ITP530
PEMBEKUAN PANGAN Purwiyatno Hariyadi phariyadi.staff.ipb.ac.id
ITP530/2015
phariyadi.staff.ipb.a.id
PEMBEKUAN Aspek engineering Design (keperluan refrigerasi, T) Laju pembekuan (the rate at which freezing progress)
Mutu produk Produktivitas ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 1
PEMBEKUAN • Penyimpanan produk pada T < suhu beku • Umumnya pada T < 28 °F (-2 °C), atau khususnya pada < 0 °F (-18 °C) • Sebagian besar air (~95%) beku • daya awet produk beku ` bbrp bulan --- tahun • Laju pembekuan dipengaruhi oleh bbrp faktor : perlu dikendalikan
• Pertumbuhan mikroorganisme dihambat, bbrp bahkan inaktif ITP530/2015
phariyadi.staff.ipb.a.id
PurwiyatnoHariyadi/IPN/ITP/Fateta/IPB
PEMBEKUAN Melting/Freezing
Things to notice: • Pressure and temperature both affect the phase of matter. • All three phases of matter exist at the triple point
pembekuan
Boiling/Condensating
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 2
PEMBEKUAN – pengaruhnya pd produk pangan PENGARUH POSITIF • Menurunkan/menghambat pertumbuhan m.o. • Menurunkan laju reaksi kimia/biokimia • Meningkatkan daya simpan produk • (3-40 lipat untuk setiap penurunan suhu 10°C) PENGARUH NEGATIF • Kerusakan kimia • Kerusakan fisik (textural) ITP530/2015
phariyadi.staff.ipb.a.id
PEMBEKUAN – pengaruhnya pd produk pangan
– Freezer burn ? • Package properly • Control temperature fluctuations in storage.
– Oxidation? • Off‐flavors • Vitamin loss • Browning
– Recrystallization? ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 3
Sifat Produk Pangan Beku - Penurunan titik beku = f (konsentrasi, BM) 2
Tf
Rg TA0 BMA . m
Tf K. m
dimana:
mol solut m molalitas 1000 mg pelarut TA0 titik beku pelarut murni R
Lar. X dlm air Tf = (1.86 m)oC
g
panas laten pembekuan ,
J mol . K
kJ kJ air 335 kg kg
BMA = Berat Molekul pelarut K = konstanta molal titik beku
1 1 1 ln X A R g TA0 TA ITP530/2015
kons tan ta gas 8 .314
. (A) air K , 273 K
XA = fraksi mol air 1 = panas laten pembekuan
phariyadi.staff.ipb.a.id
Sifat Produk Pangan Beku Contoh :
Ice cream mix dengan komposisi sbb: 10% butterfat 12% solid-not-fat (54.5%: laktosa) 15% sukrosa 0.22% stabilizer 37.22%
Ditanya Tf = ? 2
Tf
Rg TA0 BMA . m
mol solut kg solven
ITP530/2015
Asumsi bahwa hanya gula (laktosa + fruktosa) yang memp. Efek menurunkan titik beku) !!
L
m=? m
Air = 62.78%
Solut? sukrosa BM = 342 laktosa BM = 342 solut lain diabaikan !!
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 4
Sifat Produk Pangan Beku Contoh (lanjutan): Fraksi gula = 0.15 + 0.12 (0.545) = 0.2154 g/g Fraksi air = 0.6278 g gula 0 . 2154 0 .3431 Konsentrasi gula dlm air = 0 .6278 g air g gula 343 .1 343 ,1 mol gula 342 1000 g air 1 . 003 m m 1000 g air 1mol g mol 273 K2 18 8.314 J 1.003 mol .K 18 g kg mol Tf J 1000 . 335 kg Tf = 1,86 K ITP530/2015
phariyadi.staff.ipb.a.id
Panas Laten Pembekuan kJ
Air murni = 335kg Larutan solid x dlm air Contoh: Selada Strawberi Kacang panjang Kentang Daging kambing Kacang merah, biji kering Kurma kering
Air: ITP530/2015
335
kJ
= (335 mw) kg mw = Fraksi massa air
Kadar air
kJ
94.8 90.8 88.9 77.8 58.0 12.5 24.0
316.3 289.6 297.0 258.0 194.0 41.9 79.0
kg
Perhitungan berdasarkan pd rumus = 335 mw
kJ kg
335 10 3 J 18 10 3 kJ J 1 mol 6030 mol kg kg
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 5
Kurva Pembekuan : ….. untuk Air Murni T-t Diagram : A schematic freezing curve for water, displaying sensible heat loss (Regions I and III) and latent heat loss (Region II).
