sequence of NBVP solutions is examined. First, it is shown that the classical variational formulation is not suitable for this type of problem as even a simple NBVP on a disk approximated by a pixel domain differs much from the solution on the original disk with smooth boundary. A new definition of the NBVP is introduced to avoid this difficulty by means of reformulated natural boundary conditions. Then the convergence of solutions of the NBVP is demonstrated. The uniqueness of the limit solution, however, depends on the stability property of the limit domain. Finally, estimates of the difference between two NBVP solutions on two different but close domains are given.
1. Introduction The analysis presented in this paper has been motivated by the discrepancy between the shape of a real body and its computer description (called geometrical model or briefly model). Any real-life data contain some uncertainty due to measurements and simplifications. It is common to represent a real-life body by the geometrical model and to neglect the fact that the model is obtained by postprocessing the raw data from scanning, for example. Instead of the true body, the model is used for solving partial differential equations. However, natural questions arise: Are we authorized to choose a particular geometrical model as the representative of the body? Should we take a whole family of models into consideration? Can we get rid of assumptions we added to the raw data by a particular postprocessing method? How does Received by the editor August 5, 1999 and, in revised form, October 13, 2000. 2000 Mathematics Subject Classification. Primary 65N99, 65N12, 35J25. Key words and phrases. Elliptic equation, Neumann boundary condition, uncertainty. The research of the first author was funded partially by the National Science Foundation under the grant NSF–Czech Rep. INT-9724783 and NSF DMS-9802367. Partial support for the second author, coming from the Ministry of Education of the Czech Republic through grant ME..148(1998) as well as from the Grant Agency of the Czech Republic through grant 201/98/0528, is appreciated. c
2001 American Mathematical Society
1339