Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Multivariate Analysis Praktek & Review Jurnal
http://www.mathworks.com/cmsimages/62110_wl_stat_fig11_wl.jpg
Budi Hermana http://www.biologydirect.com/content/figures/1745-6150-4-13-3-l.jpg
http://piboonrungroj.files.wordpress.com/2011/07/hypotheses.png
Program Doktor Ilmu Ekonomi Universitas GUnadarma
Teknik Multivariate: Praktek & Review Journal Overview
Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Univariate Analysis
https://rcenterportal.msm.edu/node/63
Teknik Multivariate: Praktek & Review Journal Overview
Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Bivariate Analysis
https://rcenterportal.msm.edu/node/259
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Overview
WHY MULTIVARIATE ANALYSIS? Multivariate analysis consists of a collection of methods that can be used when several Variable
measurements are made on each individual or object in one or more samples Units (research units, sampling units, or experimental units) or observations
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Overview
Selecting a Multivariate Technique • Dependency – dependent (criterion) variables and independent (predictor) variables are present
• Interdependency – variables are interrelated without designating some dependent and others independent Cooper and Schindler; Business Research Method (8th edition)
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Overview
Dependency Techniques • • • • • •
Multiple regression Discriminant analysis Multivariate analysis of variance (MANOVA) Linear structural relationships (LISREL) Conjoint analysis – Simalto+Plus Cooper and Schindler; Business Research Method (8th edition)
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Overview
Interdependency Techniques • Factor analysis
• Cluster analysis • Multidimensional Scaling (MDS)
Cooper and Schindler; Business Research Method (8th edition)
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Overview Y
X
3
1
5 7 9 11 13 15 17 19 21
2 3 4 5 6 7 8 9 10
Apakah X berhubungan dengan Y? Regresi:
Y = 1 + 2X r=1
Jika:
X adalah jumlah burung camar terbang di lepas pantai
Y adalah jumlah burung camar terbang di lepas pantai
?
Cooper and Schindler; Business Research Method (8th edition)
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Overview
?
Deduksi Teori Riset sebelumnya Data/ Fakta
Hipotesis
Verifikasi
Research Gap
Pengukuran
Research Question
Pengujian Hipotesis
Formulasi Hipotesis
Hasil/Diskusi
Pemilihan Alat Uji? Premis
State of the Art
Road Map
Kontribusi
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis
Factor Analysis
Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis
Principal component analysis is a multivariate technique for transforming a set of related (correlated) variables into a set of unrelated (uncorrelated) variables that account for decreasing proportions of the variation of the original observations. Principal components is essentially a method of data
to produce a small number of derived variables that can be reduction that aims
used in place of the larger number of original variables to simplify subsequent analysis of the data
Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis Factor analysis, like principal component analysis, is an attempt to
a set of data in terms of a smaller number of dimensions than one begins with, but the procedures used to explain
achieve this goal are essentially quite different in the two methods.
If the factor model holds but the variances of the specific variables are small, we would expect both forms of analysis to give similar
results. Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis Factor analysis (more properly exploratory factor analysis) is concerned with whether the covariances or correlations between a set of observed variables can be explained in terms of a smaller
unobservable constructs known either as latent variables or common factors. number
of
Uji Validitas Konstruk (Pengujian instrumen/ Kuisener) Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis Application of factor analysis involves the following two
1
2
stages:
Determining the number of common factors needed to adequately describe the correlations between the observed variables, and estimating how each factor is related to each observed variable (i.e., estimating the factor loadings) Trying to simplify the initial solution by the process known as factor rotation Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Factor Analysis
Types of factor analysis Exploratory Factor Analysis
Confirmatory Factor Analysis
Common factor analysis (CFA)
Principal component analysis (PCA)
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis EFA, traditionally, has been used to explore the possible underlying factor structure of a set of observed variables without imposing a preconceived structure on the outcome
CFA allows the researcher to test the hypothesis that a relationship between the observed variables and their underlying latent construct(s) exists
Exploratory or Confirmatory Factor Analysis? Diana D. Suhr, Ph.D
Rex Kline (2013) Exploratory and Confi rmatory Factor Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis
PCA assumes that the common variance (C) becomes maximized and there is no unique variance (A and B) in each variable.
