LAMPIRAN
Lampiran 1 (Titik Tetap)
Hasil ini diperoleh dengan menggunakan fasilitas Dynpac yang dapat di download di www.wolframresearch.com kemudian dijalankan pada software Mathematica 5.1. In[328]:= sysid
Mathematica 5.1.0, DynPac 10.69, 5ê 24ê 2007
In[329]:= "Mencari titik keseimbangan "; In[330]:= intreset; plotreset;
In[331]:= setstate@8x, y, z
In[332]:= setparm@8 p, q, r, K, L, M, a, b, c, d, e, f, v, U
In[333]:= slopevec = : p x jj1 k
xy z
y y zy i i z - a x y - b x z , q y jj1 - zz +c x y - d y z - v U y, r z jj1 zz +e x z - f y z - w U z>; { k { k K L M{
In[334]:= eqstates = findpolyeq; In[335]:= E0 = eqstates@@1DD
Out[335]= 80, 0, 0<
In[336]:= E1 = FullSimplify @eqstates@@2DDD
Out[336]= 8K, 0, 0<
In[337]:= E2 = FullSimplify @eqstates@@3DDD Out[337]= :
K H p q +a L H-q +U vLL acKL+p q
,
L p Hc K +q - U vL acKL+p q
, 0>
In[338]:= E3 = FullSimplify @eqstates@@4DDD Out[338]= :
K H p r + b M H- r +U wLL b eKM+p r
, 0,
M p He K + r - U wL b eKM+p r
>
In[339]:= E4 = FullSimplify @eqstates@@5DDD Out[339]= :
K H r H-a L q + p q +a L U vL - d L M H f p - a r +a U wL + b M H-q r + f L Hq - U vL +q U wLL -L M Ha d e K + b c f K +d f pL + b e K M q +Ha c K L + p qL r
L H p r Hc K +q - U vL - d M p He K + r - U wL + b K M He q - c r - e U v +c U wLL -L M Ha d e K + b c f K +d f pL + b e K M q +Ha c K L + p qL r
,
M Ha e K L Hq - U vL +c K L H f p - a r +a U wL - p He K q - f L q +q r + f L U v - q U wLL M Ha d e K L +d f L p + b K Hc f L - e qLL - Ha c K L + p qL r
,
>
In[340]:= E5 = FullSimplify @eqstates@@6DDD Out[340]= :0, L -
LU v q
, 0>
In[341]:= E6 = FullSimplify @eqstates@@7DDD Out[341]= :0,
L H-q r + r U v +d M H r - U wLL d fLM-q r
,
M H f L Hq - U vL +q H-r +U wLL d fLM-q r
>
In[342]:= E7 = FullSimplify @eqstates@@8DDD Out[342]= :0, 0, M -
MU w r
>
31
Lampiran 2 (Nilai Eigen)
Hasil ini diperoleh dengan menggunakan fasilitas Dynpac yang dapat di download di www.wolframresearch.com kemudian dijalankan pada software Mathematica 5.1. In[343]:= sysid
Mathematica 5.1.0, DynPac 10.69, 5ê 24ê 2007
In[344]:= intreset; plotreset;
In[345]:= setstate@8x, y, z
In[346]:= setparm@8 p, q, r, K, L, M, a, b, c, d, e, f, v, w
In[347]:= slopevec = : p x jj1 k
xy z
yy zy i i z - a x y - b x z , q y jj1 - zz +c x y - d y z - v U y, r z jj1 - zz +e x z - f y z - w U z>; k k L{ M{
K{
In[348]:= eqstates = findpolyeq; In[349]:= E0 = eqstates@@1DD;
In[350]:= E1 = FullSimplify @eqstates@@2DDD; In[351]:= E2 = FullSimplify @eqstates@@3DDD; In[352]:= E3 = FullSimplify @eqstates@@4DDD; In[353]:= E4 = FullSimplify @eqstates@@5DDD; In[354]:= E5 = FullSimplify @eqstates@@6DDD; In[355]:= E6 = FullSimplify @eqstates@@7DDD; In[356]:= E7 = FullSimplify @eqstates@@8DDD;
Konstruksi Matrik Jacobi In[357]:= jac = Simplify @88D@slopevec@@1DD, xD, D@slopevec@@1DD, yD, D@slopevec@@1DD, zD< , 8D@slopevec@@2DD, xD, D@slopevec@@2DD, yD, D@slopevec@@2DD, zD< , 8D@slopevec@@3DD, xD, D@slopevec@@3DD, yD, D@slopevec@@3DD, zD<
Out[358]//MatrixForm= ij p - 2 p x - a y - b z -a x jj K j jj jj c y jj jj jj e z k
yz zz zz 2q y zz - d z -d y q - U v +c x zz L zz z -f z r - U w +e x - f y - 2 r z zz M {
-b x
Pada titik tetapnya berlaku Kontruksi Matriks Jacobi untuk titik tetap E0
In[359]:= jac0 = jac ê. 8x Ø E0@@1DD, y Ø E0 @@2DD, z Ø E0@@3DD< ; In[360]:= "JHE0L=" MatrixForm @ jac0D
0 ij p 0 yz zz Out[360]= JHE0L= jjj 0 q - U v 0 z k0 0 r-U w{
32
Kontruksi Matriks Jacobi untuk titik tetap E1
In[361]:= jac1 = jac ê. 8x Ø E1@@1DD, y Ø E1 @@2DD, z Ø E1@@3DD< ; In[362]:= "JHE1L=" MatrixForm @ jac1D
-bK ij - p -a K yz zz Out[362]= JHE1L= jjj 0 c K +q - U v 0 z k0 0 eK+r-U w{
Kontruksi Matriks Jacobi untuk titik tetap E2
In[363]:= jac2 = FullSimplify @ jac ê. 8x Ø E2@@1DD, y Ø E2 @@2DD, z Ø E2@@3DD
Kontruksi Matriks Jacobi untuk titik tetap E3
In[365]:= jac3 = FullSimplify @ jac ê. 8x Ø E3@@1DD, y Ø E3 @@2DD, z Ø E3@@3DD
Kontruksi Matriks Jacobi untuk titik tetap E4
In[367]:= jac4 = FullSimplify @ jac ê. 8x Ø x4, y Ø y4 , z Ø z4
Kontruksi Matriks Jacobi untuk titik tetap E5
In[369]:= jac5 = FullSimplify @ jac ê. 8x Ø E5@@1DD, y Ø E5 @@2DD, z Ø E5@@3DD
i ij U v yz 0 yz 0 jj p +a L j-1 + zz q { k jj zz jj zz d L H- q+U vL jj c ijjL - L U v yzz zz -q +U v Out[370]= JHE5L= j zz jj k q { q zz jjj zz i y jj 0 0 r + f L j-1 + U v z - U w zz q { k k {
Kontruksi Matriks Jacobi untuk titik tetap E6 In[371]:= jac6 = FullSimplify @ jac ê. 8x Ø E6@@1DD, y Ø E6 @@2DD, z Ø E6@@3DD
