Masterproef Politieke Communicatie Titel Masterproef: Intermedia-agendasetting: Hoe media elkaar imiteren. Een kwantitatieve analyse. Naam studente: Anne Hardy
Promotor: Prof. Dr. Stefaan Walgrave Verslaggever: Prof. Dr. Peter Thijssen Master Politieke Communicatie (www.politiekecommunicatie.be) Rolnummer student(e): s0070855 Faculteit Politieke en Sociale Wetenschappen Academiejaar 2007-2008
Masterproef Politieke Communicatie Titel Masterproef: Intermedia-agendasetting: Hoe media elkaar imiteren. Een kwantitatieve analyse. Naam studente: Anne Hardy
Promotor: Prof. Dr. Stefaan Walgrave Verslaggever: Prof. Dr. Peter Thijssen Master Politieke Communicatie (www.politiekecommunicatie.be) Rolnummer student(e): s0070855 Faculteit Politieke en Sociale Wetenschappen
! !
!
!
!
" #
"$ "
%
! &
'"
!
"(
)
" &"
'
*
$
%
%
&
+
,
+
-
$
. ! " "
! !
' /
" "
#
/
!
!
'
!
!
0
1 3
#
+
1
!
2
3 ! 0
0
" "
6
1
3
+
5
!
(
42
77 78
79
7:
87
( 78 78 # 79 79 )
7 8
% #
7 8
/ /
7 8 9 : @
< 2 +
887 888
% )
5 8 8 8 8 8
7 7 7 7 7
7 8 8 9 9 9 : :
(
" "
=
$ ( A
%
4
88
:7 :8
# 3 ! :87 < :88 $ D
! "# @7 @8
( %) * %+
@
! 5
#
8: 8> 8> 8? 9C
$ / /
% ;7 ;8
4% !
; ; ; > ? B 7C 7C 77
' '
&' =
99 @C
! @; @B
+ #
)
2
7
'
!
8C
2
8
)
2
9
=
2
:7
5
G
2
2
:8
5
G
2
' $
2
:9
5
G
2
$
2
@
<5( '
2
;
<
!
88 ,
,
E7BB9 8CCCF
%
5
#
7
9:
7:
9@ 9@
9@
2
9>
5
B
8@
7BB9 8CCC =
99
7 9?
2
>
3
2
:8
2
?
<
5
5
2
B
<
5
5
2
7C
<
5
5
2
77
$5# .<522 .
25+ '
,
:@ :;
<
G
:? @?
+ # G
7
" (
4 ?
G
8
=
G
9
$
G
:
'
=
(!
=
+
8@ 8B
<5(
:C
<
,)
!
"
" !
!
" !
!
"
" E $
'
.
' $
' '
+
H F
E<(2 <2# (2+G (2'F
# 2 <5( !
3 ) ,
!
I
+
, 2
<
G
" "
% +
$
,
<5( +
<
- )
#
% A !
! "5
* ! <
(
+
4
E7BB;F
!
"
! < %
$
1 1 <(2
<2# "
!
+
<(2
"
! (
1
4
7B?B
7B?@
* D *
! '
" !
*
!
) !
2
!
II
0+
7 !
"
%
8A1 )
!
! @
"
"
!
! !
7
!
!
!
)
!
!
!
#
! 0
1 #
!
1
0
1
!
+
, ! !
"!
4/ J
! " KE
4/
7B?> 9F
. / (
4
+ $ .
E7BB9F
# =
4$
E7B>8F
8CC 8C
!
!
" !
K
! J
!
"
"
! E(
( ( '
"
4# = ' "
4
7BB:L2
7B?BL # 7BB@L'
7BB?L +
8CC7L +
8CC@L 3
8CC;L $
!
"
# =
7BB>L $ 3
4
'
8CCCL ' 4 %
7BB7L
8CC?F
4 '
4
)
8
D
5
%
4. +
! 8CC@F 2 M
D
E
5
"
"
# "
!
+
!
M
@
! II
! 1 !
!
)
"! !
+ $ !
"
"
" 2
0
N
E# =
4$
!
7B>8F
!
!
#
" "
! !
!
"
#
OO
"
! *
5
!
! "
!
#
! "
1 % !
! !
!
0 5
"
"
$ "
! E( 0
4
7B??L % 1
7B?>F 2 E+
4
9
7B?@F
" " "
2
!
!
" ! <5( !
!
D
7BB9
5
8CCC
! !
"
0
$
5
! *
!
!
" !
%
0
1
!
1 ) "
" " !
%
! (
4
E7BB;F <
# =
0%
4$ A1
E7B>8F
0%
A1 ! " 0
1
% "
!
< !
" %
"
! "
"
" ! !
:
<
<5(
#
!
"
!
" "
!
" "
"
"
" !
!
" " <
E8CC>F
+
4 %
E8CC>F !
"
! ! 0
#
%
$
0
E !
%
%
"
!
F
1
+
,
+
)
"
! M
&
1
! A
!
"
@
,
%
'
E7B88F
!
"
J
0
)
1
K !
" !
'
"
! E3
8CC;F
! =
E7B;9F
J
K E 79F
2 .
'
3
4
= # ,
# =
$
7B>8
!
$
% !
7B;? 1
!
!
!
1
*
E# =
8CC:F
1 "
! !
AN
!
7CC
!
#
0%
!
0)
! !
!
!
A1
;
"
E# =
4$
7B>8F # =
$
% # = "
4 $
E7B>8F
<
" "
(
E7BB;F
" M
J
&
&
K E 8F # =
E8CC:F
0 <
1
0
0
1
1
"
(
E7B??F
J K
E
@;CF
=
0
1
4
J
KE )
0
7:F
1
'
!
4'
E7B?7F
!
4 <
E7B?9F
' (
4
=
4'
0
E7BB;F
'
J
K E 98F
!
"
"
! E7BB;F "
( 0
<
/
4
1
E7BB9F
>
II
! !
<
< <
2 !
#
E7BB@F ! !
.
&
' (
E7B??F
1
! ! "
+ " 2
!
! *
-
!
J
K E(
4
;F
Figuur 1: De drie hoofdcomponenten van het agendasetting proces: de media-agenda, de publieke agenda en de politieke agenda volgens Rogers & Dearing.
Bron: Sinardet (2000)
?
(
E7B?? 7BB;F !
!
!
II
!
1
"
%
"
0
1
!
/
)
#
5
2
6
! ( "
! 4
=
E7BB9F
(
!
4#
E7B?>F
J KE $
:9F
7B:? E(
4
7BB;F '!
"
#
E7B:?F
!
