Převod jednotek • pmol/L ‹ nmol/L ‹ µmol/L ‹ mmol/L ‹ mol/L 10-12
Chemické výpočty II Vladimíra Kvasnicová
10-9
10-6
g
12) cholesterol (MW=386,7g/mol): 200 mg/dl = ? mmol/L
• µL ‹ mL ‹ dL ‹ L 10-6 10-3
10-1
1mL = 1 cm3
Převod jednotek
tlak = síla působící na jednotku plochy (Pa) 1 kPa = 103 Pa
Složení vzduchu:
Daltonův zákon = celkový tlak směsi plynů je roven součtu parciálních tlaků jednotlivých složek směsi
Tlak vzduchu:
parciální tlak = tlak jednoho plynu přítomného ve směsi plynů
[5,2 mM]
L
1L = 1dm3
Převod jednotek
mol/L
Cvičení
• µg ‹ mg ‹ g 10-6 10-3
10-3
78% N2
21% O2
1% voda, vzácné plyny, CO2 (0,04%)
1 atm = 101 325 Pa (~ 101 kPa) = 760 Torr (= mmHg)
1 mmHg = 0,1333 kPa 1 kPa = 7,5 mmHg
Převod jednotek
Cvičení 13) Parciální tlak krevních plynů naměřený v laboratoři: pO2 = 71 mmHg pCO2 = 35 mmHg Převeďte tyto hodnoty do SI jednotek (kPa). pO2 = 9,5 kPa pCO2 = 4,7 kPa
Ředění roztoků = koncentrace látky se snižuje, látkové množství zůstává stejné !!!
1 kcal = 4,2 kJ 1 kJ = 0,24 kcal
14) Svačina – müsli tyčinka (30g) byla označena: 100g = 389 kcal. Vypočítejte množství energie (v kJ) obsažené v tyčince. 490kJ / 30g
3) vyjadřování ředění 1 : 5 nebo 1 / 5 (čti „jedna ku pěti“ nebo „pětkrát“) 1 díl (= vzorek) + 4 díly (= rozpouštědlo) = 5 dílů = celkový (konečný) objem
1) užitečná rovnice n1 V1 x
energetický obsah potravin:
C1
=
n2
=
V2
x
C2
c1 = 0,25 M
(= koncentrace před ředěním)
naředěno 1 : 5 (= 5x) → c2 = 0,25 x 1/5 = 0,05 M (= koncentrace po naředění )
2) křížové pravidlo % roztoku(1)
hm. díly roztoku(1)
4) směšovací rovnice (m1 x p1) + (m2
x
p2) + ... = p
x
(m1 + m2 + ...)
% konečný roztok % roztoku(2)
hm. díly roztoku(2)
m = hmotnost mixovaného roztoku, p = % koncentrace
18) jak připravíme 250ml 0,1M HCl z 1M HCl [25ml 1M HCl]
Cvičení 15) chceme připravit 190g 10% roztoku ? m (g) 38% HCl + ? m (g) H2O musíme použít [50g HCl]
20) 10M NaOH byl naředěn 1: 20, ? finální koncentrace [0,5M]
16) jak naředíme 300g 40% roztoku na roztok 20% ? [1+1 = 300g H2O]
21) 1000mg/l glukózy bylo naředěno 1: 10 a pak ještě 1 : 2 ? finální koncentrace [50mg/l]
17) 20g 10% roztoku NaOH → 20% roztok ? m (g) NaOH musíme přidat [2,5g NaOH]
22) ? kolikrát bylo naředěno sérum po smíchání: 200 µl séra 500 µl fyziologického roztoku 300 µl činidla [1 : 5]
Výpočty pH pH = - log a(H3
O+)
a=γxc
Disociace vody: H2O ↔ H+ + OHH2O + H+ + OH- ↔ H3O+ + OH-
H2O + H2O ↔ H3O+ + OH-