Kontruksi Matriks Jacobi untuk titik tetap E7
In[373]:= jac7 = FullSimplify @ jac ê. 8x Ø E7@@1DD, y Ø E7 @@2DD, z Ø E7@@3DD
ij p + b M J -1 + U w N 0 yz 0 jj zz r jj zz U w jj 0 zz q - U v +d M J -1 + N 0 Out[374]= JHE7L= j zz jj r zz jj z f M H- r+U wL jj e J M - MU w N - r +U w zz k { r r
33
Nilai Eigen di titik tetap E0
In[375]:= l0 = FullSimplify @Eigenvalues@ jac0DD;
In[376]:= 8"l1="@l0@@1DDD, "l2 ="@l0@@2DDD, "l3="@l0@@3DDD<
Out[376]= 8l1=@ pD, l2 =@q - U vD, l3=@ r - U wD<
Nilai Eigen di titik tetap E1
In[377]:= l1 = FullSimplify @Eigenvalues@ jac1DD;
In[378]:= 8"l1="@l1@@1DDD, "l2 ="@l1@@2DDD, "l3="@l1@@3DDD<
Out[378]= 8l1=@- pD, l2=@c K +q - U vD, l3 =@e K + r - U wD<
Nilai Eigen di titik tetap E2
In[379]:= l2 = FullSimplify @Eigenvalues@ jac2DD;
In[380]:= 8"l1="@l2@@1DDD, "l2 ="@l2@@2DDD, "l3="@l2@@3DDD< Out[380]= :l1=B
1
2 Ha c K L + p qL
I-c K p q +a L p Hq - U vL - p q H p +q - U vL +
, I p I p Hq Hc K - a L + p +qL +Ha L - qL U vL2 - 4 Ha c K L + p qL Hc K +q - U vL H p q +a L H-q +U vLLMMMF ,
l2=B -
1
2 Ha c K L + p qL
Ic K p q - a L p Hq - U vL + p q H p +q - U vL +
, I p I p Hq Hc K - a L + p +qL +Ha L - qL U vL2 - 4 Ha c K L + p qL Hc K +q - U vL H p q +a L H-q +U vLLMMMF ,
l3=B r +
-c f K L p +a e K L H-q +U vL + p He K q - f L q + f L U vL
acKL+pq
- U wF>
Nilai Eigen di titik tetap E3
In[381]:= l3 = FullSimplify @Eigenvalues@ jac3DD;
In[382]:= 8"l1="@l3@@1DDD, "l2 ="@l3@@2DDD, "l3="@l3@@3DDD< Out[382]= :l1=B q + l2=B
p r Hc K - U vL - d M p He K + r - U wL - b K M Hc r +e U v - c U wL beKM+p r
1
2 H b e K M + p rL
F,
I-e K p r + b M p H r - U wL - p r H p + r - U wL +
, I p I p H r He K - b M + p + rL +H b M - rL U wL2 - 4 H b e K M + p rL He K + r - U wL H p r + b M H- r +U wLLMMMF ,
l3=B -
1
2 H b e K M + p rL
Ie K p r - b M p H r - U wL + p r H p + r - U wL +
, I p I p H r He K - b M + p + rL +H b M - rL U wL2 - 4 H b e K M + p rL He K + r - U wL H p r + b M H- r +U wLLMMMF>
Nilai Eigen di titik tetap E4
In[383]:= l4 = FullSimplify @Eigenvalues@ jac4DD;
In[384]:= 8"l1="@l4@@1DDD, "l2 ="@l4@@2DDD, "l3="@l4@@3DDD< ;
34
Nilai Eigen di titik tetap E5
In[385]:= l5 = FullSimplify @Eigenvalues@ jac5DD;
In[386]:= 8"l1="@l5@@1DDD, "l2 ="@l5@@2DDD, "l3="@l5@@3DDD< i
Out[386]= :l1=@-q +U vD, l2=B p +a L jjj-1 + k
U v yz
i U v yz zzF , l3=B r + f L jjj-1 + zz - U wF> q { q { k
Nilai Eigen di titik tetap E6
In[387]:= l6 = FullSimplify @Eigenvalues@ jac6DD;
In[388]:= 8"l1="@l6@@1DDD, "l2 ="@l6@@2DDD, "l3="@l6@@3DDD< Out[388]= :l1=B l2=B
r H-p q +a L Hq - U vLL +d L M H f p - a r +a U wL + b M H- f L q +q r + f L U v - q U wL d fLM-q r
1
F,
I- f L r Hq - U vL +d M q H-r +U wL +q r Hq + r - U H v + wLL +
, I4 Hd f L M - q rL H-q r + r U v +d M H r - U wLL H f L Hq - U vL +q H- r +U wLL +
2d fLM-2q r
H f L r Hq - U vL +q Hd M H r - U wL - r Hq + r - U H v + wLLLL MMF ,
2
l3=B
1
I- f L r Hq - U vL +d M q H-r +U wL +q r Hq + r - U H v + wLL -
, I4 Hd f L M - q rL H-q r + r U v +d M H r - U wLL H f L Hq - U vL +q H- r +U wLL +
2d fLM-2q r
H f L r Hq - U vL +q Hd M H r - U wL - r Hq + r - U H v + wLLLL2MMF>
Nilai Eigen di titik tetap E7
In[389]:= l7 = FullSimplify @Eigenvalues@ jac7DD;
In[390]:= 8"l1="@l7@@1DDD, "l2 ="@l7@@2DDD, "l3="@l7@@3DDD< i
Out[390]= :l1=@- r +U wD, l2=B p + b M jj-1 + k
Uwy
Uwy zzF , l =B q - U v +d M ijj-1 + zzF> 3 k r { r {
In[391]:= Unprotect@ p, q, r, K, L, M, a, b, c, d, e, f, v, wD; In[392]:= ClearAll @ p, q, r, K, L, M, a, b, c, d, e, f, v, wD
35
Lampiran 3 (Evaluasi Nilai-nilai Parameter)
Hasil ini diperoleh dengan menggunakan fasilitas Dynpac yang dapat di download di www.wolframresearch.com kemudian dijalankan pada software Mathematica 5.1. In[393]:= sysid
Mathematica 5.1.0, DynPac 10.69, 5ê 24ê 2007
In[394]:= intreset; plotreset;
In[395]:= setstate@8x, y, z
In[396]:= setparm@8 p, q, r, K, L, M, a, b, c, d, e, f, v, w
In[398]:= slopevec = : p x jj1 k
xy z
yy zy i i zz +e x z - f y z - w U z>; z - a x y - b x z , q y jj1 - zz +c x y - d y z - v U y, r z jj1 k k K{ L{ M{
In[399]:= eqstates = findpolyeq; In[400]:= U =
H-d L M p He K + rL v +L H p Hc K +qL r + b K M He q - c rLL v +
M Hc K L H-f p +a rL +q H-a e K L + p He K - f L + rLLL wLë 2
I2 L H b e K M + p rL v - 2 L M H b c K +a e K +Hd + fL pL v w +2 M Ha c K L + p qL w M;
2
In[401]:= U = evalparm@UD Out[401]= 8159.37 In[402]:= E0 = evalparm@eqstates@@1DDD
Out[402]= 80, 0, 0<
Nilai Eigen di titik tetap E0
