Název a číslo úlohy Datum měření Měření provedli Vypracovala Datum Hodnocení
Zdroje optického záření a jejich vlastnosti 25.2.2014 Lucie Těsnohlídková, Alina Pranovich A. Pranovich
Provedly jsme měření vybraných charakteristik některých zdrojů optického záření jako jsou laserová dioda (LD), LED dioda, žárovka, zářivka. Měření bylo provedeno podle návodu k úloze. Proměřily jsme emisní a reflexní spektra některých zdrojů a pokusily jsme se vysvětlit některé jevy. Postup a výsledky měření jsou obsaženy v tomto protokolu.
Laserová dioda Pro práci s laserovou diodou je nejprve potřeba ji správně zapojit do pouzdra. Učinily jsme tak podle dokumentace. Dále jsme laserovou diodu připojily ke zdroji. Vyzkoušely jsme funkce zdroje a dále jsme nastavením hodnoty proudu uvedly laserovou diodu do provozu. Činnost laserové diody je dvoufázová: emituje světlo i při nižších hodnotách proudu, po dosažení prahového proudu začíná generace laserového záření. Laserovou diodu jsme zkalibrovaly podle návodu v režimu výkonu na zdroji. Pro měření výkonu laserové diody jsme použily detektor, který jsme umístily do vzdálenosti cca 15 cm, abychom předešly saturaci detektoru. Při takovém uspořádání jsme samozřejmě mohly změřit pouze určitou část optického výkonu. Pokusily jsme se převést údaje z detektoru ve voltech na skutečnou hodnotu celého výkonu ve wattech. Pro tento účel jsme zaznamenávaly nejenom data z detektoru (na multimetru), ale i výkon zaznamenaný fotodiodou zapojenou do pouzdra. Relativní závislost optického výkonu na proudu pro několik různých hodnot teploty laserové diody je uvedena na obr.1. Lineární část této závislosti jsme nafitovaly lineární funkcí a dosazením nulové hodnoty výkonu jsme určovaly hodnoty prahového proudu pro každou teplotu. Z výsledků fitu jsme také použily hodnotu sklonu přímky (diferenciální účinnost). Hodnoty prahových proudů a diferenciální účinnosti pro různé teploty jsou v tabulce 1 Tab. 1: Závislost prahového proudu Ith a diferenciální účinnosti a na teplotě
Teplota, [°C] Ith , [mA] 7 10 20 30 40 50
33,1 34,3 38,5 45,5 57,7 67,9
a, [V/mA] 0,19 0,22 0,19 0,17 0,15 0,15
Pokusily jsme se převést hodnoty částečného výkonu ve voltech na hodnoty celkového výkonu v mW. Závislost výkonu zaznamenaného fotodiodou na hodnotách částečného výkonu zaznamenaného fotodetektorem je na obr. 2. Tuto závislost jsme nafitovaly lineární funkcí. Výsledky fitu jsme použily pro výpočet celkového optického výkonu. Výsledek je na obr. 3
1
Obr. 1: Závislost optického výkonu laserové diody na proudu diodou pro různé teploty diody
Obr. 2: Závislost výkonu zaznamenaného fotodiodou na hodnotách částečného výkonu zaznamenaného fotodetektorem
Měření úhlových vyzařovacích charakteristik laserové diody Pouzdro s laserovou diodou jsme umístily na stojánek, ke kterému byl připevněn úhloměr. Naproti laserové diodě jsme opět umístily detektor. Postupně jsme pouzdro s laserovou diodou otáčely, poloha detektoru byla konstantní. Zaznamenávaly jsme detekovanou in-
2
Obr. 3: Závislost optického výkonu laserové diody na proudu diodou pro různé teploty diody
tenzitu (ve voltech). Toto měření jsme prováděly ve dvou směrech: vertikálním a horizontálním. Výsledky jsou uvedeny v grafech na obr. 4 a obr. 5
Obr. 4: Úhlová vyzařovací charakteristika laserové diody v příčném poli
Měření emisních spekter Měření emisních spekter jsme prováděly pomocí spektrometru a sondy. Spektrometr jsme připojily k počítači, na němž jsme v pomocném programu SpectralSuite mohly pozorovat 3
Obr. 5: Úhlová vyzařovací charakteristika laserové diody v podélném poli
spektra. Jeden konec sondy jsme připojily ke spektrometru, druhý jsme upevnily tak, aby na něj dopadala malá část světla ze zdroje optického záření. Z naměřených spekter jsme pak určovaly centrální vlnovou délku a šířku spektrální čáry.