Hee-Ju Kim (2008)
CFA assumes that there is a substantial amount of unique variance as well as reliable common variance.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis Varians adalah akar dari standar devisia
Common Variance yaitu varians yang dibagi dengan varians lainnya; atau jumlah varians yang dapat diekstrak dengan proses factoring
Unique Variance yaitu varians yang berkaitan dengan variabel tertentu saja; jenis variabel ini tidak dapat dijelaskan dengan korelasi hingga menjadi bagian dari variabel lain; namun varians ini masih berkaitan secara unik dengan satu variabel
Error Variance yaitu varians yang tidak dapat dijelaskan lewat proses korelasi; jenis varians ini muncul karena proses pengambilan data yang salah; pengukuran variabel yang tidak tepat, dll
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Factor Analysis Problem formulation Construction of the Correlation Matrix Method of Factor Analysis Determination of Number of Factors Rotation of Factors Interpretation of Factors
Calculation of Factor Scores Determination of Model Fit
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis
Statistics Associated with Factor Analysis • Bartlett's test of sphericity. Bartlett's test of sphericity is used to test the hypothesis that the variables are uncorrelated in the population (i.e., the population corr matrix is an identity matrix) • Correlation matrix. A correlation matrix is a lower triangle matrix showing the simple correlations, r, between all possible pairs of variables included in the analysis. The diagonal elements are all 1.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis
• Communality. Amount of variance a variable shares with all the other variables. This is the proportion of variance explained by the common factors. • Eigenvalue. Represents the total variance explained by each factor. • Factor loadings. Correlations between the variables and the factors. • Factor matrix. A factor matrix contains the factor loadings of all the variables on all the factors
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis
• Factor scores. Factor scores are composite scores estimated for each respondent on the derived factors. • Kaiser-Meyer-Olkin (KMO) measure of sampling adequacy. Used to examine the appropriateness of factor analysis. High values (between 0.5 and 1.0) indicate appropriateness. Values below 0.5 imply not. • Percentage of variance. The percentage of the total variance attributed to each factor.
• Scree plot. A scree plot is a plot of the Eigenvalues against the number of factors in order of extraction.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Factor Analysis
Praktek Membaca Hasil EFA 1. Pengelompokkan item dan penamaan faktor 2. Pengujian validitas kontruk pada kuisener
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis Kemiringan/Slope yang curam Scree plot
Cenderung 1 Faktor Eigen value 2.731 2.218 0.442 0.341 0.183 0.085
% of variance 45.520 36.969 7.360 5.688 3.044 1.420
Faktor yang terbentuk adalah yang nilai eigenvalue-nya > 1
3.0
Cumulat. % 45.520 82.488 89.848 95.536 98.580 100.000
2.5
Eigenvalue
Fact or 1 2 3 4 5 6
2.0 1.5 1.0 0.5 0.0
Cenderung 2 Faktor
1
2
3 4 5 Component Number
6
Teknik Multivariate: Praktek & Review Journal Overview
Factor Analysis
Factor
Cluster
Discriminant
Menu Factor Analysis
Regression
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis
“Click” pada untuk melihat grafik: “Scree plot”
“Click” untuk memasukkan contoh butir pertanyan (8 item) yang akan direduksi/dikelompokkan menjadi beberapa faktor
Teknik Multivariate: Praktek & Review Journal Overview
Factor Analysis
Ada 2 component/factor yang nilai eigen valuenya di atas 1
8 item pertanyaan mengelompok dalam 2 faktor
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor Analysis
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Matriks rotasi menunjukan pengelompokkan yang sama. Matriks ini biasanya digunakan jika ada beberapa butir pada matriks pertama (component matriks) yang sulit dimasukanan ke faktor satu atau dua karena nilainya relatif tidak berbeda jauh
Butir 1, 2, 3, 4
Factor 1
Butir 5, 6, 7, 8
Factor 2
Penamaan faktor?