ITP530/2015
phariyadi.staff.ipb.a.id
ENERGY REMOVAL ASSOCIATED WITH FREEZING Removal of heat (Q) from Region I (sensible heat), II (latent heat), and III (sensible heat) : (1) Q1 = mCp1T1 m = weight of food Cp1 =specific heat of food above freezing T = temperature difference
(2) Q2 = mw (3) Q3 = mCp2T3
ITP530/2015
........>
mw = weight of water = latent heat ........> m = weight of food ........> C p2 = specific heat of frozen food ........> T = temperature difference 3 ........>
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 6
Kurva Pembekuan Suhu
Removal of sensible heat
Removal of latent heat
Super cooling Titik eutetik
Titik Beku air Titik beku = f(waktu) Air Larutan Waktu
Driving force for nucleation/crystallization (i.e. T = T – Tf) ITP530/2015
phariyadi.staff.ipb.a.id
Kurva Pembekuan 3-21
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 7
Kurva Pembekuan : ….. untuk Produk Pangan
T Ti Tf
Setelah terjadi pembekuan, konsentrasi solute pada sisa larutan menjadi lebih tinggi .....> penurunan titik beku lebih besar .....> T f () t You can’t freeze all of the water (Still have unfrozen (unfreezable) water : 5-10%)
ITP530/2015
phariyadi.staff.ipb.a.id
Kurva Pembekuan : ….. untuk Produk Pangan
You can’t freeze all of the water (Still have unfrozen (unfreezable) water : 5-10%) ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 8
Kurva Pembekuan
ITP530/2015
phariyadi.staff.ipb.a.id
Kurva Pembekuan
ITP530/2015
…. for Fish
…. for Fish
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 9
INTITIAL FREEZING TEMPERATURE Buah anggur (grape)
........>
kadar air 84.7% ........> T = -1.8oC f
(271.2oK)
J 1 = 6003 1 1 1 mol ln XA R g TA0 TA J Rg = 8.314 mol . K XA=?
J mol J 8 ,314 mol . K 6003
1 1 ln X A 273 K 271 . 2 K
Ln XA = - 0.01755 m grape XA = 0.9826 (effective mol fraction of water ) ml
ITP530/2015
phariyadi.staff.ipb.a.id
INTITIAL FREEZING TEMPERATURE XA = fraksi mol air = 0.9826 XA = 0.9826 =
84 . 7 18 84 . 7 15 . 3 18 BM E
BME = 183.61 Juice anggur dapat dianggap bertingkah laku mirip/sama dgn - lar. x dlm air g - BMx = 183.61 mol - XA = 09826 - Xx = ........ dst ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 10
INTITIAL FREEZING TEMPERATURE
ITP530/2015
phariyadi.staff.ipb.a.id
PRODUK BEKU? Hubungan antara % air beku vs. suhu
% air beku
100
0
ITP530/2015
- 40oC
0oC
Suhu
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 11
PRODUK BEKU? Hubungan antara % air beku vs. suhu
ITP530/2015
phariyadi.staff.ipb.a.id
LAJU PEMBEKUAN
• EQUIPMENT RELATED • rate of heat transfer • size of refrigeration unit • FOOD/PRODUCT QUALITY • slow freezing • result in formation of few, large ice crystals • damaging to cell structure/quality • rapid freezing • results in many small ice crystals • gives best product quality • water ice: ~ 9% increase in volume ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 12
LAJU PEMBEKUAN
ITP530/2015
phariyadi.staff.ipb.a.id
LAJU PEMBEKUAN
Slow Freezing
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 13
LAJU PEMBEKUAN
Rapid Freezing
ITP530/2015
phariyadi.staff.ipb.a.id
LAJU PEMBEKUAN
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 14
LAJU PEMBEKUAN
ITP530/2015
phariyadi.staff.ipb.a.id
LAJU PEMBEKUAN
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 15
PERHITUNGAN WAKTU PEMBEKUAN - Pendugaan keperluan pembekuan ukuran sistem “mechanical compression” evaluasi beban refrigerasi/pembekuan - Disain peralatan + proses, untuk : memperoleh pembekuan yg diinginkan - koef pindah panas - laju pembekuan
ITP530/2015
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN
• Time-temperature method • Time required to freeze between two temperatures (usually T = -5oC or –10oC) • Velocity of ice front - rate of freezing - must be able to see ice front • Appearance of specimen - internal conditions • Thermal methods - calorimetric techniques - not real-world condition
ITP530/2015
+ Time-temp. methods most common + many people use time to freeze to – 10oC as standard.
