INOVACE ODBORNÉHO VZDĚLÁVÁNÍ NA STŘEDNÍCH ŠKOLÁCH ZAMĚŘENÉ NA VYUŽÍVÁNÍ ENERGETICKÝCH ZDROJŮ PRO 21. STOLETÍ A NA JEJICH DOPAD NA ŽIVOTNÍ PROSTŘEDÍ
CZ.1.07/1.1.00/08.0010
ENERGETICKÁ ÚVAHA Mgr. LUKÁŠ FEŘT
TENTO DOKUMENT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM ROZPOČTEM ČESKÉ REPUBLIKY
V rámci projektu: Inovace odb. vzdělávání na stř. školách zaměřené na využívání energ. zdrojů pro 21. st.
Zadání: Na základě podkladů zde předložených, internetu a publikací se rozhodni, v jaké míře bys použil(a) konkrétní typ elektráren pro získávání elektřiny. Svůj názor odůvodni (počet jaderných elektráren, počet tepelných elektráren, plocha slunečních elektráren, …). Vše musí vycházet z reálných předpokladů.
Informace:
Obrázek 1: zdroj: www.cez.cz
Obrázek 2: zdorj: www.cez.cz
Stránka 1
V rámci projektu: Inovace odb. vzdělávání na stř. školách zaměřené na využívání energ. zdrojů pro 21. st.
Jaderná elektrárna Jaderná elektrárna je výrobna elektrické energie resp. technologické zařízení, sloužící k přeměně vazebné energie jader těžkých prvků na elektrickou energii. Skládá se obvykle z jaderného reaktoru, parní turbíny s alternátorem a z mnoha dalších pomocných provozů. V principu se jedná o parní elektrárnu, ve které se energie získaná jaderným reaktorem používá k výrobě páry v parogenerátoru. Tato pára pohání parní turbíny, které pohání alternátory pro výrobu elektrické energie. Někdy používáný pojem atomová elektrárna je chybný, neboť z atomu se energie vyrábí i v elektrárnách na fosilní paliva. Současné jaderné elektrárny využívají jako palivo převážně obohacený uran, což je přírodní uran, v němž byl zvýšen obsah izotopu 235U z původních zhruba 0,7 % na 2 – 5 %. Podle odhadů geologů a OECD vydrží známé a předpokládané zásoby uranu nejméně 270 let. Jaderné elektrárny jsou z energetického hlediska vhodné především pro výrobu elektrické energie v režimu základního zatížení (je vhodné, aby vyráběly energii pokud možno nepřetržitě, neboť regulace jejich výkonu je poměrně omezená a velmi nákladná, tudíž velmi neekonomická).
Historie Úplně první reaktor byl spuštěn v USA, ten však sloužil prvotně k výrobě plutonia. První elektrárna byla postavena ve Velké Británii, i ta však nedodávala proud do sítě. První elektrárna, která dodávala proud do sítě (výkon 5000 kW), byla spuštěna až v roce 1954 v Obninsku v bývalém SSSR. Za první skutečně komerční jadernou elektrárnu je považována elektrárna Calder Hall v Británii spuštěná v roce 1956.
Protesty a útlum Část obyvatelstva v některých vyspělých zemích protestuje proti jaderné energetice a tyto protesty nabyly na intenzitě v poslední čtvrtině 20. století, obzvlášť po černobylské havárii. Podstatou protestů jsou zejména poukazy na rizika spojená s provozem jaderných elektráren, s jejich pořizovací cenou a problémy s jaderným odpadem (resp. použitým jaderným palivem) a těžbou paliva. V některých zemích existují díky soustavnému tlaku odpůrců jaderné energie plány na odklon od jaderného programu. Příkladem může být Rakousko, kde referendum v roce 1978 50,5 %
Stránka 2
V rámci projektu: Inovace odb. vzdělávání na stř. školách zaměřené na využívání energ. zdrojů pro 21. st. hlasů rozhodlo o tom, že téměř hotová jaderná elektrárna Zwentendorf nebude uvedena do provozu a stát se od jaderné energie odkloní. Místo jaderné byla postavena klasická elektrárna Dürnrohr, která spaluje polské a české uhlí. Velké protesty, zvláště z rakouské strany, provázely a provázejí i dostavbu a provoz české elektrárny Temelín. Německo má na základě energetické politiky z roku 1998 program útlumu jaderné energetiky, na němž se v roce 2000 dohodla vláda s provozovateli jaderných elektráren. Tento program byl sice v roce 2010 z rozhodnutí vládní koalice částečně zrušen a doba provozu jaderných elektráren prodloužena o 8 až 14 let, po tragédii ve Fukušimě se však Německo vrátilo víceméně k původní dohodě. Jaderné elektrárny budou odstavovány postupně tak, jak budou nahrazovány obnovitelnými zdroji.