Lihat kemiripan substansi pertanyaan dalam satu faktor
Teknik Multivariate: Praktek & Review Journal Overview
Factor Analysis
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis untuk uji validitas konstruk (misal pada kuisener)
Contoh: Menurut model UTAUT dari Venkantesh (2003), contoh konstruk/variabel yang digunakan yaitu Performance Expectancy yang diukur dengan 4 butir pertanyaan dan Effort Expectancy yang diukur dengan 4 pertanyaan. 4 Butir pernyataan untuk variabel “Performance Expectancy”
4 Butir pernyataan untuk variabel “Effort Expectancy”
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Factor Analysis
Masukkan 4 butir pertanyaan untuk satu variabel (Performance Expectancy)
Berdasarkan pertimbangan praktis, perhitungan validitas dengan analisis faktor ini dilakukan per varibel. Jadi, jika ada 3 variabel maka dilakukan tiga kali perhitungan Validitas konstruk dilakukan sekaligus dalam Structural Equation Model yaitu pada “measurement model”
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Factor Analysis
Mengelompok dalam satu faktor, artinya benar 4 pertanyaan tersebut mengukur satu variabel yang sama yaitu “Performance Expectancy
Uji statistik
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor Analysis
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Contoh penyajian hasil uji validitas dan reliabilitas kuisener
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Classification
Classification Cluster Analysis & Discriminant
Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Classification Statistical techniques concerned with classification are essentially of two types.
Cluster analysis to uncover groups of observations from initially unclassified data
Discriminant function analysis works with data that is already classified into groups to derive rules for classifying new (and as yet unclassified) individuals on the basis of their observed variable values. Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
Cluster Analysis 1
SEM
Meta-Analysis
Cluster analysis
Distance and similarity measures Euclidean distance
Euclidean distances are the starting point for many clustering techniques, but care is needed if the variables are on very different scales, in which case some form of standardization will be needed
2
Method of Clustering Agglomerative hierarchical techniques k-means clustering Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Cluster Analysis
Regression
SEM
Meta-Analysis
Cluster analysis
Agglomerative hierarchical techniques
clustering techniques that proceed by a series of steps in which progressively larger groups are formed by joining together groups formed earlier in the process. more and more individuals are linked together to form larger and larger clusters of increasingly dissimilar elements
to determine the stage at which the solution provides the best description of the structure in the data, i.e.,
determine clusters.
the
number
of Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
Cluster Analysis
SEM
Meta-Analysis
Cluster analysis
Agglomerative Hierarchical Techniques Dendrogram
Nested Clusters 5
6
0.2
4 3
0.15
4
2 5
0.1
2 1
0.05
3 0
1
3
2
5
4
6
Dendogram records the sequences of merges or splits
1
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Cluster Analysis Contoh pengelompokkan 214 negara berdasarkan jumlah penduduk dan nilai PDB per kapita (sumber: Data World Bank) Data distandarisasi terlebih dahulu (dikonversi ke nilai Z pada distribusi normal)
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Cluster Analysis Nilai Z score (hasil konversi otomatis)
Menu yang digunakan
Teknik Multivariate: Praktek & Review Journal Overview
Cluster Analysis
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Sebagian tampilan “Dendogram” yang menunjukkan pengelompokka negara berbentuk diagram pohon Ada berapa klaster/kelompok negara? Dapat juga dibuat sub klaster! Nama Klaster? Contoh: • Lower income, lower-middle income, middle income, dst • Kelompok negara berpenduduk besar dengan pendapatan tinggi, ……, negara kecil dengan pendapatan kecil. dst
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster Analysis
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Cluster analysis
k-means clustering Method of clustering that produces a partition of the data into a particular number of groups set by the investigator
To minimize the variability within clusters and maximize variability between clusters. Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Cluster Analysis
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Cluster Analysis
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Cluster analysis untuk segmentasi pasar
Survey terhadap 50 konsumen (misal yang memilih beberapa merek produk elektronik). Tampilan data editor
Sumber data: Santoso (2014)
Latihan ini hanya menggunakan 3 variabel saja yaitu usia, gaji, dan tingkat konsumsi. Nilai yang dimasukkan dalam analisis klaster adalah nilai yang sudah dikonversi ke nilai Z
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Cluster Analysis
“cluster membership” membuat kolom baru pada data editor yang menunjukkan setiap konsumen (responden) masuk ke klaster 1 atau 2
Jumlah klaster yang diinginkan ditetapkan sebanyak 2 klaster saja
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Cluster Analysis
VS
Dengan nilai semula (tanpa standarisasi)
Nama/deskripsi segmen Segmen 1
Segmen 2
? ?