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 16
PERHITUNGAN WAKTU PEMBEKUAN
•
panas laten adalah energi utama yang hrs diperhitungkan pada proses pembekuan • ~ 75% total energi pd proses pembekuan 333.3 kJ/kg air 144 BTU/lb air
•
Terjadi perubahan sifat fisik bahan selama proses pembekuan ~ f (T,m)
ITP530/2015
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN: Plank’s Method (for infinite slab) Plank’s equation is an approximate analytical solution for a simplified phase-change model. • Plank assumed that the freezing process: (a) commences with all of the food unfrozen but at its freezing temperature. (b) occurs sufficiently slowly for heat transfer in the frozen layer to take place under steady-state conditions. ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 17
PERHITUNGAN WAKTU PEMBEKUAN: Plank’s Method (for infinite slab)
Tf T1
ITP530/2015
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN: Plank’s Method (for infinite slab) x frozen
unfrozen Tf
frozen Tf
Ts
Ts
T1
T1 q
q a
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 18
PERHITUNGAN WAKTU PEMBEKUAN: Plank’s Method (for infinite slab) Convection: BTU hr
q
= Qt = h (Ts – T1) ...... Pers. 1
h = convective heat transfer coeff. at the product surface. Conduction: k .A q f Tf Ts .......... x Tf = initial freezing point x = x (t)
Pers. 2
Combine 1&2: T T q f 1 ........... Pers. 3 x 1 kf h ITP530/2015
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN: Plank’s Method (for infinite slab) Jumlah energi yang dibebaskan selama proses pembekuan qdt = mi f = f dV f qdt = f f A dx so,
q = f f A dx/dt .............. Pers. 4
Ingat Pers 3 : T T q f 1 x 1 kf h
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 19
PERHITUNGAN WAKTU PEMBEKUAN: Plank’s Method (for infinite slab) Kombinasi Pers. 3 dan 4
dx T f T1 A x 1 dt kf h T dt
f f A
………………….>
x 1 f f dx Tf k f h
1
Pembekuan selesai lempeng jika x = a/2 a 2
Tf x 1 dx T T f f f 1 dt h 0 0 k f
tf Ti =
2 a f f a T f Ti 8 k 2 h
Suhu Pembekuan Suhu ruang pembeku
ITP530/2015
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN: General Plank’s Equation tf
2 Pa f f Ra h T f Ti k f
Where: P R a
Infinite slab 1/2 1/8 Thickness
Sphere 1/6 1/24 Diameter
Infinite sylinder 1/4 1/6 Diameter
Cube 1/8 1/24 Edge
f = latent heat of fusion [=] kJ kg kJ water = 333.22 = 144 BTU kg lb ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 20
PERHITUNGAN WAKTU PEMBEKUAN: General Plank’s Equation P dan R untuk bentuk bata a : dimensi terpendek c : dimensi terpanjang b
c a
B2 = c/a B1 = b/a Lihat chart/diagram : dengan diketahui nilai B2 dan B1 maka dapat dibaca nilai P dan R
ITP530/2015
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN: General Plank’s Equation
In this figure, β1 and β2 are the ratios of the two longest sides to the shortest. It does not matter in what order they are taken. Chart providing P and R constants for Plank’s equation when applied to a brick or block geometry. ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 21
PERHITUNGAN WAKTU PEMBEKUAN: General Plank’s Equation
Limitation of Plank’s method: • no superheating or supercooling • thermal properties are constant • can’t incorporate a variable heat transfer coeff. • can’t handle varying freezing point
ITP530/2015
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN: Pham’s Equation Pham (1986): improved Plank’s equation : • The mean freezing temperature is defined as
T fm 1 . 8 0 . 263 Tc 0 . 105 Ta where Tc is final center temperature and Ta is freezing medium temperature. The freezing time is given by
tF ITP530/2015
d c H 1 H 2 N 1 Bi E f h T1 T2 2
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 22
PERHITUNGAN WAKTU PEMBEKUAN: d H 1 H 2 N Bi Pham’s Equation tF c 1 E f h T1 T2 2 where dc = characteristic dimension ‘r’ or shortest distance Ef = a shape factor (‘1’ for slab, ‘2’ for cylinder and ‘3’ for sphere)
H 1 u c u ( T i T fm )
H 2 f [ L f c f (T fm Tc )] T T fm T1 i 2 T 2 T fm T a
ITP530/2015
T a
ΔH1 = Enthalpy change during pre-cooling, J/m3 ΔH2 = Enthalpy change during phase change and post-cooling period, J/m3
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN: Pham’s Equation In Pham’s method, the value of Ef is adjusted (Eq. 7.16): Ef = G1 + G2E1 + G3E2 where the values of G1, G2 and G3 are given in Table 7.1 and E1 and E2 are calculated from Eqs. 7.17 & 7.19 and Eqs. 7.18 & 7.20, respectively. We can now follow Example 7.2 (Singh and Heldman) and compare the freezing time calculations based on Pham’s approach and Plank’s equation.