In[403]:= l0 = FullSimplify @eigval@E0DD; 8"l1="@l0@@1DDD, "l2 ="@l0@@2DDD, "l3="@l0@@3DDD<
Out[403]=
[email protected] D, l2
[email protected] D,
[email protected] D< In[404]:= classify@E0D
unstable
In[405]:= E1 = evalparm@FullSimplify @eqstates@@2DDDD
Out[405]= 8350000, 0, 0<
Nilai Eigen di titik tetap E1
In[406]:= l1 = eigval@E1D; 8"l1="@l1@@1DDD, "l2 ="@l1@@2DDD, "l3="@l1@@3DDD<
Out[406]=
[email protected] D,
[email protected] D, l3
[email protected] D< In[407]:= classify@E1D
unstable
36
In[408]:= E2 = evalparm@FullSimplify @eqstates@@3DDDD
Out[408]= 8291154., 168130., 0<
Nilai Eigen di titik tetap E2
In[409]:= l2 = FullSimplify @eigval@E2DD; 8"l1="@l2@@1DDD, "l2 ="@l2@@2DDD, "l3="@l2@@3DDD<
Out[409]=
[email protected] +0.479572 ÂD,
[email protected] - 0.479572 ÂD,
[email protected] D< In[410]:= classify@E2D
unstable
In[411]:= E3 = evalparm@FullSimplify @eqstates@@4DDDD
Out[411]= 8337777., 0, 72753.7 <
In[412]:= l3 = FullSimplify @eigval@E3DD; 8"l1="@l3@@1DDD, "l2 ="@l3@@2DDD, "l3="@l3@@3DDD<
Out[412]=
[email protected] D,
[email protected] D,
[email protected] D< In[413]:= classify@E3D
unstable
In[414]:= E4 = evalparm@FullSimplify @eqstates@@5DDDD
Out[414]= 8301407., 126253., 26215.4 <
Nilai Eigen di titik tetap E4
In[415]:= l4 = FullSimplify @eigval@E4DD; 8"l1="@l4@@1DDD, "l2 ="@l4@@2DDD, "l3="@l4@@3DDD<
Out[415]=
[email protected] +0.286408 ÂD,
[email protected] - 0.286408 ÂD,
[email protected] D< In[416]:= classify@E4D
strictly stable
In[417]:= E5 = evalparm@FullSimplify @eqstates@@6DDDD
Out[417]= 80, 88062.9, 0<
Nilai Eigen di titik tetap E5
In[418]:= l5 = FullSimplify @eigval@E5DD; 8"l1="@l5@@1DDD, "l2 ="@l5@@2DDD, "l3="@l5@@3DDD<
Out[418]=
[email protected] D, l2
[email protected] D, l3
[email protected] D< In[419]:= classify@E5D
unstable
37
In[420]:= E6 = evalparm@FullSimplify @eqstates@@7DDDD
Out[420]= 80, 61748.9, 15433.5 <
Nilai Eigen di titik tetap E6
In[421]:= l6 = FullSimplify @eigval@E6DD; 8"l1="@l6@@1DDD, "l2 ="@l6@@2DDD, "l3="@l6@@3DDD<
Out[421]=
[email protected] D, l2
[email protected] D, l3
[email protected] D< In[422]:= classify@E6D
unstable
In[423]:= E7 = evalparm@FullSimplify @eqstates@@8DDDD
Out[423]= 80, 0, 36273.7 <
Nilai Eigen di titik tetap E7
In[424]:= l7 = FullSimplify @eigval@E7DD; 8"l1="@l7@@1DDD, "l2 ="@l7@@2DDD, "l3="@l7@@3DDD<
Out[424]=
[email protected] D, l2
[email protected] D, l3
[email protected] D< In[425]:= classify@E7D
unstable
In[426]:= Unprotect@ p, q, r, K, L, M, a, b, c, d, e, f, v, w, UD; In[427]:= ClearAll @ p, q, r, K, L, M, a, b, c, d, e, f, v, w, UD
38
Lampiran 4 (Kestabilan Global)
Hasil ini diperoleh dengan menggunakan software Mathematica 5.1.
* i p Hx - x L y i = jjHx - x* L jj- a H y - y* L - b Hz - z* Lzz + k { k dt K * i q Hy - y L y H y - y* L jj+c Hx - x* L - d Hz - z* Lzz + k { L * yy * i r Hz - z L Hz - z L jj+e Hx - x* L - f H y - y* Lzz zz; {{ k M
dV
In[328]:= X = 88x - x* < , 8 y - y* < , 8z - z* << ; In[329]:= X êê MatrixForm Out[329]//MatrixForm= * ij x - x yz jj * z jj y - y zzz * k z-z { In[330]:= A = ::
p a-c b-e a-c q d +f b -e d+f r , >, : >, : >>; , , , , , K 2 2 2 L 2 2 2 M
In[331]:= MatrixForm @AD Out[331]//MatrixForm= a- c ij p jj K 2 jj q jj a- c jj L jj 2 jj b- e d+ f k 2 2
b- e 2 d+f 2 r M
yz zz zz zz zz zz zz {
In[332]:= XT = Transpose @XD; In[333]:= MatrixForm @XT D
Out[333]//MatrixForm= H x - x* y - y*
z - z* L
39
Mensubstitusikan nilai a=c dan b=e ke dalammatriks A In[334]:= A = A ê. 8a Ø c, b Ø e< Out[334]= ::
p K
, 0, 0>, :0,
In[335]:= MatrixForm @AD Out[335]//MatrixForm= p ij 0 jj K jj q jjj 0 jj L jj d+ f j0 k 2
q L
,
d+f 2
>, :0,
d+f 2
,
r M
>>
yz zz z d+ f zz z 2 zzz r zzz M {
0
Mencari Nilai Eigen dari matriks A In[336]:= l = Eigenvalues@AD; In[337]:= "l1="@l@@1DDD
Out[337]= l1=B
p K
F
In[338]:= "l2="@l@@2DDD Out[338]= l2=B -
1
I-4 M q - 4 L r -
, IH4 M q +4 L rL2 +16 L M Id2 L M +2 d f L M + f2 L M - 4 q rMMMF
8LM
In[339]:= "l3="@l@@3DDD Out[339]= l3=B -
1
I-4 M q - 4 L r +
, IH4 M q +4 L rL2 +16 L M Id2 L M +2 d f L M + f2 L M - 4 q rMMMF
8LM
40
Lampiran 5 (Populasi Optimal)
Hasil ini diperoleh dengan menggunakan software Mathematica 5.1. In[328]:= Unprotect@x, y, z, p, ND; In[329]:=
In[330]:=
ClearAll@p, q, r, K, L, M, a, b, c, d, e, f, v, w, U4, x, y, z, x4, y4, z4, d, ans1, ans2, ans3, p, h1, h2, B, l1, l2, l3, M1, M2, M3, N, ans1, ans2, ans3D; H = Exp@- t dD Hh1 vy + h2wz - BL U + l1 Jl2 J-
p 2 x - axy - bxz + p xN +