a = aktivita γ = aktivitní koeficient (0-1) c = molární koncentrace (mol /L) zředěné (mM) roztoky:
γ≅1 ⇒ a=c
pH = - log c(H3O+) c(H3O+) = [H3O+] = molární koncentrace
Kdis = [H3O+] x [OH-] [H2O]2 Kdis x [H2O]2 = [H3O+] x [OH-] Kdis x [H2O]2 ≅ konstantní, neboť [H2O] je mnohokrát vyšší než [H3O+] nebo [OH-] Kw = konstanta = iontový součin vody
Kw = [H3O+] x [OH-]
Kw = [H3O+] x [OH-] = 10-14 pKW = pH + pOH = 14 pK = - log K 10-14 10-14
log log 10-14 -14 14 ↓ pKW 14
pH = - log [H3O+]
= = = = =
[H3O+]
[OH-]
[HA] =
pH = - log
c(H+)
=> voda:
pOH = - log [OH-]
x / log + log ([H3O ] x [OH ] ) log [H3O+] + log [OH-] log [H3O+] + log [OH-] / x (-1) + - log [H3O ] - log [OH ] ↓ ↓ = pH + pOH v čisté vodě = 7 + 7
silné kyseliny (HA) HA → H+ + A-
pKW = pH + pOH = 14 [H3O+] = 10–7 (pH = 7) [OH-] = 10–7 (pOH = 7)
zjednodušení: [H3O+] = [H+] = c(H+) => pH = – log c(H+) pH = 0 – 14 pH
0 -------------- 7 --------------14 kyselé neutrální zásadité
• pokud [H+] klesne, [OH-] vzroste • pokud [OH-] klesne, [H+] vzroste
[H+]
slabé kyseliny (HA) [HA] ≠ [H+] HA ↔ H+ + A-
= - log cHA
Kdis = [H+] [A-] [HA]
[H+] = [A-]
[HA] = cHA
[BOH] = [OH-]
pOH = - log cBOH
Kdis ≤ 10–2
Kdis = Ka
= [H+]2 cHA Ka x cHA = [H+]2 / log log (Ka x cHA ) = 2 x log [H+] /½ log Ka + log cHA = 2 x log [H+] + ½ log Ka + ½ log cHA = log [H ] / x (-1) - log Ka = pKa -½ log Ka - ½ log cHA = - log [H+] Ka
silné báze (BOH) BOH → B+ + OH-
KW je 10-14 (25 °C) (= konstantní !)
½ pKa - ½ log cHA = pH => pH = ½ pKa - ½ log cHA
slabé kyseliny (HA) [HA] ≠ [H+] HA ↔ H+ + ApH = ½ pKa - ½ log cHA slabé báze (BOH) [BOH] ≠ [OH-] BOH ↔ B+ + OH-
Souhrn:
Kdis ≤ 10–2
Kdis = [B+] [OH-] [BOH]
pH = - log c(H+)
pK = - log K
pH + pOH = 14 KYSELINY:
pH = - log cHA pH = ½ pKa - ½ log cHA
pOH = ½ pKb - ½ log cBOH => pH zásaditých roztoků: pH + pOH = 14 pH = 14 - pOH
Cvičení 1) 0,1M HCl, pH = ?, [H+] = ? [10-1 M, pH =1]
ZÁSADY:
pOH = - log cBOH pOH = ½ pKb - ½ log cBOH pH = 14 – pOH
6) z hodnoty pH silné jednosytné kyseliny vypočítejte koncentraci: pH = 3,0 [10–3 M ]
2) 0,01M KOH, pH = ?, [H+] = ? [10-12 M, pH = 12] 3) 0,01M octová kyselina, K = 1,8 x 10–5 , pH = ? [pK = 4,74; pH = 3,4] 4) 0,2M NH4OH; pK = 4,74; pH = ? [pOH = 2,72; pH = 11,3] 5) 0,1M mléčná kyselina; pH = 2,4; Ka = ? [pK=3,8; Ka = 1,58 x 10-4]
7) z hodnoty pH silné zásady vypočítejte koncentraci: pH = 11 [pOH = 3; c = 10–3 M ] 8) jak se změní pH silné kyseliny jejím naředěním? ? ∆ pH c1 = 0,1 c2 = 0,01 [∆ pH = 1 ] 9) jak se změní pH slabé kyseliny jejím naředěním? c1 = 0,1 c2 = 0,01 ? ∆ pH [∆ pH = 0,5 ]