(
!
4
"
E7B??F
"
"
E F
E F
E F
E F !
! 1
" " E# =
8CC:F !
!
" * $
!
4$
(
E7BB;F
%
"
# =
4$
E F
"
E8CC:F !
E F
E F E
!
II
8;BF
!
""
!
"
B
5 ! #
P
"
1
! ! 3 ! E7B>9F
# =
#
4$
E# 0
1
5 /
,8/ !
G
F
!
#
E7B>8F
&/
#7
#
$
6
"
0
A1 ! -
" "
! '
E'
E8CC@F
!
7BB?F
+
II *
" # II !
*
#
4 "
J(
E7BB7F
) ' KE %8/
9@F
#6
)
E
F 0
A1 D
!
.
4# !
! "
E7B?>F M
!
7C
! Q ! ! E#
" 4 "
M
"
!
7BB7F &
M 1
! E# =
8CC:
779F !
!
E. 2
4#
7B?>F
M
1 &
!
!
! !
E(
4
7BB;F % !"
" " E.
4 #
"
7B?>
! "
:C9F .
&
4 =
E7BB8F
*+ (
-E.
,
7BB8 9F
1
$
!
# ! 5
E F
! !
"
"
! )
G
!
!
!
"
! ,82
#
!
#
#
77
0 ( 0
*
1
1
4
E7B?BF
!
7B?@ 7B?; 7B?; D
!
(
4
* '
" !
0
1
(
*
"
4# =
0
E7BB:F
1
!
!
2,
" 7BBC #
II
'
!
E7BB?F
(
# =
!
#
7BB@
"
! $
$
4
!
! "
(
5 )
3
3
E8CC;F !
! ! ! 7BB@
! " 1
8CCC
<
1
% "
<
!
. "
<
78
'
E8CC@F
!
/
! !
(
! /
)
8CCC
-
/
! !
) !
'
! /
1
0
$
3
!
0(
4 %
E8CC?F
0 !
8CC: D
$
E8CCCF ! .
!
1B;F $
E1?8
=
"
1 ' E# =
8CC:
$
8CCCF
" / !
!
"
+ %84
,
#
!
#
!
!
<
! "!
$
*
.
! !
5 0
E# =
8CC:L(
4
1
7BB;F *
*
=
E7B>9F
!
79
!
7B>8
"
&
5
*1 ' -E=
2
7B>9 ?@F
! " .
,
'
=
+" "
.
G
.
R
#
! !
'
"
=
! )
!
0' E
=
1
7B?:F
#
"
! !
.
#
()
"
E# !
)
7B?@
7B?>F
2
7B?;
!
7B?;
! (
! !
)
#
!
! !
"
4 " "
E7BB7F
!
! %
-
" " J K E @7F Q
3 0
4
!
1
7:
'
1 !
!
!
! 0
E% +
E8CC7F
# =
1
4$
8CC:F
!
,
!
7BB;
2
* !
)
*
2
.
! 4 #
E7B>CF
0
#
1
! "
E.
4# +
"
7B?> :C8F
M
$
#
)"! .
!
! &
<
!
< 5
'
"+
+
II
5
"!
!
!
" !
) +
$
#
"!
M <
!
"
$
! #
" 38 5
! !
1
( !
1?@ 1?; -
J%
4
E7B?BF !
0
*
!
"
7@
" ! " .
!
"
K E
:>F
" 7B?@ 7B?; )
2
! E7BB;F
E7B>9F 1 ! E F
0
"
"" 1
E F
"
"
! E F ! !
!
"
E F
"
!
0
"
E
9B :CF
"
1 E F
2
" ! E# = )
+
E7BB>F
4$
7BBBF
! " !
!
07BB7 7BB@1 ! D !
!
"
5
!
! !
5
,
,
I !
, !
%
7;
, ! '8 ! ! %
4
%
0
1
" "
E7B?7F
" "
A
M !
%
E7BB:F
!
" " !
%
D
4( !
E7BB@F
E8
E7
F
F
: S@
; S>
7@
!
!
" E%
7BB>F !
"
"
!
(
4 # =
!
E7BB:F
;
-
!
E%
4
!
J
7B?7F
" " ! !
! K E
!
8@7F -
! " "
!
" "
!
'
E7BB?F
!
! II
!
'
!
"
E8CC@F
"
'
: !
3
! !
" E ;
!
!
2
E7BB@F
!
"!
! !
!
;9F
) !
II !
-
"
!
7>
7
"
#
E!
F !
!
! " !
<(2
5
<2#
7B !
"82 ! " +
%
, +
!
!
"
M !
+
M
"
1 < )
!
% +
-
M
M
! "
!
< <
!
%
)
! "
-
1
E%
<
<
4.
%
89F
3! "
<
G
!
5 <
%
!
$
M !
!
!
E8CCCF
+ J-
!
+ <
G
7CT
E7;TF .
(2'
(2+G K E$
" 8B 7T 78F
!
% ! "
!
) M
< "
"
7?
! " ,
% !
+
!
+
"
M 984 #
) 7 !
7B
Tabel 1: Literatuuroverzicht intermedia-agendasetting 2 . '
& ; <*< 4, &-
<< '
/ 2 % ; / %
#
#
4
# =
5 2
:2". "' ,5 -,326 & 5 / 2
*
=
& 5 " " 5
. ) & 3 #) ; << 4,
/ %
9
& /
2
1 !
2 #) ; <
/ 2
3
%
;
%
& 5 /
2
& %
; <<(
/
=
4,
4
%
5" <<* +
)
; == 4,
' '
%
/ 2
<
7
!
& 5 / & 5 /
/ 2
.
% 4 3
& 5
$ ; == .
.
8C
2
#
#
4
# =53
; ==! >
.
50
?
/ 2
; == 4,
4 ==* 4,
:
:2". "' ,5 -,326 /
;
2 +
+
& 5
<
2 & 5=
!
87
"
!
"
+
"
,
! A )
!
"
Tabel 2: Overzicht van hypothesen E27F ! $
#
,
E28F
!
!
%
II
!
!
! !
%
" "
<
G
2
#
7
E2 E2
D
8F !
# =
7BB:L'
7F !
E(
4
!
7B?BL 3
!
4
#
$
!
-
#
!
E(
4
7B?B # !
+
"
$ <
7B?> =
7B>9F
2 !
!
4
7BB?F
)
8
8CC;L (
+
M #
!
88
9
,
-
!
!
(
E7BB>F
4
E7B?BF
2
E7BB;F
"
+
!
!
*
1
1 %
0
,
: %
II
!
