Metody studia početnosti a biomasy organismů Jan Frouz a Jarka Frouzová ÚPB a HBÚ AVČR
[email protected],
[email protected] [email protected],
[email protected]
Co chci zjistit ? Otázka, statisticky testovatelná hypotéza uvažované statistické testy Technické možnosti
Charakter zkoumaného organismu? Hýbe se? .....? Je vidět? Charakter prostředí a vybrané plochy
Další limitace součinnost s kolegy dlouhodobá sledování, omezení vlastníků ploch
Lekce 1-3 (4) • • • • • •
O měřeních a chybách Co chci testovat aneb statistická hypotéza Abundance (biomasa) definice, vyjádření Přehled hlavních (skupin) metod Celková inventura Metody vzorkovacích čtverců Prostorová distribuce organismů
• Liniový transekt • Metody založené na vzdálenosti
Každé měření je zatíženo chybou. Můžeme rozlišit dva druhy omyly a hrubé chyby a tzv. nevyhnutelné chyby- ty dělíme na systematické a náhodné. Většinou musíme udělat více měření ke stanovení jednoho parametru. Každé měření má vlastní chybu, chyby se sčítají. V biologii nás často zajímá jak se daná veličina chová v rámci populace. Jednotlivé údaje v rámci populace jsou variabilní popisujeme je statistickými veličinami. Zpravidla nemáme k dispozici celou populaci statistické charakteristiky zjišťujeme na základě vybraného vzorku populace. Jde o to, jak vybraný vzorek representuje danou populaci nebo jak variabilita dat ovlivní odhad.
Co váží přesněji - mostní váha nebo analytické váhy? Chci vážit 1 zrno nebo odhadnout výnos pro celé pole?
analytické váhy- řada vzorků o známé ploše, odhad plochy pole, zvážení vzorků, výpočet mostní váhy - sklidím celé pole, zvážím, případně odhadnu sklizňové ztráty, a přičtu
Kromě chyb měření je zde variabilita dat. Organismy nejsou v prostu rozmístěny rovnoměrně, jejich početnost kolísá v čase atp. Co s tím? pracujeme často s následující úvahou snažíme se najít model např. číslo, které nejlépe vystihuje celý soubor a potom se snažíme určit jak je tento model přesný. Takovým nejčastěji požívaným modelem je odhad střední hodnoty čeští muži váží v průměru 90 Kg
průměr (average) Jak dobře průměr charakterizuje reálné hodnoty variance směrodatná odchylka (standart deviation) SD střední chyba (průměru) standart error of mean SE SEM
Co chci zjistit ? pracovní hypotéza nebo jasně formulovaná otázka
3 modelové úlohy
Chci odhadnut populaci v daném místě příp. v místě a čase co nějpřesněji.
Chci porovnat hustoty populace na dvou nebo více plochách Chci sledovat vliv známého gradientu na hustotu populace podél tohoto gradientu (časové nebo prostorové řady)
Chci odhadnut populaci v daném místě příp. v místě a čase co nějpřesněji a nejnestraněji.
základní soubor
výběr 1
průměr 2
průměr 1
konfidenční interval výběr 2
pravděpodobnost, že průměr z téhož zákl. souboru pande mimo konf.interval je malá např. 5%
konfidenční interval – úsek okolo průměru, ve kterém s určitou pravděpodobností leží průměry vypočtené v jiných výběrů v rámci téhož základno souboru.