Dengan nilai Z (standarisasi)
Usia klaster 1 = Rata-rata + z x standar deviasi
Usia klaster 1 = 30,12 – 0.6711 x 6,043 Usia klaster 1 = 26,06 Usia klaster 2 = 30,12 + 1.095 x 6,043 Usia klaster 2 = 36,74 tahun dst untuk variabel gaji dan tingkat konsumsi
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
Discriminant
Discriminant Analysis
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Discriminant
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Discriminant analysis
The eigen value represents the ratio of the between-group sums of squares to the within-group sum of squares of the discriminant scores.
The canonical correlation is simply the Pearson correlation between the discriminant function scores and group membership coded as 0 and 1.
The lambda coefficient is defined as the proportion of the total variance in the discriminant scores not explained by differences among the groups
The “Wilk’s Lambda” provides a test for assessing the null hypothesis that in the population the vectors of means of the five measurements are the same in the two groups Sabine Landau and Brian S. Everitt (2004), A Handbook of Statistical Analyses using SPSS.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
Discriminant
SEM
Meta-Analysis
Discriminant analysis Dependent non-metric? Independent variables metric or dichotomous?
No
Inappropriate application of a statistic
Yes Ratio of cases to independent variables at least 5 to 1?
No
Inappropriate application of a statistic
Yes Number of cases in smallest group greater than number of independent variables?
No
Inappropriate application of a statistic
Yes Run discriminant analysis, using method for including variables identified in the research question.
No Sufficient statistically significant functions to distinguish DV groups?
Yes
False
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Discriminant
Regression
SEM
Meta-Analysis
Discriminant analysis
Stepwise method of entry used to include independent variables?
Yes
No Entry order of variables interpreted correctly?
No Yes
Relationships between individual IVs and DV groups interpreted correctly?
Yes
No
False
False
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Discriminant
Regression
SEM
Meta-Analysis
Discriminant analysis Cross-validated accuracy is 25% higher than proportional by chance accuracy rate?
No
False
Yes Satisfies preferred ratio of cases to IV's of 20 to 1
No
True with caution
Yes Satisfies preferred DV group minimum size of 20 cases?
No
True with caution
Yes DV is non-metric level and IVs are interval level or dichotomous (not ordinal)?
Yes True
No
True with caution
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Discriminant
Predictor (Metric/Continous Variable)
Pembuktian isu gender dalam prilaku penggunaan internet atau adopsi TIK; analisis kesenjangan digital (digital divide) antar kelompok masyarakat atau antar wilayah/regional
Performance Expectancy Effort Expectancy Internet Self-Efficacy
Jenis Kelamin Internet Anxiety Social Influence Supporting Condition
Kategori dengan 2 kelompok: Pria dan Wanita
Teknik Multivariate: Praktek & Review Journal Overview
Discriminant
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Discriminant
2 Kategori (pria & Wanita)
Untuk menampilkan tabel hasil klasifikasi (melihat ketepatan/ tingkat prediksi secara deskriptif)
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Discriminant Statistik Uji
Struktur Matrix
Fungsi/Persamaan Diskriminan
Urutan variabel berdasarkan “discriminating power” dari yang tertinggi ke yang terendah Y = -0.131-0.058-0.202+0.162+0.957–0.212
y = 1 pria, y = 2 Wanita
“Internet self-efficacy merupakan prediktor yang paling besar kontribusinya dalam membedakan pria dan wanita berdasarkan prilaku penggunaan internet”
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Discriminant
Fungsi diskriminant dapat memprediski jenis kelamin dari responden berdasarkan prilaku penggunaan internet (yang diukur dengan 6 prediktor) dengan tingkat akurasi 68,8%
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
Regression
Regression Analysis
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Regression
Regresi Probit dan Logit Binary Outcome
Ya/Tidak Menang/Kalah Bangkrut/Tidak bangkrut Sehat/Tidak sehat Demokratis/Otoriter Sentralisasi/Desentralisasi y* is unobserved, as the underlying latent propensity that y=1
Dependent variable bersifat kategori dengan dua level
Where τ is the threshold
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Regression
Logit vs Probit The difference between Logistic and Probit models lies in this assumption about the
distribution of the errors Standard logistic distribution of errors
Park (2010) & Moore (2013)
Normal distribution of errors
Hasilnya cenderung hampir sama
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Regression
β0+ β1X
Logit = log odds
When x changes one unit, the logit (log odds) changes β1 units When x changes one unit, the odds changes eβ1 units Contoh
Sekretariat pasca melakukan tes masuk program pasca berdasarkan tidak parameter yaitu test masuk berbasis komputer, IPK calon pada saat S1, dan akreditasi program studi dari calon. Hasil seleksi adalah diterima atau ditolak.