! : E%
7BB:F
!
:
; II
!
(
8: " "
II 2
@
%
" "
<
G "
)
)
! <
!
$
E8CCCF
<
% ! < !
%
M 0
<
!
%
!
5
" "
1 !
G !
M%
%
M
89
$
"
!
#
5
! !
!
!
! E7B?BF
(
!
4
"
)
#
4 "
E7BB7F 3
E8CC;F
.
!
'
"
!
1
) "
! ! 7BB: 87:F 3
1
!
E
D
!
) E8CC?F
(
$
! "
4# =
E7BB:F '
!
4
E7BB?F
'
E8CC@F
! =
4(!
E7B;BF ! "
8F
!
2
! +
R7U8
U7R8
E!
!
" !
G
!
!
*
8:
(!
4=
E7B;BF
"
*
" VE U7R7 W U8R8FP8X YVE U7U8F8 W E R7R8F8X P8Z[ " U7R7
8 )
"
5
R7U8 !
8
!
*
5
"
7 7
U7R8
!
!
" R7U8
II
R7R8 "
*
!
" "
! 56
2
%
!
2
2
!
!
#
# !
E
8CC;F
Figuur 2: Cross-Lagged Correlations en de Rozelle-Campbell Baseline
Bron: Dunn (2006)
8@
2
E7BB@
7: 7@F
M E3<='=F
!
7
!
+
!
!
"
!
! )
% 5
%
0
1
#
!
!
E F
E 7F
"
! !
7 3
" " M
U
R
"
<
U
R
R! " ! ! ! !
!
.
!
! "
3
. "
7 " %
3<='=
!
2
" 2 -
"
% "
%
G
!
"
8;
? $
# ,
J# 5 K E+ !
R" "
4%
8CC> 7:F
"
4 # 3
!
E8CCCF
J
6 K
) E @CBF 2
,
%
" )
5( #5
"
5
!
3 00
1 "
+ "
)
8
3
&
5( #5
!
"
E<
8CC>F
! !
+,
1
+
0
(
!
"
!
" !
<5(
E<
8CC>
<5( !
#
7?F <
+
4%
E8CC>F !
<5(
"
<5(
)
"
) !
<5(
" "
! E<
7
8
8CC> 7>F
H7 R \ 7 W 77]R 7 W 78W! 7^ W 7 ]R
W 7]!
W _7
H8
W 8]!
W _8
- \ 8 W 87]R 7 W 88]! 7^ W 8 ]R
8>
<5(
!
Q M
<
E8CC>
"
7?F
E " 0
F
+
'
5 "
!
"
5
!
!
E7B?CF
+ 3
'
+
%
'
M
" " "
" "
"
" "
"
"
! " " 0 1 (
!
"
4 5
(
8
/
8
+
4%
<
E8CC>F E8CC>F !
<5(
! <
E
D
" "
7BB: @F
8?
Figuur 3: Stappenplan voor analyse <
5 $25
# . '5.
$25 7 2 5
/ G
$25 8 # 5 =
+
2
E
=
F
" +=
"'
'
,
2
$25 9 < 5 3
5 2
=
Schema gebaseerd op Vliegenthart (2007) 42,- 7@ 4
A 52"42
) 0
1 ! "
" #
5
05
G
E5 GF1
5 G
!
0
5( #5
'
<5(
"
!
# =
#
< < =# #
5
3
!
1
<5(
0 !
" D
!
!
!
!
< =#
8B
42,- 7 0
1
' ,
!
+ 9
0
(
+=
!
5
"
%
E+ =F
(
E5 =F
%
5 =
* !
.
5 = 0'
,
2
1 +
+= !
)
`a !
"
)
!
E '$F
) E)'$F
)
42,- 7 !
!
*
E
7 %
"R
!
% U
R R
,
E R
7
F
"
D
87:F
U
R
R ! " E+ 0:
U
4%
98F % 1 5
7 !
;
" "
U
B
R
)
" % %
4 . 4<
E8CC;F
%
.
4 $
E8CC@F 4
E8CC?F
9C
)
! +
7BB9
8CCC
#
G
. .
" #
'
+
H
!
.
$
G
' $
' '
#
) ! <
!
M !
2<7 E>
<
<2#
G
(2+G
F
5
G
!
5
(2'
!
;8;CC !
! D()<)= D
;C>@
5 7C
>
7
2< 2< !
M" " M E%
!
!
4.
8CC@F
# E
%
4<
5
8CC;L%
.
4$
8CC@F
% $ $$ P !
5 G
" D
)
5
7
!
$ $$
%
) !
! !
!
<5(
"
$ $$ #
,
1
Deze data werden verzameld in het kader van een Belgisch interuniversitair agendasettingproject (2001-2004) gefinancierd door de ‘Federale Diensten voor Wetenschappelijke, Technische en Culturele Aangelegenheden’ (DWTC). Het project werd geleid door Stefaan Walgrave, Lieven Dewinter, Benoît Rihoux, Frédéric Varone en Patrick Stouthuysen. 2 htpp://europa.int/celex/eurovoc
97
2
$ $$
-
B "
<
M
"
" !
+
@
">
!
;
"
<
" " !
<
8@C: M
!
" M
8:
"
!
! 7BB9
!
8CCC
5 !
!
! . *
+
! !
!
,
<
! "
"
" ! "
#
,
"
87;
98
!
"#
!
$
0
$ ! 87; #
$
' '
+
H
<2# <(2 (2+G
'
(2' <
.
7BB9
!
8CCC
8@ ;8;CC
P <5( "
5 ,
%
! "!
" "
!
%
!
,
Tabel 3: Correlatiematrix tussen de 9 media (1993-2000)
DM: De Morgen, HLN: Het Laatste Nieuws, DS: De Standaard, LLB: La Libre Belgique, LS: Le Soir ** Correlation is significant at the 0.01 level (2-tailed). N=62600 5
,
!
!
<(2 EC >@]]F
)
<2# (2+G
(2'
EC >:]]F
99
' $
' '
+
H
EC :B;]]F
$ .
'
EC 9B;]]F '
$
.
<
2
!
'
<2#
.
<
G
<2# !
(2' EC @>:]]F
!
M
.
!
,
%
0
1
<5( " " !
! 0
1
)
II E8CCCF
5
R" " 4# 3
J$
KE G
@7CF
5
E5 GF
!
!
+
!
! 87; 5
5 G
Tabel 4.1 : Augmented Dickey Fuller Test: DM_issue 1 #b $$D 7 5
]
G
79 ?:B79
C CCCC
Critical value op 1%-niveau is -3.43, op 5%-niveau -2.86, op 10%-niveau -2.56. 0 "
#
b
79 ?