K
q 2 r 2 y + cxy - dy z + y Hq - vULN + l3 Jz + exz - f y z + z Hr - wULN; L M i
p x4 y
In[331]:=
slopecostate1 = jjD -
In[332]:=
slopecostate2 = ax4 l1 - jjD -
In[333]:=
slopecostate3 = bx4 l1 - jjD -
k
zz l + cy4 l + ez4 l == 0; 1 2 3
K { i
qy4 y
i
r z4 y
k
k
zz l + f z4 l == U4h1 vExp@-d tD; 2 3
L {
zz l + dy4 l ã U4h2wExp@-d tD; 3 2
M {
Menyelesaikanpersamaan l1 denganmenggunakanoperator - D; In[334]:=
Simplify@Solve@Eliminate@8slopecostate1, slopecostate2, slopecostate3<, 8l2, l3
Out[334]= 99l1 Ø H‰
KU4 HeM HDh2Lw + dh1L vy4 - h2qwy4L z4 + cLy4 HDh1M v - h1r vz4 + f h2M wz4LLL ë 3 ID KLM + H bcf KLM + df LM p - beKM q - p qr + aKL HdeM - crLL x4y4 z4 - D2 HLM p x4 + KM qy4 + KLr z4L + D HacKLM x4y4 + M p qx4y4 + beKLM x4z4 + Lp r x4z4 - df KLM y4z4 + Kqr y4z4LM== -t d
Misalkan l1=
A1 B1
, dengan ;
In[335]:=
A1 = -t d H‰ KU4 HeM HDh2Lw + dh1L vy4 - h2qwy4L z4 + cLy4 HDh1M v - h1r vz4 + f h2M wz4LLL;
In[336]:=
B1 = 3 ID KLM + H bcf KLM + df LM p - beKM q - p qr + aKL HdeM - crLL x4y4z4 D2 HLM p x4 + KM qy4 + KLr z4L + D HacKLM x4y4 + M p qx4y4 + beKLM x4z4 + Lp r x4z4 df KLM y4z4 + Kqr y4z4LM;
Untuk penyederhanaan, kalikan A1 & B1 dengan Mengalikan A1 dengan
In[337]:= Out[337]=
A1 = ExpandBA1 *
1 K LM 1
KLM
1 K LM
;
;
F
cD ‰- t d h1U4 vy4 + De ‰- t d h2U4wz4 + de ‰- t d h1U4 vy4z4 c ‰- t d h1r U4 vy4z4 e ‰- t d h2qU4wy4z4 + c ‰- t d f h2U4wy4z4 M L
41
In[338]:= In[339]:= Out[339]=
"Mengevaluasi operator-D diperoleh:"; A1 = A1 ê. D Ø -d
c ‰- t d h1r U4 vy4z4
de ‰- t d h1U4 vy4z4 -
M
e ‰- t d h2qU4wy4z4 L In[340]:=
Out[340]=
C1 = M1;
In[342]:=
"Sehingga";
In[343]:=
A1 = M1 ‰- t d ;
Out[344]=
D3 -
D2 p x4 K
bDex4z4 +
-
FF
+ cf h2U4wy4z4 -
- ch1U4 vy4 d - eh2U4wz4 d
Mengalikan B1 dengan B1 = ExpandBB1 *
‰- t d
M
L In[341]:=
A1
ch1r U4 vy4z4
eh2qU4wy4z4
In[344]:=
- c ‰- t d h1U4 vy4 d - e ‰- t d h2U4wz4 d
M1 = ExpandBFullSimplifyB deh1U4 vy4z4 -
+ c ‰- t d f h2U4wy4z4 -
1 K LM 1
KLM
D2 qy4
L Dp r x4z4
;
F
+ acDx4y4 +
Dp qx4y4 KL Dqr y4z4
-
D2 r z4 M
+
- dDf y4z4 + + adex4y4z4 + KM LM df p x4y4z4 beqx4y4z4 acr x4y4z4 p qr x4y4z4 bcf x4y4z4 + K L M KLM
"Daftar koefisien persamaan B1 terhadap operator-D"; In[345]:=
Coeff = CoefficientList@B1, DD
Out[345]= :adex4y4z4 +
df p x4y4z4
In[347]:=
K
-
beqx4y4z4
L acr x4y4z4 p qr x4y4z4 p qx4y4 + bex4z4 + , acx4y4 + M KLM KL p r x4z4 qr y4z4 p x4 qy4 r z4 - df y4z4 + ,, 1> KM LM K L M
In[346]:=
bcf x4y4z4 +
"Misalkan,";
a0 = Collect@Coeff @@1DD, x4y4z4D
i Out[347]= jjade + k
bcf +
df p K
-
beq L
-
acr M
-
p qr y zz x4y4z4 KLM {
42
In[348]:= Out[348]=
In[349]:= Out[349]=
In[350]:= Out[350]= In[351]:= In[352]:=
a1 = Coeff @@2DD p qx4y4
acx4y4 +
KL
+ bex4z4 +
p r x4z4 KM
a2 = Coeff @@3DD -
p x4 K
-
qy4 L
a3 = Coeff @@4DD
-
- df y4z4 +
qr y4z4 LM
r z4 M
1
Unprotect@ ND;
N = a3 D3 + a2 D2 + a1 D + a0 ê. D Ø -d
i Out[352]= jjade +
p qr y zz x4y4z4 K L M KLM { k p qx4y4 p r x4z4 qr y4z4 y ij zz d + + bex4z4 + - df y4z4 + jacx4y4 + KL KM LM { k qy4 r z4 y 2 3 ij p x4 zz d - d jL M { k K bcf +
df p
-
beq
acr
-
-
"Persamaan diferensial nya dapat ditulis sebagai:" ; Ha3D +a2D +a1D+a0 Ll1= M1 ‰ 3
2
-t d
;
"Dengan menggunakan metode operator-D untuk kasus tersebut diperoleh:"; Auxiliary Equation adalah a3m3 +3a2m2 +3a1m+a0 =0, dengan akar-akar biHi=1,2,3L ; Complementary Function HC FL adalah A1‰b 1 t+A2 ‰b 2 t +A3‰b 3 t, dengan Ai Hi=1,2,3Ladalah konstanta sembarang;
Particular Integral HPIL adalah In[353]:=
M1 ‰- t d B1
;
"Solusi Umum l1 = C F + P I ";
l1 = A1 ‰b 1 t + A2 ‰b 2 t + A3 ‰b 3 t +
M1 ‰- t d N
Menyelesaikanpersamaan l2 denganmenggunakanoperator - D; In[354]:= In[355]:=
Unprotect@x, y, z, p, ND;
ClearAll@p, q, r, K, L, M, a, b, c, d, e, f, v, w, U, x, y, z, x4, y4, z4, d, ans1, ans2, ans3, p, h1, h2, B, l1, l2, l3, M1, M2, M3, N, ans1, ans2, ans3D;
43
In[356]:=
Simplify@Solve@Eliminate@8slopecostate1, slopecostate2, slopecostate3<, 8l1, l3
Out[356]= 99l2 Ø -I‰
LU4 ID2 h1KM v + H beh1KM v + h1p r v - h2M HaeK + f pL wL x4z4 + D Hf h2KM wz4 - h1 v HM p x4 + Kr z4LLMM ë 3 ID KLM + H bcf KLM + df LM p - beKM q - p qr + aKL HdeM - crLL x4y4z4 - D2 HLM p x4 + KM qy4 + KLr z4L + D HacKLM x4y4 + M p qx4y4 + beKLM x4z4 + Lp r x4z4 - df KLM y4z4 + Kqr y4z4LM== -t d
Misalkan l2=
A2 B2
, dengan ;
In[357]:=
A2 = -I‰- t d LU4 ID2 h1KM v + H beh1KM v + h1p r v - h2M HaeK + f pL wL x4z4 + D Hf h2KM wz4 - h1 v HM p x4 + Kr z4LLMM;
In[358]:=