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Logit Regression
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Logit Regression
Dummy variable
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Logit Regression
Faktor IPK menunjukkan peluang lebih tinggi untuk diterima dibandingkan hasil test masuk Log odd (B=0.804)) IPK > log odd Test (0.02) Exp(B) untuk IPK (2.235) > Exp(B) untuk test (1.002) Calon dari program studi terakreditasi A lebih tinggi dibandingkan dengan calon dari program studi tidak terakreditasi (kategori yang dijadikan referensi/pembanding) Peluangnya 4,718 kali dibandingkan calon dari program studi tidak terakreditasi
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Logit Regression
Output tabel tersebut mirip dengan tabel klasifikasi hasil analisis diskriminant
Logit regression menjadi teknik alternatif dengan tujuan analisisnya yang hampir sama dengan analisis diskriminant. Perbedaannya, semua prediktor pada analisis diskriminant harus berskala metrik atau kotinyu (skalanya minimal interval)
Teknik Multivariate: Praktek & Review Journal Overview
Regression
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Multinomial & Ordinal Regression
Regresi logit bisa diperluas jika variabel respon (dependent variable) terdiri dari lebih dari 2 tingkat, atau r > 2 r Nominal Multinomial Logistic Regression Models
r Ordinal Ordered (ordinal) Logistic Regression Models
Teknik Multivariate: Praktek & Review Journal Overview
Multinomial
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Contoh Regresi Multinomial
Lulusan SMA yang akan melanjutkan ke perguruan tinggi mempunyai tiga pilihan program pendidikan tinggi, yaitu universitas, sekolah tinggi, dan vokasi. Bagaimana kecenderungan (peluang) pilihan lulusan SMA tersebut berdasarkan jenis kelamin, status ekonomi orang tua, status SMA (negeri atau swasta), serta nilai ujian (misal nilai UN untuk Matematika, IPS, dan IPA). Y 3 kategori yang bersifat nomonal (Universitas, Sekolah Tinggi, Vokasi)
Variabel eksogenus (X) terdiri dari 3 variabel yang bersifat kategorikal (dummy variable) dan 3 skor ujian yang bersifat kontinyu/Metrik
Teknik Multivariate: Praktek & Review Journal Overview
Multinomial
Factor
Cluster
Discriminant
Regression
Contoh Regresi Multinomial
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Multinomial
Kategori 2 (Sekolah Tinggi) Sebagai referensi/pembanding
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Multinomial
Exogenous variable/predictor yang bersifat kategorikal (variabel dummy)
Predictor yang skalanya kontinyu ditempatkan sebagai covariate
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Multinomial
“Perempuan dan status ekonomi rendah cenderung memilih program vokasi, dan yang matematikanya lebih baik cenderung memilih sekolah tinggi dan universitas”
Teknik Multivariate: Praktek & Review Journal Overview
Panel Data Analysis
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Multivariate untuk “Panel Data”
Panel data analysis is a method of studying a particular subject within multiple sites, periodically observed over a defined time frame.