71 !
!
2 7:
' $
2
:9!
:8
"
5 G 9@
$
9:
Tabel 4.2: Augmented Dickey Fuller Test Le Soir Issue 14 '$b $$D 7: 5
]
G
89 B?998
C CCCC
Critical value op 1%-niveau is -3.43, op 5%-niveau -2.86, op 10%-niveau -2.56 Tabel 4.3: Augmented Dickey Fuller Test De Standaard Issue 35 $b $$D 9@ 5
]
G
88 9C78?
C CCCC
Critical value op 1%-niveau is -3.43, op 5%-niveau -2.86, op 10%-niveau -2.56 "
98
99
! " 0
! $
7:
!
"
' $
%
9@
!
3
1
87;
!
< !
! %
!
5 =
+= "
!
,
"
- !
1
`8
7
"
% 4%
2
<
!
+
0'
;
<
E8CC;F ! I <5( + 78
#
!
" " 79
E
8@F
%
!
! <
!
!
E; 0
!
" " 1
5 =
" !
% ;
F +
@ 5
7@
#
4% "
; & !
!
7
;
" !
"
; " "
%
9
9@
!
<
II
H !
> ) !
#
" "
! "
! !
II
9;
TABEL 5: VAR Lag Exclusion Wald Test !
(
#
7?>8C @9 V C CCCCCCX
:7: B@C9 V C CCCCCCX
8;8 B8C@ V C CCCCCCX
79; 8>:7 V C CCCCCCX
8; 8@@89 V C CC7?@@X
8:@ 98?? V C CCCCCCX
;9 9>BB@ V 8 B? 7CX
'.
8C:>@ ?: V C CCCCCCX
?B7 :9>? V C CCCCCCX
9B9 C7B> V C CCCCCCX
?7 7B;88 V B 9@ 7:X
B8 79::? V @ @@ 7;X
7>8 @9BB V C CCCCCCX
;9 9B8;: V 8 B; 7CX
$
7>8@? :9 V C CCCCCCX
@:7 >@?9 V C CCCCCCX
7>9 8B7: V C CCCCCCX
7>8 8BC; V C CCCCCCX
@@ 7>@;B V 7 79 C?X
7>@ C7C7 V C CCCCCCX
>B C@??: V 8 :? 79X
''+
7B;C8 B9 V C CCCCCCX
9:C ?79; V C CCCCCCX
79@ 9>;; V C CCCCCCX
878 8B@9 V C CCCCCCX
9; BC?@C V 8 >9 C@X
:7@ >79B V C CCCCCCX
8; 8?:?; V C CC7?9@
'$
8CCC> B; V C CCCCCCX
9?> BB?9 V C CCCCCCX
878 7?B9 V C CCCCCCX
7>? >B?9 V 8 88 7;X
@> 7@?;7 V : >7 CBX
97; ;B98 V C CCCCCCX
;: ?C8B: V 7 @? 7CX
<2#
:?>7 ?@C V C CCCCCCX
@:@ @;@8 V C CCCCCCX
99: @8?@ V C CCCCCCX
99C 8?7C V C CCCCCCX
7B9 >B;9 V C CCCCCCX
@9C 9?:7 V C CCCCCCX
77: ;78B V C CCCCCCX
<(2
:7;@ ::B V C CCCCCCX
9BC ?C?: V C CCCCCCX
9?: C79> V C CCCCCCX
B: 77?7B V 8 88 7;X
7:8 9@C@ V C CCCCCCX
9>> 79>; V C CCCCCCX
7?@ @88: V C CCCCCCX
(2+G
:7BB 7B@ V C CCCCCCX
@:C 7::? V C CCCCCCX
7B> @8B> V C CCCCCCX
7CB C?;C V C CCCCCCX
88B BBCC V C CCCCCCX
97@ @878 V C CCCCCCX
7C8 :B78 V C CCCCCCX
(2'
@7>: @@@ V C CCCCCCX
;@? :@88 V C CCCCCCX
7;8 BB98 V C CCCCCCX
77? B7:9 V C CCCCCCX
78@ @B8; V C CCCCCCX
9;C 9>@7 V C CCCCCCX
79; ;7?B V C CCCCCCX
C
7C7C?@ ? V C CCCCCCX
:9B8 ?:8 V C CCCCCCX
7B7; 878 V C CCCCCCX
78;: 9B9 V C CCCCCCX
??C @98: V C CCCCCCX
887; B@@ V C CCCCCCX
>>> @;B7 V C CCCCCCX
',?
',?":
',?":
',?":
!',?":
',?":
/ ""0
DM: De Morgen, HLN: Het Laatste Nieuws, DS: De Standaard, LLB: La Libre Belgique, LS: Le Soir Chi-squared test statistics for lag exclusion: Numbers in [ ] are p values. Degrees of freedom: 9
9>
TABEL 6: Vector Autoregressive Analysis: voor 9 media en 25 issues: 1 lag, periode 1993-2000 # # E 7F '. E 7F $ E 7F ''+ E 7F '$ E 7F <2# E 7F <(2 E 7F (2+G E 7F (2' E 7F 5 a
C @8]]] C CC9 7@7 9> C C:]]] C CC9 77 B; C C@]]] C CC9 7: 8; C C7]]] C CC8 9 99 C C9]]] C CC8 79 : C C:]]] C CC8 7@ ? C C9]]] C CC8 78 8 C C8]]] C CC8 > >B C C8]]] C CC8 ; >9 C :B@ 7 BB
' . C C9]]] C CC9 B 8? C @9]]] C CC9 7@; 7: C C8]]] C CC9 ; ;: C C8]]] C CC8 ; @8 C C9]]] C CC8 77 ?8 C C;]]] C CC8 8; :> C C7]]] C CC8 @ 8BB C C8]]] C CC8 > C? C C8]]] C CC8 77 >@ C @8 7 B>
$ C C>]]] C CC: 7? @? C CC9]]] C CC: ; ?@ C :?]]] C CC9 799 @9 C C8]]] C CC8 > C8 C C9]]] C CC9 77 BC C C8]]] C CC8 B 88 C C@]]] C CC8 7> B C C:]]] C CC8 7@ :: .
C :@@ 7 B?