B2 = 3 ID KLM + H bcf KLM + df LM p - beKM q - p qr + aKL HdeM - crLL x4y4z4 D2 HLM p x4 + KM qy4 + KLr z4L + D HacKLM x4y4 + M p qx4y4 + beKLM x4z4 + Lp r x4z4 df KLM y4z4 + Kqr y4z4LM;
Untuk penyederhanaan, kalikan A2 & B2 dengan Mengalikan A dengan
In[359]:=
Out[359]=
A2 = ExpandBA2 *
1 K LM 1
KLM
-D2 ‰- t d h1U4 v +
1 K LM
;
;
F
D ‰- t d h1p U4 vx4 K
+
D ‰- t d h1r U4 vz4
- D ‰- t d f h2U4wz4 - be ‰- t d h1U4 vx4z4 M ‰- t d h1p r U4 vx4z4 ‰- t d f h2p U4wx4z4 + ae ‰- t d h2U4wx4z4 + KM K
"Mengevaluasi operator-D diperoleh:"; In[360]:= Out[360]=
A2 = A2 ê. D Ø -d
- be ‰- t d h1U4 vx4z4 -
ae ‰- t d h2U4wx4z4 + ‰- t d h1r U4 vz4 d
M
‰- t d h1p r U4 vx4z4
KM t d ‰ f h2p U4wx4z4 K
+ -
‰- t d h1p U4 vx4 d
K
-
+ ‰- t d f h2U4wz4 d - ‰- t d h1U4 v d2
44
In[361]:=
Out[361]=
M2 = ExpandBFullSimplifyB - beh1U4 vx4z4 -
h1p U4 vx4 d
In[362]:=
h1p r U4 vx4z4
KM h1r U4 vz4 d
-
K
FF
A2 ‰- t d
M
+ aeh2U4wx4z4 +
f h2p U4wx4z4 K
-
+ f h2U4wz4 d - h1U4 v d2
C2 = M2;
"Sehingga"; In[363]:=
A2 = M2 ‰- t d ;
Mengalikan B2 dengan
In[364]:=
Out[364]=
B2 = ExpandBB2 * D3 -
D2 p x4
-
K
bDex4z4 +
1 K LM 1
KLM
D2 qy4
L Dp r x4z4
;
F
+ acDx4y4 +
Dp qx4y4 KL Dqr y4z4
-
D2 r z4 M
+
- dDf y4z4 + + adex4y4z4 + KM LM df p x4y4z4 beqx4y4z4 acr x4y4z4 p qr x4y4z4 bcf x4y4z4 + K L M KLM
"Daftar koefisien persamaan B2 terhadap operator-D"; In[365]:=
Coeff2 = CoefficientList@B2, DD
Out[365]= :adex4y4z4 +
bcf x4y4z4 +
df p x4y4z4
beqx4y4z4
L acr x4y4z4 p qr x4y4z4 p qx4y4 + bex4z4 + , acx4y4 + M KLM KL p r x4z4 qr y4z4 p x4 qy4 r z4 - df y4z4 + ,, 1> KM LM K L M
K
-
"Misalkan,"; In[366]:=
a0 = Collect@Coeff2@@1DD, x4y4z4D
i Out[366]= jjade + k
In[367]:= Out[367]=
bcf +
df p
a1 = Coeff2@@2DD acx4y4 +
K
p qx4y4 KL
-
beq L
-
acr M
+ bex4z4 +
-
p qr y z
z x4y4z4
KLM {
p r x4z4 KM
- df y4z4 +
qr y4z4 LM
45
In[368]:= Out[368]=
In[369]:= Out[369]=
a2 = Coeff2@@3DD -
p x4 K
-
qy4 L
-
a3 = Coeff2@@4DD
r z4 M
1
"Persamaan diferensial nya dapat ditulis sebagai:" ; Ha3D +a2D +a1D+a0 Ll2= M2 ‰ 3
2
-t d
;
"Dengan menggunakan metode operator-D untuk kasus tersebut diperoleh:"; Auxiliary Equation adalah a3m3 +3a2m2 +3a1m+a0 =0, dengan akar-akar biHi=1,2,3L ; Complementary Function HC FL adalah A1‰b 1 t+A2 ‰b 2 t +A3‰b 3 t, dengan Ai Hi=1,2,3Ladalah arbitrary constants ; Particular Integral HPIL adalah In[370]:=
M2 ‰- t d
Ha3 D3 + a2 D2 + a1 D + a0L
;
N = a3 D3 + a2 D2 + a1 D + a0 ê. D Ø -d;
Solusi Umum l2= C F + P I ; l2 = A1 ‰b 1 t + A2 ‰b 2 t + A3 ‰b 3 t +
M2 ‰- t d N
Menyelesaikanpersamaan l3 denganmenggunakanoperator - D; In[371]:=
In[372]:=
ClearAll@p, q, r, K, L, M, a, b, c, d, e, f, v, w, U, x, y, z, x4, y4, z4, d, ans1, ans2, ans3, p, h1, h2, B, l1, l2, l3, M1, M2, M3, N, ans1, ans2, ans3D;
Simplify@Solve@Eliminate@8slopecostate1, slopecostate2, slopecostate3<, 8l1, l2
Out[372]= 99l3 Ø
-I‰- t d M U4 ID2 h2KLw + H- bch1KL v - dh1Lp v + ach2KLw + h2p qwL x4
y4 + D Hdh1KL vy4 - h2w HLp x4 + Kqy4LLMM ë ID3 KLM + H bcf KLM + df LM p - beKM q - p qr + aKL HdeM - crLL x4y4z4 D2 HLM p x4 + KM qy4 + KLr z4L + D HacKLM x4y4 + M p qx4y4 + beKLM x4z4 + Lp r x4z4 - df KLM y4z4 + Kqr y4z4LM==
Misalkan l3= In[373]:=
A3 B3
, dengan ;
A3 = -I‰- t d M U4 2 ID h2KLw + H- bch1KL v - dh1Lp v + ach2KLw + h2p qwL x4y4 + D Hdh1KL vy4 - h2w HLp x4 + Kqy4LLMM;
46
In[374]:=
B3 = 3 ID KLM + H bcf KLM + df LM p - beKM q - p qr + aKL HdeM - crLL x4y4z4 D2 HLM p x4 + KM qy4 + KLr z4L + D HacKLM x4y4 + M p qx4y4 + beKLM x4z4 + Lp r x4z4 df KLM y4z4 + Kqr y4z4LM;
Untuk penyederhanaan, kalikan A & B dengan Mengalikan A3 dengan
In[375]:=
Out[375]=
A3 = ExpandBA3 *
1 K LM 1
KLM
-D2 ‰- t d h2U4w +
1 K LM
;
;
F
D ‰- t d h2p U4wx4
dD ‰- t d h1U4 vy4 +
K D ‰- t d h2qU4wy4
L
d ‰- t d h1p U4 vx4y4
+ bc ‰- t d h1U4 vx4y4 +
- ac ‰- t d h2U4wx4y4 -
K
‰- t d h2p qU4wx4y4
KL
"Mengevaluasi operator-D diperoleh:"; In[376]:=
A3 = A3 ê. D Ø -d;
In[377]:=
M3 = ExpandBFullSimplifyB
Out[377]=
bch1U4 vx4y4 + h2p U4wx4 d K
In[378]:=
A3 ‰- t d
FF
dh1p U4 vx4y4 K
+ dh1U4 vy4 d -
- ach2U4wx4y4 -
h2qU4wy4 d L
h2p qU4wx4y4 KL
-
- h2U4w d2
C3 = M3;
"Sehingga"; A3 = M3 ‰- t d ; Mengalikan B3 dengan
In[379]:=
Out[379]=
B3 = ExpandBB3 * D3 -
D2 p x4 K
bDex4z4 +
-
1 K LM 1
KLM
D2 qy4
L Dp r x4z4
;
F
+ acDx4y4 +
Dp qx4y4 KL Dqr y4z4
-
D2 r z4 M
+
- dDf y4z4 + + adex4y4z4 + KM LM df p x4y4z4 beqx4y4z4 acr x4y4z4 p qr x4y4z4 bcf x4y4z4 + K L M KLM
47
"Daftar koefisien persamaan B3 terhadap operator-D"; In[380]:= Out[380]=
Coeff3 = CoefficientList@B3, DD