Cross-sectional time-series analysis Analisis longitudinal (ada unsur waktu) vs cross-sectional ? Kinerja perusahaan pada sektor manufaktur dalam 5 tahun terakhir Perbandingan daya saing negara di dunia dalam 3 tahun terakhir (cross-country analysis) Spatial Dua Dimensi Temporal
Cross-sectional unit (perusahaan, negara, orang, dll) Periodic observations (Time Span)
Xij
Teknik Multivariate: Praktek & Review Journal Overview
Panel Data Analysis
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Multivariate untuk “Panel Data”
Contoh: sampel perusahaan sebanyak 60 dilihat kinerja keuangannya selama 3 tahun, misal dengan menggunakan satu dependent variabel dan 4 independent variable 180 data (baris) 60 x 3 Perusahaan Tahun
Perusahaan P1 P2 P3 P4 P5 P6 …. P58 P59 P60
P1 2011 P1 2012 2013 P1 P2 Y2012 Y2011 Y2011 2013 P2 2012 2013 P2 …. ……. P60 2011 ……. … P60 …. 2012 2013 P60
Y
10 25 15 X1201110X12012 21 22 …. Wide-Format 21 …. 19 …. 21
X1 22 15 10 22 X12013 19 16 … 18 21 …. 23
X2
X3 X4 Long-Form Data 25 32 15 Format 20 25 30 22 26 32 28 15 27 ………. X4 2013 23 22 18 19 22 31 …. …. …. 29 17 23 …… 22.…….. 17 26 18 17 31
Yit = a + bX1it + cX2it + dX3it + eX4it
Teknik Multivariate: Praktek & Review Journal Overview
Problems of heteroskedasticity and autocorrelation
Panel Data Analysis
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Model – Model Analisis “Panel Data”
Constant Coefficient Model Fixed Effect Model
Ordinary least squares (pooled) regression Least Squares Dummy Variable Model
Random Effect Model Error Component Model
LIMDEP, STATA, SAS, EViews
Random Parameter Model
Dynamic Model Robust Panel Model
Covariance Structure Model
SPSS Tricky (SPPS command; Wide vs Long-Form Format) Analysis Generalized Linear Model Generalized Estimating Equation Robert Yaffee (2003). A Primer for Panel Data Analysis.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
SEM
Structural Equation Model
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
SEM SEM is a statistical technique for simultaneously
testing and estimating causal relationships among multiple independent and dependent constructs (Gefen et al. 2000) SEM is a statistical technique for testing and estimating those causal relationships based on statistical data and qualitative causal assumptions (Urbach and Ahlemann, 2010) SEM A Second Generation of Multivariate Analysis First Generation of Multivariate Analysis
MANOVA. dll Cluster Analysis Factor Analysis Discriminant Analysis Multiple Regression
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
SEM
Nature
Answers a set of interrelated research questions in a single, systematic, and comprehensive analysis Supports latent variables
Not directly measured
common factor underlying factor
Relationships between the Latent Variable, which has to be derived from
theoretical considerations Structural model SEM
Measurement model Relationship between the empirically observable indicator variables and the Latent Variable
Teknik Multivariate: Praktek & Review Journal Overview
SEM
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
SEM ~ “Analisis faktor dengan menggunakan SEM”
Factor
Cluster
Discriminant
Regression
SEM
Measurement Model Kontribusi (variansi) indikator PE1 terhadao Latent Variabel PE Korelasi antar PE dengan EE
Koefisien regresi untuk indikator ISE sebagai independent variable terhadap latent variabel ISE
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
SEM
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Measurement Model & Structural Model
Koefisien regresi untuk variabel latent sebagai exogenous variable
Squared multiple Correlation antara Performance dengan ISE dan Effort
~ padanan r2 pada analisis regresi konvensional
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
SEM
Diagrammatic Syntax
Gefen, D., D.W. Straub, & M.C. Boudreau. 2000. Structural Equation Modeling and Regression: Guidelines For Research Practice.
Regression
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
SEM
1
Nature of the fit statistics
Statistical assumptions
Analyses’ objectives
Two general approaches
Covariance-based structural equation modeling (CBSEM) LISREL, AMOS, EQS, SEPATH, RAMONA Uses a maximum likelihood (ML) function to minimize the difference between the sample
covariance and those predicted by the theoretical model
2
The component-based approach PLS Minimizes the variance of all the dependent variables instead of explaining the covariation
Urbach and Ahlemann (2010). Structural Equation Modeling in Information Systems Research Using Partial Least Squares
Teknik Multivariate: Praktek & Review Journal Overview
SEM Factor Cluster Discriminant Regression SEM Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
SEM
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Comparative Analysis between Techniques
Gefen, D., D.W. Straub, & M.C. Boudreau. 2000. Structural Equation Modeling and Regression: Guidelines For Research Practice.
Teknik Multivariate: Praktek & Review Journal Overview
SEM
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Capabilities by Research Approach
Gefen, D., D.W. Straub, & M.C. Boudreau. 2000. Structural Equation Modeling and Regression: Guidelines For Research Practice.