' + H C C9]]] C CC@ ; 9? C C@]]] C CC: 77 ;7 C C8]]] C CC: 9 >; C @:]]] C CC: 7@; ;B C C@;]]] C CC9 7; C: C C;]]] C CC9 7? ;7 C C9]]] C CC9 > >7 C C@:]]] C CC9 7; 89 C C9]]] C CC9 ? @: C @9 8 C9
' $
<2#
<(2
(2+G
(2'
C C;]]] C CC: 79 8; C C:]]] C CC: B 9B C C@]]] C CC: 7C BB C C@]]] C CC9 7: 8@ C @@]]] C CC9 7@B 7B C C9]]] C CC9 7C ;; C C8]]] C CC9 ; ?@ C C:]]] C CC9 79 8: C C9>]]] C CC9 77 @9 C @9 8 C:
C 7:]]] C CC> 7B CB C 97]]] C CC> :7 :7 C 78]]] C C> 7> C: C 7:]]] C CC@ 8@ ;@ C 77]]] C CC@ 7B B@ C 8B]]] C CC@ ;7 CB C 79]]] C CC; 88 9@ C C:]]] C CC@ > B; C C@]]] C CC@ 7C 8B C :? 8 7B
C 77]]] C CC; 7? 79 C 7@]]] C CC; 8: :8 C 79]]] C CC; 87 B? C 7C]]] C CC@ 87 @; C C?]]] C CC@ 7; @7 C 7@]] C CC: 9@ 9? C 7?]]] C CC@ 9; 8: C C:]]] C CC@ B >9 C C:]]] C CC: B 9; C :C 8 78
C 79]]] C CC> 7? BC C 78]]] C CC> 7> C@ C 79]]] C CC; 7B B: C 79]]] C CC@ 8@ C; C 78]]] C CC@ 8: @B C C@]]] C CC: 77 9: C C@]]] C CC@ ? @B C 7?]]] C CC@ 9> 8@ C 7?]]] C CC@ 9> CC C :C 8 7:
C C>]]] C CC> 7C :7 C 7;]]] C CC> 88 ?8 C C>]]] C CC; 77 :? C 79]]] C CC@ 8@ ;7 C 77]]] C CC@ 8C B: C C;]]] C CC: 7: 89 C C9]]] C CC@ ; 7? C 7@]]] C CC@ 97 89 C 8:]]] C CC@ :B @7 C :C 8 7:
%
Waarden geschat door middel van Pooled Least Squares. P>0,001***. Er staan de regressiecoëfficiënten, gevolgd door de standaardafwijkingen. De derde waarde is de t-statistic. N=62.600 DM: De Morgen, HLN: Het Laatste Nieuws, DS: De Standaard, LLB: La Libre Belgique, LS: Le Soir
9?
<5( ! !
25+ ' ; "
! !
!
"
!
"
"
" '
" "
.
5
"
<(2 E 7F !
2<
7 I
" "
) E
"
F
E "
F
II
E 7F
M" " M " ,
<
"
5=
E
"
F
% 5
0
M
8
!
5
%
M %
% !
: !
!
!
M" " M
! " !
5
< C :?]]] E
M
5 8
E 7F
1
$
! F
M" " M
C @@ ]]] E' $ C 7?]]] E<(2
M" M
F
+
(2+GF
C 8B]]] E<2#F &
!
M" " M
!
" (2'
E]]]F
$
" " "
!
)
/
E 7F E'
F /
" " < ! " !
E 7F %
!
9B
Figuur 4: Indeling voor inpretatie VAR
/
/
2
/
/
E 7F
2
/
/
<
E 7F
"
"
<
,
" E
"
"
F
%
" ! !
" "
"
+
! "
- !
' $
' $
!
@9 @ .
9B ?7
# $
9@ ;@
!
:> @C
' '
+
'
H
97 78
#
$
E7? @?F .
!
!
!
0
1
<
! ' '
G
#
H
E9 99F
)
"
! "
"
M" " M
% #
"
"! E
+
"
F %
" E '
7F
.
:C
E7C@ >F #
"
E;; @9F
'
.
<2# E:7 :7F #
(2'E7C :7F
/
% ! "
"
- !
<2# E?C >;F (2'
!
"
"
" "
E98 CBF
(2'
%
$
"
" "
"
<2#
2
'
'
.
.
<2#
E8; :>F
<
" "
!
0
% !
! "%
1
" <2#
-
<(29@ 9? <2#
88 9@
<(2
"
!
5
97 89 9> CC
(2'
(2+G
(2+G
(2' ) "
" "
M
A <2# " "
G
" " (2' E
7: 89F
,E25+ '9F
.
"
! M"!
7C :7
%
" "
:7 :7
" "
"
$
8; :> % 7C
7C
(2'
!
/
B
7C
8C
II
8C
" " +
,
5= 2
E
C :C
E
C :9
C :?F
%
C @9F "
:7
8 M
+
%
M 5
E8 78 8 7BF
!
25+ ' ; " " ) !
!
"
!
!
!
$
#
"
!
+ $
<
D
7 7
#
!
!
%
25+ '> ! "
25+ ' ;
"!
!
!
!
"
5
!
!
Tabel 7: Granger Causality Test .
G
#
3
=
$
8C@8 9?
C CCCCC
$
3
=
#
7;@: 7;
C CCCCC
$
7;8; CC
C CCCCC
'.
78?: C@
C CCCCC
$
7;?? ;7
C CCCCC
''+
7787 @>
C CCCCC
#
8@9B 87
C CCCCC
(2+G
8?@7 @:
C CCCCC
#
9>?? >@
C CCCCC
<2#
899@ >C
C CCCCC
#
98;C ?>
C CCCCC
8@@8 7@
C CCCCC
#
7B:B 78
C CCCCC
'. $ ''+ $
3 3
# <2# # <(2 # '$
=
3 3
(2+G
=
= =
3 3 3 3 3 3 3
= = = = = = =
<(2
#
3
=
'$
7;9; >7
C CCCCC
''+
3
=
#
7:;; @@
C CCCCC
:8
#
3
'.
=
3
''+
799C C8
C CCCCC
#
7?@? >8
C CCCCC
=
#
3
=
'.
79?? @@
C CCCCC
(2'
3
=
$
8:;@ 77
C CCCCC
(2'
877? ;?
C CCCCC
9778 7?
C CCCCC
(2+G
8>:; 8B
C CCCCC
$
9@97 >?
C CCCCC
8777 ?:
C CCCCC
$
3
(2+G
= 3
$
=
3
<2#
=
3
$
$
=
3
=
<2#
Lag 1. N=62599 DM: De Morgen, HLN: Het Laatste Nieuws, DS: De Standaard, LLB: La Libre Belgique, LS: Le Soir
7
<5(
% 3
"
;
!
!
II
<
'
!
) !
II
!