Je třeba dbát na to aby výběr co nejlépe representoval sledovanou plochu odrážel variabilitu dat na dané ploše. Našim cílem je aby konfidenční interval byl co nejmenší, zmenšení konfidenčního intervalu můžeme dosáhnout větším počtem vzorků (částečně též některými úpravami vzorkování). stávající k.i. byly pro hladinu významnosti 0,05 (pravděpodobnost Přesný odhad chyby 5%), chceme-li abundance na dané větší spolehlivost k.i. ploše může být bude výrazně větší velmi pracný vždy uvážíme zda ho pro náš účel potřebujeme 3 vzorky 20 vzorků
Chci porovnat hustoty populace na dvou nebo více plochách úloha obrácená předchozí mám dva výběry chci vědět zda pochází z téhož základního souboru výběr 1
průměr 2
průměr 1
konfidenční interval výběr 2
řada testů jak pro dvojice tak pro více výběrů
Test na normalitu ano Test na homogenitu Transformace dat, lon n+1 je dobré se dopředu rozhodnout jaký test použijeme, neparametrické testy vyžadují ano ano více vzorků, u parametrické ANOVy mohou stačit 3Test u na normalitu neparametrického KW aspoň 5-6 radši více ano Parametrický test t test i pro nehomogenní variaci t test ANOVA General linear models
Test na homogenitu
Neparametrické testy Man Whithey, Kruskal-Walis
Je třeba zvážit zda porovnávám dvě plochy pro ně samé a nebo zda mě zajímá nějaká vliv nějakého faktoru, kterým se tyto plochy liší Ho plocha A = plocha B nebo Ho louka = les platí li druhá varianta pak je třeba mít více ploch, plochy rozmístěny buď náhodně a nebo tak aby tvořily dvojice či bloky pak párové nebo bokové testy
Chci sledovat vliv známého gradientu na hustotu populace podél tohoto gradientu
y= f(x) vysvětlíme y jako funkci x, každou hodnotu y můžeme pak rozdělit na dvě složky vysvětlenu a reziduální variabilitu. poměr udává regresí koeficient z r a počtu n lze určit p co je důležité při volbě gradientu
n=3 ne 8
nezávislá měření (vzorkovací plochy) by měla být pokud možno rovnoměrně rozmístěny podél celého gradientu
tytéž hodnoty lze korelovat s několika parametry prostředí ale pozor budu li všechny korelace s p<0.05 považovat za statisticky významné pak je šance 5% ze je tato „korelace“ jen náhoda, 5% je „velká náhoda“ na jeden pokus ale na 20 nebo 100 pokusů? Bonferonniho korekce p/počet korelací
Jaká data potřebuji? jaká data potřebuji ke zodpovězení otázky (kvalitativní, kategoriální nebo graduelní škálakvantitativní). Předmětem této přednášky jsou dva okruhy kvalitativních dat:
relativní početnost (biomasa)
absolutní početnost (biomasa)
početnost organismů v relaci k početnosti jiných, zpravidla nějak podobných organismů. „Podobnost“ je často daná použitou metodou. většinou je mnohem jednodušší je změřit
početnost organismů vyjádřená na jednotku prostředí (objem, plocha, váha, jezero, objem půdních pórů, nebo gram půdního uhlíku). nezbytné při studiu populační dynamiky, energetických toků etc. nejsou li normálni pak např. log.
jsou to vlastně % (arcsinus) nebo jako catch/effort
Absolutní abundance je počet organismů vyjádřený na jednotku plochy, objemu nebo stanoviště. Absolutní biomasa je hmotnost organismů vyjádřená na jednotku plochy, objemu nebo stanoviště. Relativní abundance je počet organismů vyjádřený v relaci k ostatním zaznamenaným druhům nebo na jednotku úsilí, kterou nelze korelovat s charakteristikami stanoviště (plochou objemem nebo počtem vhodných biotopů). Vyjádření buď % nebo na jednotku úsilí. Relativní biomasa je hmotnost organismů vyjádřená v relaci k ostatním zaznamenaným druhům nebo na jednotku úsilí, kterou nelze korelovat s charakteristikami stanoviště (plochou, objemem nebo počtem vhodných biotopů). Vyjádření buď % nebo na jednotku úsilí.
Absolutní hodnoty se udávají buď na plochu nebo na objem nebo na jednotku vhodného stanoviště. Například na metr, na litr, na list. Terestrické ekosystémy jsou zpravidla chápány jako plošné, případně stratifikované do několika plošných vrstev. Proto vyjádření na plochu. Voda a půda - pohyb organismů ve všech směrech - různě mocné vrstvy se stejným nebo graduálně se měnícím zastoupením organismů. Vyjádření na objem dává lepší představu o výskytu v daném místě, ale pro bilanční účely musíme mít další informace. Pro bilanční účely může být výhodnější vyjádření na plochu ale musíme si být jisti, že jsme odhadli abundanci v celé vrstvě, kde organismus žije. Habitat -organismy žijí v určitých stanovištích, vyjádření počtů na vhodnou jednotku stanoviště cenné v autekologických studiích, ale bilance na plochu obtížnější.
plocha terestrické ekos.nadzem. +++ půda ++ voda ++ bilance v krajině ++++ prostorová distribuce + autekologické studie + *- potřebujeme další informace
objem ++ +++ ++* ++ ++
habitat + + + (bentos) +* +++ +++
Vhodná forma vyjádření abundance závisí na účelu vaší studie. Porovnání různých forem vyjádření nám může přinést zajímavé informace - často může být výhodné mít možnost přepočtu.