Stoupenci Proti početným skupinám odpůrců „jaderné energie“ stojí početné skupiny stoupenců, kteří považují jadernou energetiku za jediné možné řešení hrozící energetické krize a globálního oteplování. Vidí jaderné elektrárny jako jedno z mála ekologicky přijatelných a reálných řešení energetických problémů pro 21. století. Často je zmiňována nutnost co nejrychlejšího vývinu fúzního reaktoru a jaderné elektrárny jsou považovány za jediný přijatelný prostředek, kterým se dá překlenout přechodné období vývoje a zavádění tohoto nového zdroje energie.
Stav ve světě V roce 2009 bylo v provozu 436 jaderných reaktorů ve 31 zemích světa. Za tento rok vyrobily 2558 TWh elektrické energie, což bylo 13-14% světové poptávky. Dalších 30 reaktorů je ve výstavbě (zvláště v asijských zemích, v Rusku a Finsku) a řada zemí (USA, Bulharsko, Slovensko, Litva) rozhodly o jejich nové výstavbě. Díky provozu jaderných elektráren ročně nemusí být vypuštěno 1,8 mld. t CO2 Nejvíc energie z jaderných elektráren se vyrábí v Litvě (79,9 % k roku 2003) Francii (77 % k roku 2003), Německu (28,1 % k roku 2003), USA (19,9 % k roku 2003), Japonsku a Rusku. V Rusku však přežívají staré jaderné elektrárny, některé z nich podobného typu jako Černobyl a se zastaralou technologií. K zastavení některých z nich je Rusko tlačeno mezinárodním společenstvím. V Česku jsou v provozu dvě jaderné elektrárny (Temelín a Dukovany) s celkovým výkonem 3760 MW; pokrývají přibližně 31 % celkové spotřeby elektřiny v Česku.
Stránka 3
V rámci projektu: Inovace odb. vzdělávání na stř. školách zaměřené na využívání energ. zdrojů pro 21. st. Tepelná elektrárna Tepelná elektrárna je výrobna elektrické energie, tj. elektrárna. Jedná se o technologický celek, který vyrábí elektrickou energii přeměnou z chemické energie vázané v palivu (či jiného vhodného zdroje energie) prostřednictvím tepelné energie. Obvykle je termínem „tepelná elektrárna“ označována spalovací elektrárna spalující běžné fosilní palivo (zpravidla uhelná elektrárna, případně plynová elektrárna nebo ropná elektrárna). Na principu tepelné elektrárny pracují i další typy elektráren, které využívají principu změny tepelné energie na elektrickou (kupř. jaderné elektrárny, geotermální elektrárny, tepelné sluneční elektrárny aj.).
Účinnost Účinnost přeměny energie je dosud nízká - i v nejmodernějších elektrárnách se pohybuje nejvýš kolem 50 %, jednou z cest k efektivnějšímu využití energie je kogenerace.
Princip funkce Chemická energie vázaná v palivu, je běžným procesem spalování přeměňována nejprve na energii tepelnou. Ta se poté dále převádí nejprve na mechanickou energii resp. kinetickou energii, teplonosným médiem zde bývá nejčastěji běžná vodní pára vyráběná v parogenerátoru. Pára je přiváděna do turbíny, což je zařízení mechanicky spojené s elektrickým generátorem respektive s alternátorem. Kinetická energie je z parní turbíny vyváděna do alternátoru společným hřídelem, mechanická kinetická energie z hřídele stroje se tak dále převádí pomocí alternátoru na elektrickou energii, která je ze stroje vyváděna do elektrorozvodné sítě.
