Jan Suchy
[email protected] +420 737 264 298
IBM POWER7 pod drobnohledem
© 2010 IBM Corporation
IBM Power Systems
Agenda…. 1) IBM POWER7 pod drobnohledem
IBM PowerSystems POWER7 procesor Servery s P7 Výkonnost architektury IBM PowerVM Virtualizace - technologie Efektivní dynamická infrastruktura
2) Virtualizace IBM PowerVM přínosy a úspory v praxi
Konsolidace a centralizace IT Teorie Metodologie Praktická ukázka
© 2010 IBM Corporation
IBM PowerSystems
- POWER7 procesor - Servery s POWER7 - Výkonnost architektury
© 2010 IBM Corporation
IBM Power Systems
Processor Technology Roadmap
POWER8 POWER7 45 nm
POWER6 65 nm
POWER5 130 nm
POWER4 180 nm
Dual Core Chip Multi Processing Distributed Switch Shared L2 Dynamic LPARs (32)
2001
Dual Core Enhanced Scaling 2way SMT Distributed Switch + Core Parallelism + FP Performance + Memory bandwidth + Virtualization (CPU)
2004
Dual Core High Frequencies Virtualization (Mobility) Memory (SharedPool) Altivec Instruction Retry Dyn Energy Mgmt SMT + Protection Keys DECIMAL FP
2007
Multi Core (8c) On-Chip eDRAM L3 Power Optimized Cores Mem Subsystem ++ (6x) 4way SMT++ Reliability + VSM & VSX (AltiVec) Protection Keys+ DECIMAL FP
Concept Phase
2010 © 2010 IBM Corporation
IBM Power Systems
Výkonnost architektury
© 2010 IBM Corporation
IBM Power Systems
POWER, Performance, Virtualization
rPerf per KWatt
30X increase in performance per watt 26X increase in rPerf performance 9+ years of changing the UNIX landscape
DLPAR 1,0 CPU No Virtual I/O
POWER4™ p670 1.1 GHz rPerf: 24.46 KWatts: 6.71
POWER4+™ p670 1.5 GHz rPerf: 46.79 KWatts: 6.71
uDLPAR 0,1 CPU Virtual I/O VIOS Shared pool 2way SMT
POWER5™ p5-570 1.65 GHz rPerf: 68.4 KWatts: 5.2
POWER5+™ p570 1.9 GHz rPerf: 85.20 KWatts: 5.2
uDLPAR 0,1 CPU Virtual I/O + 8Gb, HEA Shared pool, RAM, Ex 4way SMT
uDLPAR 0,1 CPU Virtual I/O + 8Gb, HEA Shared pool, RAM 2way SMT
POWER6™ Power 570 4.7 GHz rPerf: 134.35 KWatts: 5.6
POWER6™ Power 570 4.2 GHz rPerf: 193.25 KWatts: 5.6
POWER7™ Power 780 3.8 GHz
© 2010 IBM Corporation
IBM Power Systems
The highest performing 4-socket system on the planet
POWER7 continues to break the rules with more performance SPECint_rate
Itanium HP rx6600
7
SPARC Sun T5440
x86 HP DL585
Power 750
POWER7 Power 750 with PowerVM © 2010 IBM Corporation
IBM Power Systems
More SAP performance than any 8-socket system in the industry Comparable to a 128-core, 32-socket Sun M9000
15,600 SAP users on SAP SD 2 Tier
Power 750 Express with DB2
8-core Sun Fire X4270 Xeon 5500
2-sockets 8
24-core 32-core 32-core 48-core 48-core 128-core HP DL585 Sun T5440 Power 750 HP DL785 Sun x4640 Sun M9000 AMD AMD AMD
4-sockets
8-sockets
•Best SAP 2-Tier Results for 2, 4 , 8 and 16 sockets. •See SAP Benchmarks chart for detail or SAP website http://www.sap.com/solutions/benchmark/sd2tier.epx