Otázka: žije na ploše A stejně organismů XY jako na ploše B? H0 A=B
plocha A
mech rašeliník plocha B minerální půda
hloubka vlhkost (cm) (%) 2 78 5
25
jedinců na cm2 cm3 g půdy (DW) plocha A 5000 2500 12500 plocha B 5100 1020 785 A
B asi 2x 16x
hustota (g cm-3 ) 0.2 1.3
g půdy (FW) 2750 588 5x
Jsou i další možnosti, na objem půdních pórů, obsah půdního organické hmoty.
Abundance nebo biomasa většina autorů se zabývá studiem abundance neb počítat je snazší než vážit. Sledujeme li skupinu, kde jednotlivé kategorie jsou přibližně stejně velké je jedno co si vybereme. Ale často sledujeme skupiny u nichž se velikost sledovaných jedinců řádově liší. Malých organismů bývá více než velkých Abundance nadhodnocuje význam malých organismů. Biomasa nadhodnocuje velké organismy. Stanovení počtu malých organismů bývá zatíženo větší chybou než velkých, použijeme li metodu u níž je tento efekt pravděpodobný pak biomasa je lepší než abundance. Navíc biomasa je „úměrnější“ úloze“ organismů v ekosystému.
Přehled hlavních skupin metod
Jakou metodu použiji?
Přehled metod používaných k sledování absolutní početnosti - celková inventura
- vzorkovací kvadráty a liniový transekt
- metody založené na vzdálenosti
r
1 jedinec zaujímá plochu πr2 , kde r je průměrná vzdálenost k nejbližšímu sousedu. Densita je pak 1/plocha kterou zabírá průměrný jedinec
Přehled metod používaných k sledování absolutní početnosti -pokračování
- capture re-capture
Catch per unit effort
- Change ratio methods - změny založené na změně poměru pohlaví nebo velikosti s odchytem
Total catch
-Catch per unit effort
potřebuji absolutní hodnoty
potřebuji informace o jedincích
ano
ano
ne
ne
relativní početnost
ano
snadno spočitatelné ne
hýbe se to?
lovené populace ?
catch per effort
rozmístění náhodné?
ano
ne
ano ne
ne
capturerecapture
vzorkovací kvadráty
ne
ano
change ratio method
celková inventura
metody založené na vzdálenosti capturerecapture
je lov selektivní?
liniový transekt
ano
hustota populace je malá
ne
vzorkovací kvadráty
Výběr metody se do značné míry řídí tradicí v daném oboru, to umožňuje porovnání vašich výsledků s pracemi jiných autorů.
Je třeba mít dobrý důvod k tomu dělat to jinak než všichni ostatní
Výše uvedené metody pracují z terénně zjištěnými počty organismů. Další možností sledovat, případně kvantifikovat, nějaký produkt činnosti organismů nebo tělní derivát a ten potom porovnávat s jinými stopami existence podobných organismů (pak míra relativní četnosti) nebo najít korelaci mezi výskytem těchto stop a abundancí organismů. výhody: -„stopy“ organismů jsou mnohdy snadněji sledovatelné než organismy samotné (často jsou o nich záznamy praktiků, např. kalamity). -někdy je lze sledovat i když původce už není na místě přítomen. nevýhody: - stopy lze někdy sledovat i když původce už není na místě přítomen. -nepřímé měření je dvojí měření (měření a kalibrace) dvakrát tolik zdrojů chyb.
Nepřímé metody - velmi variabilní podle oborů, nejsou předmětem tohoto kurzu nicméně řada obecných principů metod vzorkovacích kvadrátu je aplikovatelná na tyto metody. Nepřímé metody příklady- populární v mikrobiologii prostředí, extrahujeme něco, co je charakteristické pro buňky sledovaných organismů (uhlík, ATP, ergosterol, PLFA, neurální lipidy) a to stanovíme. Využijeme nějakou míru aktivity (respiraci, zabudováváni T). V paleobotanice a paleozoologii - pylová analýza, analýza hlavových schránek pakomárů.