:a d e x4 y4 z4 + b c f x4 y4 z4 +
b e q x4 y4 z4
-
d f p x4 y4 z4
a c r x4 y4 z4
-
K p q r x4 y4 z4
, KL M p q x4 y4 p r x4 z4 q r y4 z4 + b e x4 z4 + - d f y4 z4 + , a c x4 y4 + KL KM LM p x4 q y4 r z4 , 1> K L M L
M
"Misalkan,"; In[381]:= Out[381]=
a0 = Coeff3@@1DD a d e x4 y4 z4 + b c f x4 y4 z4 + b e q x4 y4 z4 L
In[382]:= In[383]:= Out[383]=
In[384]:= In[385]:= Out[385]=
In[386]:= In[387]:= Out[387]= In[388]:=
-
d f p x4 y4 z4
a c r x4 y4 z4 M
-
K p q r x4 y4 z4
KL M
A0 = a0;
a1 = Coeff3@@2DD a c x4 y4 +
p q x4 y4 KL
+ b e x4 z4 +
p r x4 z4 KM
- d f y4 z4 +
q r y4 z4 LM
A1 = a1;
a2 = Coeff3@@3DD -
p x4 K
-
q y4 L
-
r z4 M
A2 = a2;
a3 = Coeff3@@4DD 1 A3 = a3;
"Persamaan diferensial nya dapat ditulis sebagai:" ; Ha3D +a2D +a1D+a0 Ll3= M3 ‰ 3
2
-t d
;
"Dengan menggunakan metode operator-D untuk kasus tersebut diperoleh:"; Auxiliary Equation adalah a3m3 +3 a2m2 +3a1m+a0 =0, dengan akar-akar biHi=1,2,3L ;
48
Complementary Function HC FL adalah A1‰ b1 t+A2 b t b t ‰ 2 +A3‰ 3 , dengan Ai Hi=1,2,3Ladalah arbitrary constants ;
Particular Integral HPIL adalah
Ha3 D3+a2 D2+a1 D+a0L
M2 −t δ
;
Solusi Umum l3= C F + P I ; l3 = A1 ‰ b1 t + A2 ‰ b2 t + A3 ‰ b3 t + In[389]:= In[390]:=
M3 ‰-t d
ClearAll@M1, M2, M3, ND
N
H = Exp@- t d D Hh1 v y + h2 w z - BL U + l1 Jl2 Jl3 J-
p K
y2 + c x y - d y z + y Hq - v ULN +
q L r M
‰-t d M1
z2 + e x z - f y z + z Hr - w ULN;
In[391]:=
l1 =
In[392]:=
l2 =
In[393]:=
l3 =
In[394]:=
ans2 = Flatten@Solve@v y l2 + w z l3 == 0, yDD
Out[394]=
In[395]:=
N ‰-t d M2
N ‰-t d M3
N
:y Ø -
; ; ;
M3 w z M2 v
>
L21 = FullSimplify@-∑x HD ê. ans2 ‰-t d I2 M1 p x - K Ie M3 z -
Out[395]=
In[396]:=
In[397]:=
Out[398]=
+ M1 Ip - b z +
a M3 w z MMM M2 v
L22 = FullSimplify@-∑ y HD ê. ans2 LN
J‰-t d J-
2 M3 q w z v
+
L H-h1 N U v + a M1 x + f M3 z + M2 H- q + U v - c x + d zLLNN
L23 = FullSimplify@-∑z HD ê. ans2
‰- t d J2M3r z + M J- h2 NUw + bM1x - d M3 w z + M3 J-r + Uw - ex - f M3 w z NNN v
Out[397]=
In[398]:=
c M3 w z v
KN
1 Out[396]=
x2 - a x y - b x z + p xN +
M2 v
MN Tl1 = ∑t l1 -
‰- t d M1 d
N
49
In[399]:= Out[399]=
In[400]:= Out[400]=
Tl2 = ∑t l2 -
‰- t d M2 d
N
Tl3 = ∑t l3 -
‰- t d M3 d
N
In[401]:=
ansU = Flatten@FullSimplify@Solve@Eliminate@8Tl1 == L21, Tl2 == L22, Tl3 == L23<, 8x, z
In[402]:=
ans1 = Flatten@FullSimplify@Solve@Eliminate@8Tl1 == L21, Tl2 == L22, Tl3 == L23<, 8U, z
In[403]:=
ans3 = Flatten@FullSimplify@Solve@Eliminate@8Tl1 == L21, Tl2 == L22, Tl3 == L23<, 8U, x
In[404]:=
p = 2.5;
In[405]:=
q = 2;
In[406]:=
r = 2.5;
In[407]:=
K = 350000;
In[408]:=
L = 220000;
In[409]:=
M = 225000;
In[410]:=
a = 2.5 * 10-6 ;
In[411]:=
b = 1.2 * 10-6 ;
In[412]:=
c = 2.5 * 10-6 ;
In[413]:=
d = 1.55 * 10-5 ;
50
In[414]:=
e = 1.2 * 10-6 ;
In[415]:=
f = 3.75 * 10-6 ;
In[416]:=
v = 0.000147;
In[417]:=
w = 0.000257;
In[418]:=
B = 2500;
In[419]:=
h1 = 700;
In[420]:=
h2 = 500; 4r q
In[421]:= Out[421]=
LM True cr
In[422]:= Out[422]=
Out[423]= In[424]:=
Out[424]= In[425]:=
Out[425]= In[426]:=
Out[426]= In[427]:=
Out[427]=
>M
de True eq
In[423]:=
> Hd + f L2
cf
>L
True U4 = H-dLM p HeK + rL v + L Hp HcK + qL r + bKM Heq - crLL v + M HcKL H-f p + arL + q H- aeKL + p HeK - f L + rLLL wL ë 2 2 I2L H beKM + p rL v - 2LM H bcK + aeK + Hd + f L pL vw + 2M HacKL + p qL w M 8159.37 x4 = HK Hr H-aLq + p q + aLU4 vL - dLM Hf p - ar + aU4wL + bM H-qr + f L Hq - U4 vL + qU4wLLL ê H-LM HadeK + bcf K + df pL + beKM q + HacKL + p qL rL 301407. y4 = HL Hp r HcK + q - U4 vL - dM p HeK + r - U4wL + bKM Heq - cr - eU4 v + cU4wLLL ê H-LM HadeK + bcf K + df pL + beKM q + HacKL + p qL rL 126253. z4 = HM HaeKL Hq - U4 vL + cKL Hf p - ar + aU4wL p HeKq - f Lq + qr + f LU4 v - qU4wLLL ê HM HadeKL + df Lp + bK Hcf L - eqLL - HacKL + p qL rL 26215.4
51
In[428]:=
d = 0.1;
In[429]:=
M1 = C1
Out[429]=
-60.6264
In[430]:=
M2 = C2
Out[430]=
-492.611
In[431]:=
M3 = C3
Out[431]=
600.723
In[432]:=
Unprotect@ ND;
In[433]:=
a0 = A0;
In[434]:=
a1 = A1;
In[435]:=
a2 = A2;
In[436]:=
a3 = A3;
In[437]:= Out[437]= In[438]:= Out[438]= In[439]:= Out[439]= In[440]:= Out[440]= In[441]:= Out[441]= In[442]:= Out[442]= In[443]:= Out[443]= In[444]:= Out[444]=
N = a3 D3 + a2 D2 + a1 D + a0 ê. D Ø -d
-0.716155
FullSimplify@Tl1 == L21D
‰-0.1 t H- 168000. + 1. x - 1.74214zL ã 0
FullSimplify@Tl2 == L22D
‰-0.1 t H732063. + 1. U + 0.844693x- 19.1456zL ã 0
FullSimplify@Tl3 == L23D
‰-0.1 t H- 5850.92 + 1. U - 0.0032207x + 0.00760269zL ã 0
x = x ê. ans1 254768. x4 301407.