Možná paliva či jiné zdroje tepelné energie
Tepelná energie je obvykle získávána chemický procesem spalování vhodného paliva, kdy hořením (t.j. jeho oxidací) je uvolňována chemická energie vázaná v palivu. Obvykle se jedná o tato fosilní paliva: o uhlí o topné plyny (např. svítiplyn, zemní plyn, kychtový plyn, generátorový plyn, kalový plyn) o ropa nebo její deriváty o biomasa (kupř. dřevo, sláma či jiný vhodný materiál považovaný za biologický odpad) o rašelina
tepelnou energii je možné získat i fyzikálně chemickým procesem štěpení atomových jader některých chemických prvků (transurany). Procesem řízeného rozpadu jádra atomu je
Stránka 4
V rámci projektu: Inovace odb. vzdělávání na stř. školách zaměřené na využívání energ. zdrojů pro 21. st. uvolňována jaderná energie vázaná v jaderném palivu, toto palivo se používá v jaderných elektrárnách, zpravidla se jedná o tyto prvky : o uran o plutonium
Tepelná elektrárna však může získávat teplo i převodem tepla z přírodního prostředí v podobě geotermální energie, tepelné elektrárny tohoto typu bývají označovány pojmem geotermální elektrárna
Tepelnou energii lze získat též soustředěním slunečního záření do centrálního ohniska, kde je voda z kapalné formy přeměňována na vodní páru, která pak pohání turbínu - přeměna světelné energie na energii elektrickou pak probíhá v solární elektrárně.
Vodní elektrárny Vodní elektrárna je výrobna elektrické energie, jedná se o technologický celek, přeměňující potenciální energii vody na elektrickou energii. Jedná se také o vodní dílo ve smyslu platných právních předpisů. Obvyklý typ říční vodní elektrárny se skládá z přehradní hráze nebo jezu, tj. vodního díla, které zadržuje vodu a strojovny, obsahující vodní turbíny a alternátory, turbíny s alternátory tvoří vždy soustrojí umístěné na společném hřídeli, nebo jsou spolu spojeny nějakým typem převodu.
Teorie Množství využitelné energie vodního toku závisí na výškovém rozdílu (čili na spádu resp. vzájemném převýšení) dvou různých vodních hladin a na množství protékající vody (průtoku vody). Pro energetické využití jakéhokoliv vodního toku bývá většinou nutné uměle vytvořit výškový rozdíl hladin. Toho dosahujeme tzv. vzdutím vody, což bývá zajištěno zřízením nižších jezů či vyšších přehrad. U přečerpávacích vodních elektráren bývá obvyklé vzdutí navíc doplněno o zvláštní výše položenou nádrž, tzv. (horní nádrž), která může být umístěna někde stranou od původního vodního toku. Jezy
Jezy lze dosáhnout spádů jen 10 až 20 m. Vodním elektrárnám konstruovaným pro tyto malé spády říkáme nízkotlaké průtočné. Kaplanovy turbíny je možné použít i pro velmi malé spády okolo 0,6 metrů i na těch nejmenších jezech.
Stránka 5
V rámci projektu: Inovace odb. vzdělávání na stř. školách zaměřené na využívání energ. zdrojů pro 21. st. Přehrady
Přehradou lze vzdout vodu až do výše 100 m. Takovým elektrárnám říkáme středotlaké. Pokud používají spády ještě vyšší, nazýváme je vysokotlaké. V České republice je dnes většina vodních elektráren postavena právě při přehradách, v minulosti však bývaly malé vodní elektrárny v provozu téměř na každém jezu. Hráz přehrady bývá většinou tvořena litým betonem, v praxi se vyskytují i menší hráze sypané. Uvnitř hráze se nachází revizní, větrací a drenážní chodby (pro odvod prosakující vody). Ocelovým potrubím je voda vedena k vodním turbínám. Vstup vody do potrubí je opatřen čisticím zařízením zvaným česle a rychlouzávěrem, který při poruše uzavře přívod vody. Elektrárna se obvykle nachází pod přehradní hrází; někdy je do ní rovnou vestavěna.