Relativní abundance Relative abundance standardizovaná metoda lovu sběru etc. Na jednotku úsilí získáme určitý počet jedinců, předpokládáme ze množství jedinců na jednotku úsilí je úměrné celkové abundanci (nevíme ale kolik ta celková abundance je). Úlovek na jednotku úsi lí
celkem chyceno N celková abundance
různě velká N
K čemu nám může relativní abundance sloužit 1-porovnání dvou ploch (druh a je na ploše a hojnější než na ploše b 2-sledování časových změn abundance 3-porovnání více druhů podmínky - na jednotlivých plochách a nebo během celé doby je použita stejná metoda lovu (sběru) evironmentální a biologické faktory stejně jako metodika jsou konstantní sledování na jednotlivých plochách nebo v jednotlivých bodech času jsou nezávislá (navzájem se neovlivňují) pro použití v bodu 3 ulovitelnost porovnávaných druhů je stejná nebo se alespoň míry ulovitelnosti jednotlivých druhů během studie nemění
Příklady
lov do pastí - standardizovaná linie pastí lov do zemních pastí odchyt na světlo buď standardizovaný postup nebo automatické pasti. Smýkání standardizovaným způsobem etc. Někdy lze relativní metody standardizovat, kalibrovat a použít k odhadu absolutní početnosti. Příklad počet mravenců, kteří vylezou na dřívko po rozhrábnutí mravenište koreluje s počtem mravenců v mraveništi.
Evironmentální a biologické faktory stejně jako metodika jsou konstantní
Past může být různě atratktivní v různém prostředí - např. chytáte li na světlo na okraji lesa přiletí vám i druhy z otevřené krajiny chytáte li uvnitř lesa podíl těchto druhů se snižuje. Budete li mít světelný lapák v krajině kde je hodně světel jeho účinnost bude nižší než tak kde je světel málo. Ochota daného druhu přiletět na světlo se může během sezóny měnit Předpokládáme že to vše je konstantní v rámci porovnávaného souboru.
Sledování na jednotlivých plochách nebo v jednotlivých bodech času jsou nezávislá (navzájem se neovlivňují). Vzájemné ovnivnění Není konkurence jednotlivých pastí - např. dva světelné lapáky blízko u sebe by si mohli konkurovat U sledování trendů odchyt způsobuje jen zanedbatelné snížení celkové abundance - neovlivní populační dynamiku.
Časoprostorová autokorelace - pseudoreplikace - závisí na vaší nulové hypotéze
Více druhů lov je často selektivní různé druhy se mohou chytat s různou intensitou. Např. padací pasti chytají lépe velké střevlíky než malé Porovnání buď s nějakou metodou studia celkové abundance nebo speciální pokus. Procentická data - Arc. sin transformace nebo lon n+1 ( na jednotku úsilí) buď jednotlivé druhy - viz výše nebo celé společenstvo - mnoharozměrné techniky
Absolutní abundance Celková inventura • uzavřená populace nebo jasně vymezená skupina sesilních jedinců. • snadno počitatelní v terénu a plocha dostatečně malá (manageable) • získáme stanovení ne odhad početnosti, populace v určitém čase a místě • metodicky jednoduché „stačí je jen spočítat“
Kolik je ve obdélníku teček?
57
Počítání si lze usnadnit Celková inventura je časově náročná, často stanovení abundance není hlavním cílem - jasný plán i s ohledem na další cíle. Rozdělení plochy na menší úseky - jasné pravidlo jak budeme přistupovat k organismům na hranách. Víme koho už jsme počítali a koho ještě ne- označení, odstranění nebo zaměření již spočtených jedinců. Jak dobře jsme počítali ? Chyba stanovení je dána jen chybou počítání: - Více sčitatelů počítá, neoznačuje - vezmeme průměr a SD výsledků jednotlivých sčitatelů. - Značíme, revidujeme, pak analogicky jak catch per effort. - Nebo pokusný přístup, použijeme známý počet značených organismů a sledujeme kolik z nich se nám podaří spočítat obecná účinnost metody ne chyba pro konkrétní plochu.
Metody vzorkovacích čtverců metoda vzorkovacích ploch (Quadrat counts) Populace příliš velká- nemůžu spočítat vše, vyberu vzorky, a ty spočítám (udělám celkovou inventuru). Předpokládám, že organismy po dobu počítání nemigrují z a do vzorkované plochy. Odhad závisí na: přesnosti spočtení a na tom, jak dané vzorky representují celou populaci (za předpokladu splnění podmínky o absenci migrace). (Co je „celá populace“ nebo jestli je plocha vzorek závisí na H0).
