LAPORAN HIBAH PENELITIAN STRATEGIS NASIONAL TAHUN ANGGARAN 2010
PENGEMBANGAN TEKNOLOGI BARU PRODUKSI BIOETANOL DARI NIRA SIWALAN (Borassus flabellifer) MENGGUNAKAN FLOCCULENT Saccharomyces cerevisiae
Agustin Krisna Wardani, STP, MSi, PhD Ir. Aji Sutrisno , MSi, PhD Dr. Ir. Bambang Susilo, M.Agr.
Dibiayai Oleh Direktorat Jenderal Pendidikan Tinggi, Kementerian Pendidikan Nasional sesuai dengan Surat Perjanjian Penugasan Dalam Rangka Pelaksanaan Hibah Penelitian Strategis Nasional Tahun Anggaran 2010 Nomor : 522/SP2H/PP/DP2M/VII/2010, tanggal 24 Juli 2010
UNIVERSITAS BRAWIJAYA NOVEMBER 2010
RINGKASAN
Untuk mencapai proses produksi etanol yang ekonomis pada proses hulu (upstream processing) maka bahan baku nira siwalan digunakan sebagai medium fermentasi. Selanjutnya penggunaan strain flocculent S. cerevisiae sebagai penghasil etanol ditujukan guna mereduksi biaya produksi pada proses hilir (downstream processing) karena strain ini memiliki kemampuan berflokulasi setelah proses fermentasi. Sehingga tahap pemisahan etanol dari media fermentasi yang membutuhkan biaya tinggi tidak diperlukan lagi. Optimasi fermentasi pada penelitian ini dilakukan untuk meningkatkan produktifitas produksi etanol, yaitu dengan penambahan berbagai konsentrasi inokulum dan konsentrasi urea sebagai sumber N. Selanjutnya Response surface methodology (RSM) dengan Central Composite Design (CCD) digunakan untuk mempelajari pengaruh kombinasi komponen (konsentrasi inokulum dan urea) terhadap produktifitas etanol. Hasil kajian menggunakan metode RSM (Response Surface Methodology) menunjukkan bahwa kondisi optimum dalam menghasilkan etanol tertinggi dicapai pada kondisi konsentrasi inokulum sebesar 16,41% dan konsentrasi urea sebagai sumber nitrogen sebesar 0.31%. Kadar etanol yang dihasilkan dari titik optimum ini adalah sebesar 7,826%. Hasil verifikasi prediksi model menunjukkan konsentrasi etanol sebesar 7,705%. Sedangkan yield etanol yang dihasilkan pada proses optimasi ini adalah sebesar 0,42 dengan efisiensi sebesar 82%
SUMMARY
Response surface methodology (RSM) was employed to study the effects of two parameters (inoculum concentration and urea concentration) on the production of ethanol from siwalan juice in flask cultures by flocculating Saccharomyces cerevisiae strain. An experiment was designed by setting two parameters at three levels: X1 = inoculum concentration (10, 15, 20%); X2 = urea concentration (0.2, 0.3, 0.4%). A central composite design (CCD) was chosen to explain the combined effects of two parameters and to design the minimum number of experiments. The statistical analysis of the results showed, in the range studied, the inoculum and urea concentration had an effects on the ethanol production. The model predicted that maximum ethanol production was achieved at inoculum concentration of 16,41% and 0,31% of urea. Maximum ethanol production of 7,826% was achieved under the optimized condition. This values was in good agreement with experimental values, thus confirming the reliability of our empirical model in optimizing ethanol production by flocculating Saccharomyces cerevisiae. Yield and efficiency of ethanol production was 0,42 and 82%, respectively.