, !
"
<
G
!
A "
!
)
!
! " <5(
5 G
9
<
7
%
#
! !
8@
M 7
!
, ! !
!
" " ,
, <
<
!
<5(
"
25+ '? 25+ ' B
:9
%
,
,
5=
, !
!
C 8: E(2'F
C :C E' $
F +
C :9 E<(2F
C ;C E' '
+
, H F
! 5
M" " M ?7
!
M" " M
@>
#
!
"
,
,
!
:7 ,
:C
%
- !
$ '
, .
' ,
"
A3 !
" " "
#
' '
' ' +
+
H
H . "
' '
+
H
!
5
"
#
'
! $
$
!
% !
.
! '
' $ (2'
. ,
$
!
, ) !
::
TABEL 8: Vector Autoregressive Analysis: Exogene issues # # E 7F '. E 7F $ E 7F ''+ E 7F '$ E 7F <2# E 7F <(2 E 7F (2+G E 7F (2' E 7F 5
(a %
C @@]]] C CC@ 7C9 7; C C9]]] C CC@ ; 88 C C;]]] C CC@ 7C @8 C C7]] C CC: 8 BB C C:]]] C CC: ? 7> C C9]]] C CC9 > B9 C C9]]] C CC: ; B; C C8]]] C CC: @ >: C C7]]] C CC: 9 >? C @: 7 BB
' . C C8]]] C CC@ : C7 C @7]]] C CC@ B8 :; C C@]]] C CC; ? @> C C8]]] C CC: @ :@ C C:]]] C CC: B 7C C C@]]] C CC9 79 7: C C9]]] C CC: B 7C C C8]]] C CC: @ B@ C C8]]] C CC: ; >; C @9 7 B@
$ C CB]]] C CC@ 7> C> C C:]]] C CC@ > 7@ C :B]]] C CC@ ?> @: C C8]]] C CC: : @B C C9]]] C CC: > BB C C8]]] C CC9 @ ;@ C C:]]] C CC: ? ?> C C:]]] C CC9 77 C8 .
C @8 7 B>
' ' + H C C:]]] C CC; ; ;? C C@]]] C CC; ? 87 .$
C @>]]] C CC@ 7C> 9;; C C@]]] C CC@ B 9B C C;]]] C CC: 7: 9> C C8]]] C CC: : C; C C@]]] C CC@ B 77 C C8]]] C CC: @ C;; C ;C 7 BB
' $
<2#
<(2
(2+G
(2'
C C>]]] C CC; 7C >C C C:]]] C CC; ; >9 C C;]]] C CC> ? ?7 C C@]]] C CC@ B C8 C @;]]] C CC@ 7C: >9 C C9]]] C CC: ; B: C C8]]] C CC@ 9 9; C C:]]] C CC@ > ;: C C:]]] C CC@ > ?7 C @B 7 BB
C 77]]] C C77 B >; C 8@]]] C C77 88 :9 C 7@]]] C C78 78 7@ C 7B]]] C CCB 8C B7 C 79]]] C CCB 7: CB C 8B]]] C CC> 9? C? C 79]]] C CCB 7: 88 C C;]]] C CC? ; ;> C C:]]] C CC? : B9 C @8 8 7B
C CB]]] C CCB B ?@ C 7;]]] C CCB 7> 7@ C 79]]] C C7C 78 9; C 78]]] C CC> 7; C8 C C?]]] C CC> 7C @8 C 7:]]] C CC; 89 9@ C 7;]]] C CC> 8C ?; C C:]]] C CC> ; >B C C:]]] C CC; @ :8 C :9 8 77
C 78]]] C C7C 78 @9 C 77]]] C CCB 77 >; C 7@]]] C C77 79 >C C 79]]] C CC? 7; 8; C 77]]] C CC? 7: @@ C C:]]] C CC; ; :8 C C:]]] C CC; : ;9 C 7B]]] C CC> 8@ 7B C 7>]]] C CC> 8@ C@ C :; 8 7;
C C:]]] C C7C 9 ;; C 79]]] C C7C 78 :> C CB]]] C C77 > 8? C 7@]]] C CC? 7> @B C 77]]] C CC? 7> @B C C:]]] C CC? ; C7 C C:]]] C CC? : :8 C 7?]]] C CC? 89 7C C 8@]]] C CC> 99 ?: C :@ 8 7@
Waarden geschat door middel van Pooled Least Squares. P>0,001***. Er staan de regressiecoëfficiënten, gevolgd door de standaardafwijkingen. De derde waarde is de t-statistic. N=25040 DM: De Morgen, HLN: Het Laatste Nieuws, DS: De Standaard, LLB: La Libre Belgique, LS: Le Soir
:@
TABEL 9: Vector Autoregressive Analysis: Endogene issues # # E 7F '. E 7F $ E 7F ''+ E 7F '$ E 7F <2# E 7F <(2 E 7F (2+G E 7F (2' E 7F 5
(a %
C :;]]] C C: B? ;? C C8]]] C CC; 9 ;; C C:]]] C CC: 7C :8 .$
' . C C8]]] C CC: : ?? C :;]]] C CC: BB 89 C C7]]] C CC8 : :B .$
C C9]]] C CC; B :8 C C:]]] C CC9 78 @C C C:]]] C CC9 78 7> C C8]]] C CC9 : ?; C C8]]] C CC9 @ C9 C 9: 7 B?
C C7]]] C CC8 9 :C C C9]]] C CC8 78 CB C C8]]] C CC8 ; ;8 C C7]]] C CC8 ; 9; C C7 C CC8 : >@ C 8B 7 B8
$ C C:]]] C CC@ ; 87 C C9]]] C CC? 9 9: C :;]]] C CC: B> ;; C C8]]] C CC: ; 77 C C9]]] C CC: ? @? C C@]]] C CC: 7C B: C C>]]] C CC: 7@ >@ C C:]]] C CC: B 7> C C7]] C CC: 9 77 C 9; 7 B?