Jak dané vzorkovací plochy vypovídají o sledované populaci? Faktory, které mohou ovlivnit vypovídací hodnotu vzorků lze rozdělit do dvou skupin:
můžeme ovlivnit nemůžeme ovlivnit velikost plochy prostorové rozmístění populace tvar plochy počet vzorků prostorové uspořádání vzorků
Tvar vzorkovací plochy
potenciální chyba okraje
• přirozený útvar nebo uměle vymezeno • Snadnost vymezení v terénu • Tvar může ovlivnit okrajový efekt ten závisí na poměru plochy a obvodu. obdélník > čtverec > kruh 1 Okrajový efekt závisí na velikosti 0.8 organismu a sledované plochy. 0.6 •Obdélníkové plochy často 0.4 0.2 vyrovnanější než čtverce nebo 0 kruhy 0
0.01
0.02
0.03
0.04
velikost vzorkovací plochy kruh
čtverec
Velký vliv tradice a metody vymezení plochy. Nejčastější kruh a čtverec.
Velikost vzorkovací plochy •
statistické optimum - nejmenší SEM nejužší konf. interval.
•
ekologické důvody - odpovídá sledovanému organismu a škále procesu, který chcete sledovat, zde lze s výhodou použít přirozené diskrétní jednotky.
•
poměr velikosti vzorkovací ploch a organismu- okrajový efekt. • praktické důvody velikost plochy, zvládnutelnost. Jak zjistit vhodnou velikost vzorkovací plochy? 1 - podívám se do literatury jak to dělají ostatní 2- statistické optimalizační metody
Statistická optimalizace velikosti vzorkovací plochy Wiegert, 1962 velikost 3 10 6 16 1.3
vzorkovací plochy 4 12 16 10 10 10 8 24 32 18 34 42 1.5 2.8 3.5
rozptyl (s 2) na jednotku plochy 0.97
0.24
0.32
0.14
0.15
rel. cena * rel. Rozptyl
0.32
0.48
0.40
0.53
konstantní náklady na vzorek náklady na jednotku vzorku celková cena relativní cena
1 10 2 12 1.0
0.97
1.20
2
s / plocha
1.00
Hendricks, 1956
y = -0.0363x + 0.6253
0.80
předpokládá, že rozptyl na jednotku plochy klesá s velikostí plochy.
0.60 0.40 0.20 0.00 0
5
10
15
20
Pak optimální velikost plochy
plocha
A lze vypočíst jako: A=
a 1-a
*
Co Cx
Kde a je směrnice regrese závislosti rozptylu na ploše abs. hodnota Co jsou konstantní náklady na plochu Cx náklady na jednotku plochy vzorků
Obě metody Wiegert i Hendricks, předpokládají rozsáhlou sadu vzorků dříve odebraných na téže ploše, vyplatí se při rozsáhlých studiích.
Připomínka: zabýváme se zde optimalizací plochy vzorku pro odhad abundance (biomasy) jednoho druhu nebo skupiny druhů celého spol. Někdy optimalizace velikosti za jiným účelem. Zjištění počtu druhů
počet druhů
25 20 15 10 5 0 0
5
10
15
plocha
20
25
Prostorové rozmístění organismu a jeho význam pro počet vzorků
Pravidelné Uniform 4.75 ±0.83
Náhodné Random 4.75 ±2.49
Shlukovité Aggregated 5.00 ±5.43
6 5
2
s /x
4 3 2 1 0
4.75 ±0.83 s2/ x
4.75 ±2.49 pravidelné < 1 (0.14)
náhodné 1 (1.3)
5.00 ±5.43 shlukovité >1 (5.6)
0
10
20
30
počet vzorků Lepš in Dykijová (1989)
Index of dispersion I = s2 / x závisí na počtu vzorků pro testování χ2= I(n-1); χ2 pro n-1stupňů volnosti (např. pro pravý obrázek 5.6*3=16.8) rozhodnutí dvoustranný (two-tailed) χ2 test χ20,975 < pororovaná χ2 hodhota < χ20,025 (0< 16.8 > 9, pravý obr. skutečně představuje shlukovité rozšíření)
40
Poissonovo Normální
Negativně binomické
Stanovení počtu vzorků Přesnost můžeme vyjádřit jako přípustnou velikost konfidenčního intervalu. Chyba je zde v absolutní velikosti d = t0.5 n=
n=
t0.52
s n
s2 d
2
přípustnou chybu položíme rovnou konfifenčnímu intervalu, kde n je počet vzorků a s je odhad směr. odchylky základního souboru. t je hodnota studentova rozdělení pro danou hladinu významnosti, možno též aproximovat norm. roz. 1,96 pro 0.05
Stanovení počtu vzorků Kolik vzorků musíme odebrat abychom dosáhli určité přesnosti. Přesnost můžeme vyjádřit různě, zde jako podíl střední chyby průměru a průměru s2- variance - rozptyl sledované populace
s2 n= c2
c - požadovaná přesnost (SE/x)
x2
x - průměr
3
27
pro přesnost 0.1
118
Rozmístění vzorků na ploše, případně v čase - vzorkovací schéma (sampling design) Co chceme studovat ? Cheme znát abundanci organismu na určité ploše v určitém čase. Chceme porovnat dvě plochy nebo dvě skupiny ploch v jednom čase. Chceme porovnat abundanci na jedné ploše v různých časech.