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 23
PERHITUNGAN WAKTU PEMBEKUAN: Pham’s Equation • Alternate approach to determine the shape factor Ef in the calculation of freezing time:
2 2 ) (1 ) N Bi N Bi E 1 21 2 2 ( 1 ) ( 22 2 ) N Bi N Bi (1
– For infinite slab, the shape factor E = 1 (since 1=infinite, 2=infinite) – For an infinite cylinder, the shape factor E=2 (since 1=1, 2=infinite) – For a sphere, the shape factor, E = 3 (1=1, 2=1)
ITP530/2015
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN: Pham’s Equation • For different shapes e.g. ellipsoid, rectangular brick, finite cylinder etc., the shape factor can be calculated:
2 2 ) (1 ) N Bi N Bi E 1 21 2 2 ( 1 ) ( 22 2 ) N Bi N Bi (1
N Bi
hc R k
• Same characteristic dimension R: shortage distance from thermal center to the surface of the object. • Smallest cross‐sectional area A ; the smallest cross‐section that incorporates R. • Same volume V V A 2 • 1 and 2 can be determined: 1 2
R
ITP530/2015
4 3
1 ( R 3 )
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 24
PERHITUNGAN WAKTU PEMBEKUAN: CONTOH Lean beef with 74.5% moisture content and 1 m length, 0.6 m width, and 0.25 m thickness is being frozen in an air‐blast freezer with hc = 30 W/m2.K and air temperature of ‐30 oC. If the initial product temperature is 5 oC. Estimate the time required to reduce the product temperature to ‐10 oC. An initial freezing temperature of ‐1.75 oC has been measured for the product. The thermal conductivity of frozen beef is 1.5 W/m.K, and the specific heat of unfrozen beef is 3.5 kJ/kg.K. A product density of 1050 kg/m3 can be assumed, and a specific heat of 1.8 kJ/kg.K for frozen beef can be estimated from properties of ice. – – – – – – – – – – – –
Product length d2 = 1 m Product width d1 = 0.6 m Product thickness a = 0.25 m Convective heat‐transfer coefficient hc = 30 W/m2.k Air temperature T = ‐30 oC Initial product temperature Ti = 5 oC Initial freezing temperature TF = ‐1.75 oC Product density = 1050 kg/m3 Enthalpy change (H) = 0.745333.22 kJ/kg = 248.25 kJ/kg (estimate) Thermal conductivity k of frozen product = 1.5 W/m.K Specific heat of product (Cpu) = 3.5 kJ/kg.K Specific heat of frozen product (Cpf) = 1.8 kJ/kg.