32-sockets © 2010 IBM Corporation
IBM PowerVM
- Virtualizace – technologie - Virtual I/O server, NPIV - Efektivní dynamická infrastruktura
© 2010 IBM Corporation
IBM Power Systems
Benefits of Using PowerVM on POWER7
Support for 1000 LPARs (VMs) per server – Run up to 160 LPARs on a Model 750 (Feb 2010) – Run up to 320 LPARs on a Model 750 (Oct 2010 SoD)
Increased CPU cores and memory capacity support more powerful virtualized workloads and higher consolidation ratios Superior TCO and ROI compared to competing UNIX and x86-based platforms (including virtualization) Use live partition mobility to migrate workloads from POWER6 to POWER7 platforms with zero downtime
© 2010 IBM Corporation
IBM Power Systems
PowerVM Technologies The leading virtualization platform for UNIX, i and Linux enables a more agile and responsive infrastructure
Hypervisor Support for multiple operating environments
Dynamic Logical Partitioning Micro-partitioning, resource movement
Multiple Shared Processor Pools
VIOS
Cap processor resources for a group of partitions
Virtual I/O Server Virtualizes resources for client partitions
Integrated Virtualization Manager Simplifies partition management for entry systems
Power Hypervisor
Shared Memory Pool Memory Expansion
Lx86 Supports x86 Linux applications
Live Partition Mobility Move running AIX and Linux partitions
System Planning Tool Simplifies the planning for and installation of Power servers with PowerVM © 2010 IBM Corporation
IBM Power Systems
PowerVM Virtualization Option Dynamically Resizable
Virtual I/O Server Partition
3 Cores
Int Virt Manager
Linux
6 2 Cores Cores
6 Cores
Storage Sharing Ethernet Sharing Virtual I/O paths
POWER Hypervisor
Web Browser
IBM i AIX V6.1 AIX V5.3
AIX V5.3
AIX V6.1
AIX V6.1
AIX V5.3 Linux Linux
Micro-Partitioning
Offerings for POWER6/7 Standard Enterprise (Partition Mobility) Micro-Partitioning™ Share processors across multiple partitions Minimum Partition: 1/10 processor AIX V5.3 / V6.1 IBM i Linux Virtual I/O Server Shared Ethernet Shared SCSI & Fiber Channel Int Virtualization Manager
IVM
HMC © 2010 IBM Corporation
IBM Power Systems
Shared Dedicated Processors Linux
AIX 5.3 AIX 6.1
AIX 5.3
Linux
AIX 6.1
POWER Hypervisor P P P P P P P P P P P P P P P P
Shared Dedicated / Dedicated Processors
Shared (Non-Dedicated) Processors
Unused capacity in dedicated processor partitions can be “Donated” to
Excess Dedicated Capacity Utilization
shared processor pool Excess cycles will only be utilized by uncapped partitions that have consumed all of their entitled capacity. POWER6 Servers © 2010 IBM Corporation
IBM Power Systems
Micro-Partitioning Technology
Micro-Partitioning technology allows each processor to be subdivided into as many as 10 “virtual servers”, helping to consolidate UNIX® and Linux applications.