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Framework for applying (PLS) in structural equation modeling
Urbach and Ahlemann (2010). Structural Equation Modeling in Information Systems Research Using Partial Least Squares
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
SEM
Y
b, d, f H1
d H3 b
Z f
X
H2
Standardized Coefficient
Persamaan Struktural: Y = a + bX ….. (1) Z = c + dY ……(2) Z = e + f X .…..(3) f pengaruh langsung X ke Z
Z = c + d Y(a + bX) Z = c + ad + bd X) bd pengaruh tidak langsung X ke Z melalui Y
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
SEM
Perbandingan Hasil Regresi, LISREL, dan PLS
Regresi
LISREL
Gefen, D., D.W. Straub, & M.C. Boudreau. 2000. Structural Equation Modeling and Regression: Guidelines For Research Practice.
PLS
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Latihan SEM
Regressi Analysis(SPSS) & AMOS
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Review Journal
Meta-Analysis
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Meta-Analysis
Factor
Cluster
Discriminant
Peta Konsep
Regression
SEM
Meta-Analysis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Meta-Analysis Bab 2 Tinjauan Pustaka
PETA KONSEP E-BANKING
2.1. Regulasi E-Banking 2.2. Teknologi E-Banking
2.3. Dampak E-Banking 2.3.Tipe Produk E-Banking 2.4. Kinerja E-Banking
Keyword
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Meta-Analysis
Research on E-Banking Service Quality: State of The Art
Cluster
Discriminant
Regression
SEM
Meta-Analysis
E-Banking Quality & Adoption
Hasil Penelusuran kata kunci di Google Scholar untuk 5 tahun terakhir
Mr Z (2000) menyatakan bahwa exploratory empirical analysis, cross-sectional; Spearman rank order correlation (karena variable SDM bersifat non-metrik); cronbach alpha untuk beberapa variable organisasi dan
Meta-Analysis
Annotated Bibliography
Mister X (2009) meneliti 273 perusahaan besar, Teori teknologi informasi dan arsitektur organisasi (disain organisasi mencakup spesifikasi wewenang pengambilan keputusan, system evaluasi kinerja, dan system kompensasi). Exploratory empirical analysis, crosssectional; Spearman rank order correlation (karena variable SDM bersifat non-metrik); cronbach alpha untuk beberapa variable organisasi. Menurut Mr T (2010), komputerisasi tidak secara otomatis meningkatkan produktifitas, tetapi tetapi merupakan komponen penting dalam system yang lebih luas mengenai perubahan organisasi yang akan meningkatkan produktifitas; Jadi perubahan organisasi merupakan bagian integral dari proses komputerisasi;
Terima kasih, selamat membuat proposal, Meneliti, dan publikasi international Dipilah & Dipilih
Kutipan/Premis
Teknik Multivariate: Praktek & Review Journal Overview
Factor
Cluster
Discriminant
Regression
SEM
Meta-Analysis
Referensi Alvin C. Rencher. 2002. Methods of Multivariate Analysis (2nd Edition). Publication,
A John Wiley & Sons, Inc.
Cooper and Schindler; Business Research Method (8th edition) Diana D. Suhr . Exploratory or Confirmatory Factor Analysis?. Statistics and Data Analysis, University of Northern Colorado. Gefen, D., D.W. Straub, & M.C. Boudreau. 2000. Structural Equation Modeling and Regression: Guidelines For Research Practice. Communications of AIS Volume 4, Article 7. Hee-Ju Kim. 2008. Common Factor Analysis Versus Principal Component Analysis: Choice for Symptom Cluster Research. Asian Nursing Research , March 2008. Vol 2. No 1 Neil H. Timm. 2002. Applied Multivariate Analysis. Springer-Verlag New York, Inc Park. 2010 & Moore. 2013. Rex Kline. 2013. Exploratory and Confirmatory Factor Analysis Robert Yaffee (2003). A Primer for Panel Data Analysis. Connect, Fall 2003 Edition, New York University Sabine Landau and Brian S. Everitt. 2004. A Handbook of Statistical Analyses using SPSS. Chapman & Hall/Crc, A Crc Press Company, Washington, D.C. Urbach and Ahlemann. 2010. Structural Equation Modeling in Information Systems Research Using Partial Least Squares. Journal of Information Technology Theory and Application. Volume 11, Issue 2, pp. 5-40, June 2010. Wolfgang Härdle and Léopold Simar. 2007. AppliedMultivariate StatisticalAnalysis (2nd Edition). SpringerVerlag, Berlin Heidelberg