ITP530/2015
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN: CONTOH/CEK!!! (1) Determine shape factor:
0.25 0.6 0.25 0.6 A 3.056 2 0 . 25 R (0.125) 2 )2 ( 2 V 0.25 0.6 1 2 5.999 4 3 4 3 1 ( R ) 3.056 (0.125) 3 3 (2) The Biot number is : hR 30 0.125 2.5 N Bi c 1.5 k
1
(3) Shape factor E: 2 2 2 2 ) (1 ) (1 ) (1 ) NBi NBi 2 .5 2 . 5 1 1.197 E 1 2 2 2 3 . 056 2 5.999 2 2 2 2 1 2 (3.056 ) (5.999 ) (1 ) (2 ) 2.5 2.5 NBi NBi (1
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 25
PERHITUNGAN WAKTU PEMBEKUAN: CONTOH/CEK!!! (4) T3 :
T3 1 .8 0 .263 ( 10 ) 0 .105 ( 30 ) 3 .98
o
C
(5) H1: Cu(Ti‐T3)
H1 Cu (Ti T3 ) (3500J / kg.K) (1050kg / m3 ) [5 (3.98) oC] 33001500J / m3 H 2 L C f (T3 T f ) (333.22 kJ / kg 1000J / kJ ) (0.745) (1050kg / m3 ) 1800J / kg.K (1050kg / m3 ) (3.98 (10)) 272,039,145 J / m3 (6) T1 and T2 :
ITP530/2015
(Ti T3 ) (5 3.98) Ta (30) 30.51 oC 2 2 T2 T3 Ta 3.98 (30) 26.02 oC
T1
phariyadi.staff.ipb.a.id
PERHITUNGAN WAKTU PEMBEKUAN: CONTOH/CEK!!!
N Bi 0.125 33001500 272039145 R H1 H 2 2.5 (7) tslab : t slab h [ T T ](1 2 ) 30 [ 30.51 26.02 ](1 2 ) 1 2 108,156 s
(8) t = tslab/E;
t
t slab E
108 ,156 90355 s 25 .1 hr 1 .197
Required time for lean beef (1 m 0.6m 0.25 m) will be 25.1 hours to freeze.
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 26
METODE PEMBEKUAN 1.
AIR FREEZING - Products frozen by either "still" or "blast" forced air. • cheapest (investment) • "still" slowest, more changes in product • "blast" faster, more commonly used
2.
INDIRECT CONTACT - Food placed in direct contact with cooled metal surface. • relatively faster • more expensive
3.
DIRECT CONTACT - Food placed in direct contact with refrigerant (liquid nitrogen, "green" freon, carbon dioxide snow) • faster • expensive • freeze individual food particles
ITP530/2015
phariyadi.staff.ipb.a.id
METODE PEMBEKUAN – commercial freezing
• Blast freezing – a very cold air blasted on the food cools food very quickly. • Close indirect contact – food is placed in a multi‐plate freezer and is rapidly frozen. • Immersion – food is placed into a very cold liquid (usually salt water – brine) or liquid nitrogen, this is known as cryonic freezing. ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 27
METODE PEMBEKUAN --- freezing equipment
• Mechanical Freezers ‐ Evaporate and compress the refrigerant in a continuous cycle • Cryogenic Systems ‐ Use solid and liquid CO2, N2 directly in contact with the food
ITP530/2015
phariyadi.staff.ipb.a.id
KLASIFIKASI PEMBEKUAN -- berdasarkan pada laju pergerakan “ice front” • Slow Freezers 0.2 cm/h ‐ Still air and cold stores • Quick Freezers 0.5‐3 cm/h ‐ Air blast and plate freezers • Rapid Freezers 5‐10 cm/h ‐ Fluidized bed freezers • Ultra rapid Freezers 10‐100 cm/h ‐ Cryogenic freezers ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 28
ALAT PEMBEKU
ITP530/2015
phariyadi.staff.ipb.a.id
ALAT PEMBEKU
A typical fluidized bed freezer
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 29
ALAT PEMBEKU
ITP530/2015
phariyadi.staff.ipb.a.id
ALAT PEMBEKU
Batch Freezer Blast Type
Source: Unit operations for food the food industries by: W.A. Gould ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 30
ALAT PEMBEKU Hydraulic Pump
Top Pressure plate Connecting Linkage Corner Headers Refrigerant hoses Trays
Polyurethane and polystyrene insulated doors
ITP530/2015
Contact plates
Source: Unit operations for food the food industries by: W.A. Gould phariyadi.staff.ipb.a.id
ALAT PEMBEKU
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 31
ALAT PEMBEKU
ITP530/2015
phariyadi.staff.ipb.a.id
ALAT PEMBEKU
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 32
ALAT PEMBEKU
ITP530/2015
phariyadi.staff.ipb.a.id
Purwiyatno Hariyadi Email:
[email protected] Web: phariyadi.staff.ipb.ac.id 33