DAFTAR PUSTAKA Cazetta, M.L., M.A.P.C. Celligoi, J.B. Buzato, I.S. Scarmino. 2007. Fermentation of molasses by Zymomonas mobilis: Effects of temperature and sugar concentration on etanol production. Bioresource Technology. 98: 2824–2828. Davis, T.A. and Johnson, D.V. 1987. Current Utilization and Further Development of the Palmyra Palm (Borassus flabellifer L.Arecaceae) in Tamil Nadu State, India. Economic Botany, 41(2):47-266. Domingues, L., Antonio, A.V., Nelson, L., and Teixeira, A. 2000. Applications of yeast flocculation in biotechnological processes. Biotechnol. Bioprocess. Eng. Volume 5: 288-305. Elisson, A., Hofmeyr, J.H.S., Pedler, S. and Hahn-Hagerdal, B. 2001. The xylose reductase/xylitol dehydrogenase/xylulokinase ratio affects product formation in recombinant xylose-utilizing Saccharomyces cerevisiae. Enzyme and Microbial Technology 29,288–297. French, B.R. 2006. Food Plants of Papua New Guinea. Gao, C and Fleet, G. H. The effects of temperature and pH on the ethanol tolerance of the wine yeasts, Saccharomyces cerevisiae, Candida stellata and Kloeckera apiculata. Journal of Applied Microbiology. Volume 65 Issue 5, Pages 405 – 409. Gibson, W.R. and Westby, C.A. 1986. Effects of Inoculum Size on Solid-Phase Fermentation of Fodder Beets for Fuel Ethanol Production. Applied and Environmental Microbiology. p.960-962 Vol. 52 No. 0099-2240/86/10096003$02.00/0. Jamai, L., K. Ettayebi , J. El Yamani, M. Ettayebi. 2007. Production of etanol from starch by free and immobilized Candida tropicalis in the presence of αamylase. Bioresource Technology 98: 2765–2770 Jose, D., Vera, L., Belina, R., Maria, CS., Joana, P., Lina, BH. 2009. Ethanol Production from Different Substrates by a Flocculent Saccharomyces cerevisiae Strain. Int. J. of Chem. Eng. Vol. 7. Article A58. Khaw,T.S., Katakura, Y., Ninomiya, K., Bito, Y., Katahira, S., Kondo, A., .Ueda, M., Shioya, S. 2006. Effect of flocculation on performance of arming yeast in direct ethanol fermentation. Appl Microbiol Biotechnol (2006) 73: 60–66. Khongsay, N., Laopaiboon, L. and Laopaiboon, P. 2010. Growth and Batch Fermentation of Saccharomyces cerevisiae on Sweet Sorghum Stem Juice under Normal and Very High Gravity Conditions. Biotechnology. 9 (1): 9-16. Khieu, B. 1996. A study on the use of the sugar palm tree (Borassus flabellifer) for different purposes in Cambodia. M.Sc. Thesis Swedish University of Agricultural Sciences, Uppsala. pp. 67. Kihn, J.C., Masy, C.L., Mestdagh, M.M. and Rouxhet, P.G. 1988. Yeast flocculation : factors affecting the measurement of flocculence. Can. J. Microbiol. 34: 779781. Miki, B.I., Poon, N.H., James, A.P and Sellgy, P.L. 1982. Possible mechanism for flocculation interaction governed by gene flo1 in Saccharomyces cerevisiae. J. Bacteriol. 150: 878-889.
Miller, G.L. 1959. Use of Dinitrosalicyclic Acid Reagent for Determination Reducing Sugar. Analitical Chemistry 31, 426 Nishihara, H and Toraya, T. 1987. Essential role of cell surface protein and carbohydrate components in flocculation of brewer yeast. Agric. Biol. Chem. 51: 2721-2726. Purwadi, R., Brandberg, T., and Taherzadeh, M.J. 2007. A Possible Industrial Solution to Ferment Lignocellulosic Hydrolyzate to Ethanol: Continuous Cultivation with Flocculating Yeast. Int. J. Mol. Sci. 8, 920-932. Taherzadeh, M. K. Karimi. 2007. Acid-Based Hydrolysis Process for Ethanol from Lignosellulosic Material: A Review. BioResource 2 (3), 472-449 Vasconcelos, Y. 2007. The use of new types of yeast may reduce the production costs in sugar and alcohol refineries. Advantageous fermentation, eds. 135. Verstrepen, K.J.; Derdelinckx, G.; Verachtert, H.; Delvaux, F.R. 2003. Yeast flocculation: what brewers should know. Appl. Microbiol. Biotechnol. 2003, 61, 197-205. Wang, F., Shen, W., Rao, Z., Fang, H., Zhan, X. and Zhuge, J. 2008. Construction of a flocculating yeast for fuel ethanol production. Biotechnol. Lett. 30, 97-102. Wyman, C.E. 1994. Ethanol from Lignocellulosic Biomass: Technology, Economics and Opportunities. Bioresource Technology, 50: 3-16