' ' + H .$
C C9]]] C CCB 8 B> C C9]]] C CC@ @ :C C :B]]] C CC: 7C? 8> C C;]]] C CC: 78 >C C C9]]] C CC@ @ ?@ C C:]]] C CC@ > B> C C;]]] C CC: 7: 9> C C:]]] C CC: > 79 C 9? 8 C7
' $
<2#
<(2
(2+G
(2'
C C9]]] C CC8 88 89 .$
C 7:]]] C CC? 7; ?B C 7>]]] C C77 7@ 9B C 78]]] C CC; 7? 8? C C@]]] C CC@ ? :? C C;]]] C CC@ 7C >C C 7B]]] C CC; 9C 97 C 7;]]] C CC; 8@ C@ C C9]]] C CC@ @ ?@ C C:]]] C CC; > 88 C 8> 8 77
C 7:]]] C CC? 7; 7B C 78]]] C C77 7C @; C 79]]] C CC; 7B >B C C>]]] C CC@ 78 B7 C C>]]] C CC@ 78 @7 C 7@]]] C CC; 89 9: C 8C]]] C CC; 9C B7 C C:]]] C CC@ ; B@ C C@]]] C CC; > :? C 8? 8 78
C 77]]] C CCB 78 :8 C 7C]]] C C78 ? 9B C 7C]]] C CC> ? C: C 78]]] C CC; 7? B@ C 79]]] C CC; 8C 9? C C;]]] C CC> ? ?7 C C;]]] C CC> ? 99 C 7;]]] C CC; 8: B? C 7>]]] C CC> 8: ;B C 8> 8 7C
C 7C]]] C CC? 77 87 C 77]]] C C77 B :C C C>]]] C CC> 7C B@ C 7C]]] C CC@ 7> 98 C CB]]] C CC; 7@ 99 C C;]]] C CC; B >9 C C:]]] C CC; ; :@ C 78]]] C CC@ 8C @9 C 7?]]] C CC; 8B 8@ C 8: 8 7C
C C:]]] C CC@ ; B; C C@]]] C CC@ 7C ;? C @8]]] C CC: 77; 8C C C9]]] C CC@ @ 8C? C C:]]] C CC: ? C8 C C@]]] C CC: 77 :B C C:]]] C CC: > @@ C :C 8 C7
Waarden geschat door middel van Pooled Least Squares. P>0,001***. Er staan de regressiecoëfficiënten, gevolgd door de standaardafwijkingen. De derde waarde is de t-statistic. N=37560 DM: De Morgen, HLN: Het Laatste Nieuws, DS: De Standaard, LLB: La Libre Belgique, LS: Le Soir
:;
+
"
)
" "
<
G
A
! <
/
<
2
<
/
G
/
G
2 !
#
'
.
$
<
! ! "
"
"! ! "
" '
<
E:? 88F
G
E8> ?>F
G
E:9 BBF
<
E9? :9F "<
#
<
"
"G
E88 @;F
)
G E8@ C8F
<
G " "
<
E88 @;F
E88 ?@F
G G
<
" "
G
<
E9? :9F
%
< " "
M" " M
C 99]]] !
G
<
G -
C 8:]]]
G "
<
G
G
G
" "
!
" !
" "
<
G
!
! "
! " "
G
D
<
!
:>
TABEL 10 : Vector Autoregressive Analysis: Vlaamse versus Franstalige media !" # %&" ' (# !" # %&" ' (# $%& $%& ##)' " ' # ##)' " ' # $* +
$* +
* +
* +
,-. /"#0 Estimation done by Pooled Least Squares. Regressiecoëfficiënten, Standaardafwijkingen, Tstatistics N:62600 VK: Vlaamse Kranten, FK: Franstalige Kranten, VT: Vlaamse Televisie, FT: Franstalige televisie
3
$
$ !
" 5
!
!
@ <5(
D !
% " II !
!
D " "
%
+
M
" "
) 7
% "
<
, , ! !
:?
!
" "
!
, 2
< ,
G
" " 2 ! "
:B
!
0
$
J(
K
6 %
#
%
"
<(2
# !
< "
%
0 %
<(2
&
+
"
%
1
<
"
,
<(2
,
+
$
! "
% !
!
"
"
$ 2
0
!
1
"
<
< "
!
% ! 0
1
!
!
+ 1
-
"
0
1
!
II !
"
"
8:
" ,
:
D
"
8
" +
$
"
"
M
!
<(2 )
! "
@C
)
7@
$ ! ! "
<(2
<2#
!
c
.
! !
BP77
"
= "
' -
1
#
<(2
$
1 !
!
& + 1
,!
J$
" 5
"
! K %
%
J+
"
! &
"
"
!
$
K +
J5 K
2
!
" !
%
" "
"
<
*
! %
J .
0 1
! "0
1 !
&
K % !
J& !
"
"
K
*
@7
"
0 "
1
!
! "
! "
J ! "
K
!
, $
!
"
! " %
"
AD !
" " D !
1
0
"
+
,
1
J#
!
! "
! "
#
!
!
!
!
!
- ! K $
J &
1
1 0
1
"
!
"
! !
K / I
)
" "
"
! %
%
! -
<
G
%I ) ! "
!
&
+
,
J%
% K
+
$ $ #
<
!
2
!
< "
J
!
$
<
@8
'
.
"! "
!
5
. !
K
% #
! 2
<
"
!
0
"
)
1
(
;
B
!
& "
7
<(2
+
,
)
J 1
! 79
K )
7B
$
)
J K
)
$ (
+
,
7
2
!
$ )
!
J5
!
1
K (
!
" '
)
5#
!
! 8:
) !
" !
" " 1
"
%
<2#
!
<(2
"
5 !
" %
5 ! <(2
!
+
$
" 0
1
5
! !
@9
" 0
"
1
!
!
!
1 !
!
!
5
!
8CCC
!
A G " "
!
!
!
! " '
#
)
!
<
%
% J% 5 0
1
5
!
!
!
!
!
K %
# *"
!
#
Q !
J5
!
+
$
!
5
II
" 5 !
!
?
^K $
#
5
J
K
!
!
%
%
!
J
!
!
!
%
+ #
!
, ! #
" " !
"
K !
II
@:
! <(2
%
%
<2#
"
1?C
%
#
+(2
<2# "
)
"
!
!
! "
"
J
< ! " K
"
" " 3
A $ . 5
! !
0
1
$
2 +
,
M
!
!
!
5 !
! + 1
M
0 I
%
"
* )
" .
!
#
!
8: ) ! 5
!
"
" "
$
!
!
!
@@
%
&'
3 !
"
!
!
"
"
"
"
!
! )
!
+
!
"
$
=
E7B>9F
# !
E7B?>F
5
(
#
<
4
4
E7B?BF
"
E7BB7F
$
# <
!
"
!
E "
F
" !
"
" !
" "
E7B?BF
*
II 2
( E7BB@F
5
4 "
!
1 "
!
<
!
, !
0
1
! !
!
!
"
:
;
!
@;
" !
<
G
!
"
"
!
5
!
"
25+ '77 !
TABEL 11: SAMENVATTENDE TABEL: intermedia-agendasetting $D+<(53 .