„bikarbonátový pufr“
PUFRY (tlumivé, ústojné roztoky, nárazníky)
= systémy schopné vyrovnávat výkyvy pH: po přidání silné kyseliny nebo báze změní své pH jen nepatrně • používají se k udržování stabilní hodnoty pH • složení pufrů: „konjugovaný pár: kyselina / zásada“ * slabá kyselina + její sůl * slabá zásada + její sůl * 2 různé soli vícesytné kyseliny * amfoterní látky (např. proteiny)
HCO3H2CO3
NaHCO3 Na+ + HCO3H+ + HCO3+ H2CO3 + HCl + NaOH (H+ + Cl-) (Na+ + OH- )
smíchány → H2CO3
Na+ + HCO3-
H+ + H2CO3 Cl- + H2CO3
pH = pKa + log (cs / ca)
(pro kyselý pufr )
pOH = pKb + log (cs / cb )
(pro bazický pufr)
pH = 14 - pOH pK = disociační konstanta slabé kyseliny (pKa) nebo báze (pKb) cs = aktuální koncentrace soli v pufru ca = aktuální koncentrace slabé kyseliny v pufru cb = aktuální koncentrace slabé báze v pufru c = c´ x V c´ = koncentrace před smícháním složek pufru V = objem jednotlivé složky (kys., báze nebo soli)
HCO3-
Na+
+
Na+
+ HCO3+ H2CO3
H2O
HCO3- + H+↔ H2CO3
Henderson-Hasselbalchova rovnice
NaHCO3 ↔ Na+ + HCO3H2CO3 ↔ H+ + HCO3-
H+ + OH- ↔ H2O
Cvičení 10) 200ml 0,5M octové kyseliny + 100ml 0,5M octanu sodného => pufr; pKa = 4,76 pH = ?
[pH = 4,46 ]
11) 20ml 0,05M NH4Cl + ? ml 0,2M NH4OH => pufr o pH = 10; Kb = 1,85 x 10–5 pK = ? [pK = 4,73; 27 ml]
Cvičení
Cvičení
12) Která ze složek fosfátového pufru (HPO42- / H2PO4-) převažuje v krvi, jejíž pH = 7,40? pK(H2PO4-) = 7,0
14) Vypočítejte koncentraci HCO3- v krvi použitím Henderson-Hasselbalchovi rovnice pro bikarbonátový pufr: pH = pKa + log (cHCO3- / s x pCO2).
(2,5 = 25/10 = 5/2, tj. převažuje HPO42-)
13) Která ze složek fosfátového pufru (HPO42- / H2PO4-) převažuje v moči, jejíž pH = 6,0? pK(H2PO4-) = 7,0 (0,1 = 1/10, tj. převažuje H2PO4-)
Cvičení 15) Převeďte hodnoty pKa na hodnoty Ka (ve formě X.10-n, kde X je číselná hodnota zaokrouhlená na jedno desetinné místo a n je celé číslo).
Nakreslete struktury příslušných kyselin a pokuste se najít souvislost mezi strukturou a hodnotou Ka. a) kyselina máselná
pKa = 4,8
(1,6 x 10-5) b) kyselina β-hydroxymáselná
pKa = 4,4
(4,0 x 10-5) c) kyselina acetoctová (1,6 x 10-4)
pKa = 3,8
Ve vzorku krve byly naměřeny tyto hodnoty: pH = 7,44; parciální tlak CO2 (pCO2) = 5,33 kPa; hodnoty konstant jsou: pKa = 6,12; s = 0,225 mmol . L-1 . kPa-1 (37 °C). (25 mM)