Chceme znát abundanci organismu na určité ploše v určitém čase. Předpokládáme že v prostředí jsou gradienty environmentálních vlastností. Díky tomu očekáváme, že vzorky, které jsou si blíž, si budou podobnější. Vzorky by měly representovat plochu , kterou chceme studovat.
Špatně
Chceme znát abundanci organismu na určité ploše v určitém čase.
Rozmístění vzorků: pravidelné - výhodné při studiu vlivu vzdálenosti na variabilitu, pokrývá rovnoměrně plochu, pro účely statistiky stejně jako náhodné. Problém možná existence periodické variace. náhodné -nejčastěji používané, většina statistických testů počítá s „náhodným výběrem“
Chceme znát abundanci organismu na určité ploše v určitém čase
.
Co je a co není náhodný výběr Náhodný výběr není ! “odeberu vzorek tam, kde se mi to zrovna líbí nebo kde to jde - snadno tam zastavím autem, atp.“ Správně vyberu plochy k odběru dopředu nestranným způsobem. Např. rozdělím si plochu na souřadnice a vzorkované plochy vylosuji, vyberu pomocí náhodných čísel, nebo si nageneruji náhodné souřadnice v rozsahu sledované plochy a ty pak najdu pomocí GPS.
Chceme znát abundanci organismu na určité ploše v určitém čase
0.1=118 0.05=472
.
Nicméně, množství vzorků, které musíme odebrat a zpracovat pro dostatečné přesný odhad je někdy (často) příliš vysoké. Co dál: Můžeme se spokojit s menší přesností. Budeme zkoumat zda naše otázka nejde odpovědět jinak. Nebo zda si nepoložit trochu jinou otázku. Různé varianty vzorkovacích postupů řeší tento problém pro specifické případy.
. Individua v přirozeně definovaných jednotkách
Chceme znát abundanci organismu na určité ploše v určitém čase
Vyjádříme na jednotku a odhadneme množství jednotek. Podobně mravenci nebo hnízda housenek, tam i v několika krocích množství hnízd na strom, množství housenek na hnízdo. Stratifikovaný odběr Ni √ Di = konstantní A=1000 m2 D = 1 B = 100 m2 D =100 výhoda- přesnější odhad, nutná znalost plochy předchozí studie
2
Chceme znát abundanci organismu na určité ploše v určitém čase
.
Sekvenční odběr vzorků, nezajímá nás absolutní hodnota ale to, jestli hodnota nepřekročila určitou mez.
Di>M
Di<M
+
konec
abundance
serie i - výsledná densita Di
Odeberu vzorky první série a testuji zda byla překročena daná mez, výsledek je buď ANO, NE, a tím končím a nebo NELZE ŘÍCI, v tom případě vezmu další sérii
M
+ n1
n2
Chceme znát abundanci organismu na určité ploše v určitém čase
.
Dvoufázový odběr jednotlivé odběrové plochy mohu vyhodnotit dvěma metodami, nazveme je měřením a odhadem. Měření je pracnější a přesnější, odhad rychlejší a méně přesný. Dilema - více vzorků měně přesně nebo méně vzorků přesněji. Odhad musí být významně rychlejší a dostatečně přesný (r2>0.75). Pak většinu vzorků jen odhadneme (n1), část odhadneme i změříme (n2). Pak:
kde k je poměr rychlosti odhadu a měření.
Jen odhad odhad + měření
odhad se musí udělat vždy dříve než měření
Chceme znát abundanci organismu na určité ploše v určitém čase
.