R )2
7 2
$.
+ < $2 3 A
7
#
W
E27F E28F
8 $
8
#
$
#
9
9
: '
,
!
W
: %
W II !
@ 2
!
@ %
WP
" " <
G
" !
/ D
"
!
@>
!
1
5
!
!
" "
!
M
! N
1
! "
1
D
!
"
+
!
$ + 0
M
!
1 " " %
5
+ "
+
M
"
I "
,
!
!
!
, !
1 +
,
1 !
! " "
0
1 :
!
II !
"
; 0'
'
,
2
7 ) !
!
@?
1
!
8:
!
!
) !
"
!
<
G
D
!
!
D
! "
1
!
!
- !
!
!
0
1
!
"-
0
1
!
) !
" ! 2<
% A !
-
! "
"
!
# A
! <
!
" "
"
'
2
! " !
5
!
<
"+ 8CCC
, "
"
@B
! "
!
8: " "
!
!
!
!
! +
!
E7BB9 8CCCF
5
8CC?
"
/
$
II
!
"
A&
! ! !
!
/
!
7 !
!
!
A
! :
;
" <
A
2
! A
<5( 2
"
7
%
! "! !
%
7
! !
7 0
!
"
+
" "1 A
-
8:
!
!
!
;C
! "
;7
(
%)
+
( ' 4
$ E7B?@F 2
. +
>
.
(
%
=
=
:BE7F 9? @>
?
2 E8CC7F 8
+
+
% 2 4%
)
= "
+
>? E7F 8; ::
?
& 2 E8CC>F 8
E<
/
7:?F 2
$
# E7BB>F 5 =
"
+
8
%
?
>:E8F 9:? 9@; =
/
(
#
4#
3 E7B?>F 5
H @E =
$ 2 9@ :BF .
(%
.& 5
4
=
E
5
F /
,
E7B?9F .
+
.
+
&
A
D
E)
7B>8F =
+ = E7B;9F
=
2 E7B>9F & %
2
.& .
(
)
E7BB;F
R
D
+
%
BA
=5 $
5 E7B>8F D
2
J
K
.
8? 9? @7
(
$ E8CC;F 3
=
#
5
$
<
$
7@
: D
G
P$
5 E
%
/
"
. FE8CC>F 8 4#
> .
P
P
" $" ,
''= 5
,
9>E7F ;8 >@
? .
5"
P
2 #
2
"
&
%
E7BB:F c 3 ( E7B>9F
3
D
PP
C:878CC;77@::BP <
8CC@ <
%
3 E7B>CF 3
= =c %
A
+
;8
4<
( E8CC?F
' =
A8 99E7F :> ;? $
/
E7B?>F
= /
D
"=
3 E7BB9F
+ :9E8F 7CC 78>
% '
3
4'
/ E7B?7F %
3 = % CE '!
4
+
E
::> :;?F +
=5 $
G
( / E7B;:F
"
4#
!
'+ E
'
5
B@ 77?F .
/& '
" %
#
E
"
"
F 8
F
R
+ 4'
,
A E)
7B:?F
/ # E8CC@F 005
"
8CCC
"
$
/
11
+
7@E7F @>
%
P>7 '
%
E
E8CC>F
.
5
:? @@F %
'
= =c
!
'
"5
&
$
.
F
) # =
8 7B88
#
4(
'
G E7BB?F 2 7BB@ $
7@E8F 88@ 89?
( 4 "
+ E7BB7F 2 $
"
" "
<
+
;E7F 99 ;8
% # !
E
5
%
#
3
5
E7B?>F
1
78E9 :F ?; B9
#
# =
(
/
+
# =
/
/
4
( 5
/
/
$ $
%
& E8CCCF
E8CC:F
2
8;E7F 9C @>
5
# =)#+$ #
E7B?CF
/
A
= # = .
# >
# = G
E7B>8F 2
"
"
;BE:F ?79 ?8:
? #
R
$
$
E7BB9F 2 #
"
"5 +
%
$
(
2
:9E8F @? ;>
;9
# =
#
$
%
E7BB>F
%
A #
.
&
# ( 4=
5 . E7BB8F % =
.
.
4#
K
2
+
A
D
"=
( E7B?>F 2
"
"J
J
K
K "
E7B?:F
" "
$
D
".
4
R
' E7B?BF
"
A7 4# =
"
E
F %
E
8B :@F
.&
# E7BB:F 5 .
(
D
%
+" "
&$
#
4
77 8:B ;8
%
& % E7B??F 5 A
@B:F .
&5 5
%
E
F %
DD E
4
+
& %
E7BB9F
&
4 (
$
"5
E7BB7F .
$
2
:9E8F ;? ?:
%
$
8
R
A
'
E8CCCF 3
0 5
/
2
3
D5
3
4 %
5
$% %
E8CC?F
+
5
8CC:
$
8
%
77E8F 7B> 87;
/ 2
= E7BB@F
'
" "
<
+
( E8CC>F ;
" 7@8
8
(
(
A; 5
D %
@@@
=5 $
(
$
<
A
=
(
K
0 9
$
J
8 9B7 :7:
%
(
.&
5
<
)
$ 4.
# E8CC@F $
"
1
# E+ "
7BB7 8CCCF D
E$
" F
79 7? 5
=( 8CC:
7@
#
5
;:
%
$
.
#
4 $
$ E8CC@F 2
5 +
"
E7BB9 8CCCF
%
%
$ <
.
( E8CC?F 5
" +
N
""
A5
"
1
)
%
%
4
R E7BB:F 2
,
" "
""
5
(
+
.
>
;
5
8@C 8:C %
%
4G
& E7BB:F 2
"
5
+
0
E<
9?E:F :9>
8
:@7 %
% E7BB>F 2
" "
# # =
$
4
%
E
.
#
F %
A E
79> 7:BF #
.& %
%
4 ()R # & E7BB@F #
,
"
&
5 #
%
=
E7B?>F '
%
# =
#
4# 3
F .
A
7>; 7B9F .
"
R" " (
"
5
# 4$
.& 5 ' E8CC:F 5
' ' /
8@> 8?8F #
5
+
! E E
E
" "
E
F .
, $ %
( 5
.& #
E8CCCF
(
$
=5 5
;@
*
%+ %+
71
"E
"
"
79 &
4'
7:
7
42
7> $
c
@
,
> $
89 = B
)
9
8C ' 4 5
8B
"
7C 78
" D
7; G
97 5 :C
"E
,
8? #
4G
88 8; '
4
8: $ 99 9: 9@ 8@ = 87 (
4=
;;