Výhody a nevýhody vodních elektráren výhody
energie vodních toků se počítá k obnovitelným zdrojům - nelze ji vyčerpat. Zároveň její provoz minimálně znečišťuje okolí. Vodní elektrárny vyžadují minimální obsluhu i údržbu a lze je ovládat na dálku. Malé vodní elektrárny prakticky nevytvářejí zaplavenou plochu Mohou startovat během několika sekund a dispečink je tak může používat jako špičkový zdroj k pokrytí okamžitých nároků na výrobu elektrické energie. Přehradní hráz dokáže zabránit i menším povodním, velké katastrofální povodně však ovlivňuje velmi málo Přehradní jezera mohou sloužit i pro jiné další účely, zejména pro rekreační účely nebo jako zdroje pitné či užitkové vody čili pro vodohospodářské účely, často bývají vhodné i pro říční rybolov
nevýhody
u přehradních nádrží značná cena a čas výstavby a nutnost zatopení velkého území závislost na stabilním průtoku vody přehradní hráze a jezy brání běžnému lodnímu provozu na řece, je nutno vybudovat systém plavebních komor resp. zdymadel přehradní hráze a vyšší jezy brání tahu ryb, je nutno vybudovat systém cest pro ryby riziko havárie
Solární elektrárna Sluneční elektrárna je technické zařízení, kterým se přeměňuje energie ze slunečního záření na energii elektrickou.
Stránka 6
V rámci projektu: Inovace odb. vzdělávání na stř. školách zaměřené na využívání energ. zdrojů pro 21. st. Lze ji získat přímo a nepřímo: 1. fotovoltaická elektrárna (FVE) je tím, co se obvykle označuje jako sluneční elektrárna, solární park atd. Fotovoltaika využívá světlo. Sluneční panely na družicích a kosmických lodích dodávají energii přístrojům na palubě. Solární panely mohou být různých typů, od klasických křemíkových k těm složeným z tenkovrstvých solárních článků. 2. tepelná elektrárna využívá teplo ze slunečních sběračů nebo heliostatů. Jde o soustředění slunečních paprsků z velké plochy do co nejmenší plochy absorbéru ve kterém dojde k ohřevu teplonosné kapaliny. Další část elektrárny již funguje totožně z elektrárnou tepelnou. Někdy se také označuje jako "koncentrační solární elektrárna" nebo "solární termální elektrárna".
Domácí sluneční elektrárna Kolik energie solární elektrárna vyrobí se logicky odvíjí od intenzity slunečního záření. Pokud je obloha bez mráčku, výkon slunečního záření je kolem 1kW/m2. Když se však obloha zatáhne, sluneční záření je až 10krát méně intenzivní. V tuzemsku je průměrná intenzita slunečního záření odhadována na 950–1340 kW na m2 za rok. Nejvhodnější oblastí je jižní Morava. Počet slunečních hodin v České republice je v průměru 1330–1800 hodin ročně. Konkrétní údaj vážící se k místu, v němž plánujete stavět solární elektrárnu, poskytuje Český hydrometeorologický ústav. Vždy nicméně záleží na konkrétním místě, které pro stavbu solární elektrárny zvolíte. Intenzitu a dobu slunečního záření ovlivňuje nadmořská výška, oblačnost a další lokální podmínky jako jsou časté ranní mlhy, znečištění ovzduší či úhel dopadu slunečních paprsků. Množství energie z fotovoltaických panelů pro různá místa, čas a sklon je možné spočítat zde. Na místě je samozřejmě také otázka kapacity. Jinými slovy: kolik se na plochu střechy (či na jiné místo zvolené pro instalaci elektrárny) vejde solárních panelů? Obecně platí, že 1 kWp (maximální výkon elektrárny) zabere asi 8–10 m2. Tato plocha je schopna vyrobit přibližně 1 MWh ročně. Zdroj: www.wikipedia.cz
Stránka 7