Laserová dioda Závislost polohy a šířky spektrální čáry na výkonu a teplotě jsou v tabulkách 2 a 3 a na obr. 6. Tab. 2: Závislost polohy λt a šířky spektrální čáry ∆λt na teplotě
Teplota, [°C] λt , [nm] 10 20 30 40 50
634,8 636,3 638,0 639,5 642,2
4
∆λt , [nm] 1,3 1,3 1,4 1,4 1,3
Obr. 6: Závislost polohy spektrální čáry na teplotě
Obr. 7: Závislost šířky spektrální čáry na teplotě Tab. 3: Závislost polohy λv a šířky spektrální čáry ∆λv na výkonu
Výkon, [mW]
λv , [nm]
∆λv , [nm]
1 2 3 4 5 6 7 8 9
637,4 637,6 637,6 637,6 637,8 638,1 638,1 5638,1 638,6
1,2 1,2 1,3 1,3 1,3 1,3 1,3 1,3 1,3
Obr. 8: Závislost polohy spektrální čáry na výkonu
Obr. 9: Závislost šířky spektrální čáry na výkonu
6
Emisní spektra dalších zdrojů optického záření Zachovaly jsme uspořádání podle předchozího bodu, pomocí programu jsem pozorovaly spektra dalších zdrojů optického záření.
LED dioda
Obr. 10: Spektrum LED diody
U spektra LED diody můžeme pozorovat dva výrazné píky. První pík odpovídá vlastnímu záření, druhý pík odpovídá sekundární fosforescenci. Záření "bílým světlem"je právě dosaženo kvůli překrytí obou záření na různých vlnových délkách. Ze spektra jsme určily obě hlavní vlnové délky. Vlnová délka vlastního záření je 449,5 nm, šířka spektrální čáry je 19.1 nm. Vlnová délka sekundární fosforescence je 548.2 nm, šířka spektrální čáry je 115.33 nm.
Zářivka Zářivka je nízkotlaká rtuťová výbojka. Tvoří ji zářivkové těleso, jehož základem je nejčastěji dlouhá skleněná trubice se žhavícími elektrodami, naplněná rtuťovými parami a argonem. V nich nastává doutnavý výboj, který ale září převážně v neviditelné ultrafialové oblasti. Toto záření dopadá na stěny trubice, které jsou obvykle pokryty luminoforem. Tato látka absorbuje ultrafialové záření a sama září ve viditelné oblasti. Zářivka tak svítí. Spektrum zářivky na obr. 11 obsahuje několik píků, jejichž hodnoty jsou vyneseny do tabulky 4.
7
Obr. 11: Spektrum zářivky Tab. 4: Hlavní píky spektra zářivky
vlnová délka, [nm]
intenzita, [a.u.]
403.59 434.73 485.14 544.60 582.18 591.74 610.05 629.60 649.10 707.56
807 1626 1328 7260 1610 1907 12599 2048 1004 1033
Žárovka Žárovka funguje na principu vyzařování absolutně černého tělesa. Tenký kovový (ve většině případů wolframový) drát je zahříván elektrony. Žárovky vyzařují světlo podobné dennímu, avšak vzhledem k tomu, že wolfram je selektivní zářič, světlo vyzařované žárovkou je vnímáno lidským okem o něco žlutší. Spektrum žárovky na obr. 12 obsahuje dva zjevné píky s vlnovými délkami ve viditelném záření 544.8 nm a 610.1 nm.
Reflexní spektra Pro měření reflexních spekter jsme v experimentální sestavě z předešlého bodu zaměnily vlákno na reflexní sondu. S principem reflexní sondy jsme se seznámily v návodu k úloze. Referenční spektrum jsme obdržely osvětlováním bílého papíru. Snímaly jsme reflexní spektra barevných čar, které byly nakresleny zvýrazňovacím fixem. Vlnové délky, 8
Obr. 12: Spektrum žárovky
na kterých reflektivita byla maximální odpovídala barvám, ku podivu ale reflektivita v maximech byla větší než 100 procent. Nešlo avšak o vadu spektroskopu ani programu. Zvýrazňovače mají nepřirozenou barvu právě proto, že inkoust obsahuje fluorescenční látky. Jak je vidět ze spekter na obr. 13 a obr. 14, před píkem reflexe můžeme pozorovat absorpci. Odpovídá to principu fluorescenčních látek.
Obr. 13: Reflexní spektrum jadovatě oranžového fleku
9
Obr. 14: Reflexní spektrum jadovatě žlutého fleku
Závěr a diskuze • Naměřily jsme optický výkon laserové diody na proudu (obr. 1 a 3). V oblasti generace laserového záření je tato závislost lineární, jak jsme očekávaly. Z naměřených závislostí jsme určily hodnoty prahového proudu pro různé teploty (tab. 1) • Naměřily jsme úhlové vyzařovací charakteristiky laserové diody (tab. 4 a tab. 5) • Pomocí spektroskopu jsme naměřily spektrum laserové diody a dalších zdrojů optického záření. U laserové diody jsme také určily polohu a šířky spektrální čáry v závislosti na teplotě a výkonu (tab. 2 a tab. 3, obr. 6-9) • Naměřily jsme reflexní spektra. Pokusily jsme se vysvětlit reflexi více než 100 % zvýrazňovačů.
Reference [1] Návod k úloze http://optics.fjfi.cvut.cz/files/pdf/ZPOP_06.pdf [2] Wikipedia.
10