z = z ê. ans3 49805.6 z4 26215.4
52
z4 In[445]:= Out[445]= In[446]:= Out[446]= In[447]:= Out[447]=
M
11.6513
y = y ê. ans2 106185. y4 126253. y4
In[448]:= Out[448]= In[449]:= Out[449]= In[450]:= Out[450]= In[451]:= Out[451]= In[452]:= Out[452]= In[453]:= Out[453]= In[454]:= Out[454]= In[455]:=
100
L
100
57.3876 T = vy4U4 + wz4U4 206404.
U = U ê. ansU 6292.8 T1 = vy U 98225.7 T2 = wz U 80548.1 Td = T1 + T2 178774. U4 8159.37 U
Out[455]=
6292.8
In[456]:=
U4 - U
Out[456]=
1866.58
In[457]:= In[458]:= Out[458]= In[459]:=
Unprotect@pD;
p = Hh1 vy + h2wz - BL U
9.33 μ 107
ClearAll@p, q, r, K, L, M, a, b, c, d, e, f, v, w, U, x, y, z, x4, y4, z4, d, ans1, ans2, ans3, p, h1, h2, BD
53
Lampiran 6 (Kurva MSY)
Hasil ini diperoleh dengan menggunakan software Mathematica 5.1. In[328]:=
p = 2.5;
In[329]:=
q = 2;
In[330]:=
r = 2.5;
In[331]:=
K = 350000;
In[332]:=
L = 220000;
In[333]:=
M = 225000;
In[334]:=
a = 2.5 * 10-6 ;
In[335]:=
b = 1.2 * 10-6 ;
In[336]:=
c = 2.5 * 10-6 ;
In[337]:=
d = 1.55 * 10-5 ;
In[338]:=
e = 1.2 * 10-6 ;
In[339]:=
f = 3.75 * 10-6 ;
In[340]:=
v = 0.000147;
In[341]:=
w = 0.000257;
In[342]:=
In[343]:=
In[344]:=
y4 = HL Hp r Hc K + q - U vL - d M p He K + r - U w L + b K M He q - c r - e U v + c U w LLL ê H-L M Ha d e K + b c f K + d f pL + b e K M q + Ha c K L + p qL rL; z4 = HM Ha e K L Hq - U vL + c K L Hf p - a r + a U w L p He K q - f L q + q r + f L U v - q U w LLL ê HM Ha d e K L + d f L p + b K Hc f L - e qLL - Ha c K L + p qL rL; T = v U y4 + w U z4;
54
Solusi Pemanenan Maksimum In[345]:=
sol1 = FullSimplify@Solve@∑U T ã 0, UDD
In[346]:=
T = T ê. sol1
In[347]:=
ClearAll@TD
Out[345]= 88U →
8159.37<<
Out[346]= 8206404.<
In[348]:=
Plot@v U y4 + w U z4, 8U, 0 , 16500<, AxesLabel Ø 8U, T<, TextStyle Ø 8FontFamily Ø "Times", FontSize Ø 10
200000 150000 100000 50000
2500 Out[348]=
5000
7500
10000 12500 15000
U
Graphics
55
Lampiran 7 (Dinamika Sistem)
Hasil ini diperoleh dengan menggunakan software Mathematica 5.1. In[349]:= Unprotect@x, y, z, p , N, p, q, r, K, L, M, a, b, c, d, e, f, v, w D ; In[350]:=
ClearAll@parmval, x, y, z, p , N, p, q, r, K, L, M, a, b, c, d, e, f, v, w D;
In[351]:=
sysid
In[352]:=
intreset;
In[353]:=
plotreset;
In[354]:=
setstate[{x,y,z}];
In[355]:=
setparm[{p,q,r,K,L,M,a,b,c,d,e,f,v,w}];
In[356]:=
Mathematica 5.1.0, DynPac 10.69, 5ê24ê2007
slopevec = :p x J1 q y J1 -
y L
x K
N- ax y -b x z,
N + c x y - d y z - v U y, r z J1 -
z M
N + e x z - f y z - w U z>;
In[357]:=
eqstates = findpolyeq;
In[358]:=
parmval = 82.5, 2, 2.5, 350000, 220000, 225000, 2.5 * 10-6 , 1.2 * 10-6, 2.5 * 10-6, 1.55 * 10-5 , 1.2 * 10-6, 3.75 * 10-6 , 0.000147, 0.000257<;
In[359]:=
In[360]:=
E4 = FullSimplify@eqstates@@5DDD;
U = H- d L M p He K + rL v + L Hp Hc K + qL r + b K M He q - c rLL v + M Hc K L H-f p + a rL + q H- a e K L + p He K - f L + rLLL w L ê 2 H2 L Hb e K M + p rL v - 2 L M Hb c K + a e K + Hd + f L pL v w + 2 M Ha c K L + p qL w 2L;
In[361]:=
E4 = eqstateval@E4 D
In[362]:=
eigval@E4D
In[363]:=
classify@E4D;
Out[361]= 8301407., 126253., 26215.4< Out[362]= 8−1.74304 + 0.286408
, − 1.74304 − 0.286408 , −0.105861<
strictly stable
56
In[364]:=
evalparm@slopevec D
In[365]:=
<< Graphics`ParametricPlot3D`
In[366]:=
solution = NDSolveB:
Out[364]= :2.5 J1 −
x N x − 2.5 × 10−6 x y − 1.2 × 10−6 x z, 350000 y −6 −1.19943 y + 2.5 × 10 x y + 2 J1 − N y − 0.0000155 y z, 220000 z −6 −6 −2.09696 z + 1.2 × 10 x z − 3.75 × 10 y z + 2.5 J1 − N z> 225000
y£@tD y@tD z£@tD z@tD
x£@tD x@tD
== 2.5` J1 -
x@tD 350000
N - 2.5*^-6 y@tD - 1.2`*^-6 z@tD,
== -1.20648 + 2.5*^-6 x@tD + 2 J1 -
y@tD
220000
N - 0.0000155` z@tD,
== -2.10313 + 1.2`*^-6 x@tD - 3.75*^-6 y@tD + 2.5` J1 -
x@0D == 255297, y@0D == 107165, z@0D == 48695>,
z@tD
225000
N ,
8x, y, z< , 8t, 0, 150< , Method Ø Automatic F;
ParametricPlot3D@Evaluate@8 x@tD, y@tD, z@tD< ê. solutionD, 8 t, 0, 150<, PlotPoints Ø 1000, BoxRatios Ø 81, 1, 1<, AxesLabel Ø 8 "x", "y", "z"<, PlotRange Ø AllD; y 120000 110000 100000 00000