Směsný vzorek v některých případech je zpracování a příprava vzorku náročnou částí operace. Smícháme a zpracujeme společně několik příbuzných vzorků. To snižuje náklady i variabilitu dat výhodné u agregovaného rozdělení, ale ztrácíme údaje o původní variabilitě dat. Všechny smíchané vzorky představují 1 opakování, můžeme je porovnat jen se vzorky odebranými a zpracovanými stejným postupem. pseudoreplikacešpatně
(n=4)
Chceme porovnat dvě plochy nebo skupiny ploch dvě plochy nebo dvě skupiny ploch to je zásadní rozdíl Chci li porovnat dvě konkrétní plochy, pak je zcela legitimní považovat vzorky odebrané na jednotlivých plochách za nezávislé replikace. Často nás ale zajímají dvě plochy jako representanti dvou typů ploch (pole vs louka). Pak skutečná opakování představují plochy, zvyšování počtu opakování na jednotlivých dílčích plochách nezvyšuje přesnost odpovědi na naší otázku hovoříme o pseudoreplikacích.
Chceme porovnat dvě plochy nebo skupiny ploch
Completely randomised
nested
Chceme porovnat dvě plochy nebo skupiny ploch
Velké bloky - málo opakování můžeme si pomoci vzorky uspořádanými synchronně na sousedních plochách - můžeme použít párové testy
podobně gradientové studie, více rovnoběžných gradientů gradienty na úrovni krajiny i lokální ty můžeme odclonit výběrem -je jedno stanoviště, staratifikovaný odběr.
Chceme porovnat abundanci na jedné ploše v různých časech Buď odběr v různých časech, jak popsán při studiu jedné plochy. Ale každé sledování zatíženo jak časovou tak prostorovou variabilitou. Nebo opakované studium stejných vzorkovacích plošek (rostlin etc.). Můžeme oddělit vliv časové a prostorové variability. obtíže - vliv sledování na pokusné plošky. - jsou pokusné plošky representativní jednotkou?
Často chceme densitu ve dvou časech porovnat abychom mohli sledovat vliv nějakého faktoru před zásahem po zásahu je li to možné pak dvě nezávislé kontroly časovou a prostorovou
a
b
před
po c
d
Metody liniových transektů (Linear transect) Liniový transekt je speciální případ čtvercových metod Pozorovací úhel
Rovnoběžná vzdálenost Pravděpododnost zpozorování
Pozorovací vzdálenost
a
D- Abundance n - počet zvířat napočtených na transektu L - délka transektu a - polovina efektivní šířky pásu (half of effective strip width)
Problém je jak odhadnou efektivní šířku u některých metod je šířka instrumentálně daná pozoruji z letadla udělám si značky na křídlech nebo rám před kabinou a pozoruji vše mezi značkami provádím výzkum echolotem, vysílám akustický signál (acustic beam) do strany šířka je dána dosahem signálu nebo okrajem vodní plochy počítám velké vodní plazy (aligátoři) svítím do stran vidím oči, šířka je dána dosvitem reflektoru. pak
D- Abundance n - počet zvířat napočtených na transektu L - délka transektu w - instrumentálně daná šířka
Problém je jak odhadnou efektivní šířku nejjednodušší- nahradíme ji průměrnou paralelní vzdáleností ve které byli jednotlivý jedinci zpozorování
D- Abundance n - počet zvířat napočtených na transektu L - délka transektu w - průměrná paralelní vzdálenost Podmínky: zvířata zpozoruji dříve než je vyplaším v jejich původní pozici zaznamenávám zvířata před sebou i po stranách vzdálenost je přesně změřena
Problém je jak odhadnou efektivní šířku
Hayne D- Abundance n - počet zvířat napočtených na transektu L - délka transektu ri - pozorovací vzdálenost jednotlivých jedinců
Bournham - popisuje závislost pozorovatelnosti a vzdálenosti Fourierovou řadou (Buckland et al., 1993) DISTANCE
Metody založené na vzdálenosti Metody odvozené z prostorových map. Měříme vzdálenost od jednoho organismu k nejbližšímu sousedovi nebo od náhodně vybraného bodu k nejbližšímu organismu
1
2
funguje dobře pro náhodné rozmístění N - density pro shlukovité: n - počet vzorků xi - vzdálenost organismu i od náh. bodu ri - vzdálenost organismu i od nejbližšího souseda