45000 40000 z 35000 30000 25000 260000 280000 x
In[367]:=
300000
intreset;
In[368]:= In[369]:=
plotreset;
57
In[370]:=
8X, Y, Z< = 8 x@tD, y@tD, z@tD< ê. Flatten@solutionD
Out[370]= 8InterpolatingFunction@880., 150.<<, <>D@tD,
InterpolatingFunction@880., 150.<<, <>D@tD, InterpolatingFunction@880., 150.<<, <>D@tD<
In[371]:=
Plot@8 X<, 8 t, 0, 25< , PlotRange Ø 8 250000, 320000< , AxesLabel Ø 8 "t", "x"< , PlotStyle Ø 8 RGBColor@0, 0, 1D
Out[371]= In[372]:=
10
15
20
25
Graphics
Plot@8 Y<, 8 t, 0, 50< , PlotRange Ø 8 80000, 130000<, AxesLabel Ø 8 "t", "y"< , PlotStyle Ø 8 RGBColor@0, 0, 1D
Out[372]= In[373]:=
20
30
40
50
Graphics
Plot@8 Z<, 8 t, 0, 50< , PlotRange Ø 8 20000, 50000< , AxesLabel Ø 8 "t", "z"<, PlotStyle Ø 8RGBColor@0, 0, 1D
Out[373]=
20
30
40
50
Graphics
58
Lampiran 8 (Syarat Teorema 7)
à Misalkan f0 = ‰-t d U Hv y h1 + w z h2 L, f1 = In[386]:=
f0 = Exp@-d tD Hh1 v y + h2 w zL U;
In[387]:=
f1 = p x J1 -
In[388]:=
f2 = q y J1 -
In[389]:=
f3 = r z J1 -
dx dy dz . , f2 = , f3 = dt dt dt
x N - a x y - b x z; K
y N + c x y - d y z - v U y; L
z N + e x z - f y z - w U z; M
dengan (x,y,z) adalah variabel state (autonomous) , t adalah waktu, dan sisanya adalah parameter. In[390]:= ∑t f0
Out[390]= - I‰-t d H- d L M p He K + rL v + L Hp Hc K + qL r + b K M He q - c rLL v +
M Hc K L H- f p + a rL + q H- a e K L + p He K - f L + rLLL wL d Hv y h1 + w z h2 LM ë I2 L Hb e K M + p rL v2 2 L M Hb c K + a e K + Hd + f L pL v w + 2 M Ha c K L + p qL w2M
Turunan parsial f1 terhadap x In[391]:= ∑x f1 Out[391]= -
px x + p J1 - N - a y - b z K K
Turunan parsial f2 terhadap y In[392]:= ∑y f2
Out[392]= - Hv H- d L M p He K + rL v + L Hp Hc K + qL r + b K M He q - c rLL v +
M Hc K L H- f p + a rL + q H- a e K L + p He K - f L + rLLL wLL ë
I2 L Hb e K M + p rL v2 - 2 L M Hb c K + a e K + Hd + f L pL v w + qy y 2 M Ha c K L + p qL w2M + c x + q J1 - N - d z L L
59
Turunan parsial f3 terhadap z In[393]:= ∑z f3
Out[393]= - Hw H- d L M p He K + rL v + L Hp Hc K + qL r + b K M He q - c rLL v +
M Hc K L H- f p + a rL + q H- a e K L + p He K - f L + rLLL wLL ë
I2 L Hb e K M + p rL v2 - 2 L M Hb c K + a e K + Hd + f L pL v w + rz z 2 M Ha c K L + p qL w2M + e x - f y + r J1 N M M
Terlihat bahwa turunan parsial dari f0, f1 , f2 , f3 kontinu In[382]:=
sehingga U dapat kontinu bagian demi bagian. H2.6 .3L
à ‡ f0 „ t ¶
0
Jika d > 0 maka Int = ‡ Exp@-d tD Hh1 v y + h2 w zL U „ t T
In[394]:=
0
Out[394]=
II1 - ‰-T dM H- d L M p He K + rL v + L Hp Hc K + qL r + b K M He q - c rLL v +
M Hc K L H- f p + a rL + q H- a e K L + p He K - f L + rLLL wL Hv y h1 + w z h2 LM ë II2 L Hb e K M + p rL v2 -
2 L M Hb c K + a e K + Hd + f L pL v w + 2 M Ha c K L + p qL w2M dM
In[395]:= Out[395]=
Limit@Int, T Ø ¶, Assumptions Ø d > 0D
HHc K L p r v + L p q r v - d L M p He K + rL v + b K L M He q - c rL v c f K L Mpw - a e K L Mqw +e K Mpqwf L M p q w + a c K L M r w + M p q r wL Hv y h1 + w z h2 LL ë I2 IM p q w2 + b K L M v He v - c wL +
L Ha K M w H- e v + c wL + p v Hr v - Hd + f L M wLLM dM
dari Definisi 18 akibatnya
integral pada (2.6.3) konvergen.
60
In[384]:=
Karena ‡ Exp@-d tD Hh1 v y + h2 w zL U „ t ada untuk d > 0, maka
In[384]:=
‡ Abs @Exp@-d Ht + sLD Hh1 v y + h2 w zL UD „ HtL
T
0
T
0
-Re@d H t +sLD ‡ ‰
T
Out[384]=
0
AbsAHH-d L M p He K + rL v + L Hp Hc K + qL r + b K M He q - c rLL v +
M Hc K L H-f p + a rL + q H- a e K L + p He K - f L + rLLL wL Hv y h1 + w z h2 LL ë I2 L Hb e K M + p rL v2 -
2 L M Hb c K + a e K + Hd + f L pL v w + 2 M Ha c K L + p qL w2 ME „ t
juga ada untuk d>0, s(-e,e),
In[385]:= In[396]:= Out[396]=
akibatnya untuk suatu fungsi yang kontinu bagian demi akibatnya bagian demi fungsi kontinu suatu untuk yang
In[386]:=
bagian a HtL, Abs @∑t Exp@-d Ht +sLD Hh1 v y + h2 w zL U D < a HtL
In[386]:=
untuk setiap s H-e, eL, t œ @0, ¶L , dan ‡ a HtL „ t < ¶, ¶
0
In[386]:=
sehingga
Teorema 7 dapat digunakan.
61