Micro-partitions
Dynamic LPARs
Pool of Six CPUs
AIX V6.1
Linux
IBM i
Linux
Partitioning options AIX V5.3
AIX V5.3
AIX V5.2
Whole Processors
– Micro-partitions: Up to 1024*
Configured via the HMC or IVM Number of logical processors – Minimum / Maximum
Entitled capacity Entitled capacity
– In units of 1/100 of a CPU – Minimum 1/10 of a CPU Min Max
Hypervisor
Variable weight – % share (priority) of surplus capacity
Capped or uncapped partitions
Note: Micro-partitions are available via optional Power VM or POWER Hypervisor and VIOS features. © 2010 IBM Corporation
IBM Power Systems
Multiple Shared Processor Pools
P1 A I X
P2 A I X
P3 A I 2X 0.75
Dedicated 2 1 Core Core
P4 L i n 1 u 0.25 x
V Pool: 0 Max Cap: 2 Ent Cap:1
Capped Partition #
Number of VP’s
#
Entitled Capacity
POWER6/7 16-core System
P5 A I X 4
P6 A I X 4
P7 A I X1
P8 A I X2
1.5
0.5
0.25
0.5
V Pool: 1 Max Cap: 10 Ent Cap: 3.25
P9 L i n3 u 0.5 x
P10 I B M2 i 0.25
P11 I B M2
P12 L i n2 u i 0.25 x0.5
P13 P14 P15 7 A A L I I i X3 X1 n 1 u 0.5 0.25 x0.25
V Pool: 2 V Pool: 3 4 Max Cap: 3 Max Cap: 4 Ent Cap: 0.5 Res Cap:0.5 Ent Cap:2
13 Cores ( Shared Processor Pool )
Capping at the pool level Over commit processor resources © 2010 IBM Corporation
IBM Power Systems
Active Memory Expansion & Active Memory Sharing Active Memory Expansion
Active Memory Sharing
Effectively gives more memory capacity to the partition using compression / decompression of the contents in true memory AIX partitions only
Moves memory from one partition to another Best fit when one partition is not busy when another partition is busy AIX, IBM i, and Linux partitions 15
10
5
0
Active Memory Expansion
#10 #9 #8 #7 #6 #5 #4 #3 #2 #1
Active Memory Sharing
Supported, potentially a very nice option Considerations – Only AIX partitions using Active Memory Expansion – Active Memory Expansion value is dependent upon compressibility of data and available CPU resource
© 2010 IBM Corporation
IBM Power Systems
Sample SAP ERP Workload, Single Partition (DB + AppServer) Without Active Memory Expansion
With Active Memory Expansion
Partition utilization
Partition utilization – Memory: 100% (18 GB true) – CPU: 88% (12 cores in LPAR)
– Memory: 100% (18 GB) – CPU: 46% (12 cores in LPAR)
Note: Most of the CPU increase is due to additional work done on server
Memory capacity is the bottle-neck
Higher throughput enabled with the same amount of physical memory
– CPU is under-utilized – Handles 1000 simulated users
Max. Partition throughput: 99 tps
12-core POWER7 partition 18 GB Memory 18 GB true . 0 GB expanded
– Gain 37% memory capacity – Handles 1700 simulated users
+ 65%
Max. Partition Throughput: 166 tps
12-core POWER7 partition 24.7 GB Memory 18 GB true . 6.7 GB expanded
Expanded Memory Note: This is an illustrative scenario based on using a sample workload. This data represents measured results in a controlled lab environment. Your results may vary. © 2010 IBM Corporation
IBM Power Systems
Sample SAP ERP Workload, Multiple Application Partitions Without Active Memory Expansion
With Active Memory Expansion
Partition utilization
Partition utilization – Memory: 100% (48 GB true) – CPU: 94% (24 cores in 3 8 core LPARs)
– Memory: 100% (48 GB) – CPU: 76% (24 cores in 3 8 core LPARs)
Note: Majority of the CPU increase is due to additional work done on server
Memory capacity is the bottle-neck – CPU is under-utilized – Handles 2900 simulated users – Partitions have reached physical memory limitations by showing moderate paging
Max. Partition throughput: 286 tps
3 x 8-core POWER7 partitions 48 GB Memory 48 GB true . 0 GB expanded
+ 35%
Higher throughput enabled – Gain xx% memory capacity – Handles 4090 simulated users – Partitions showing no paging
Max. Partition Throughput: 385 tps
3 x 8-core POWER7 partitions xx GB Memory 48 GB true . xx GB expanded
Expanded Memory Note: This is an illustrative scenario based on using a sample workload. This data represents measured results in a controlled lab environment. Your results may vary. © 2010 IBM Corporation
IBM Power Systems
Sample SAP ERP Workload, Enabled Additional Application Partition Without Active Memory Expansion
With Active Memory Expansion
System Utilization
System Utilization
– Memory: 100% (48 GB) – CPU: 94% on 32 cores
– Memory: 100% (48 GB) – CPU: 76% on 24 cores 25% (8 core) unused
Note: Majority of the CPU increase is due to additional work.
Higher throughput enabled
Memory Capacity is the bottle-neck
– CPU is under-utilized – Handles 2900 simulated users – Partitions have reached physical memory limitations by showing moderate paging
– Enabled unused CPU resources (25% of server) with no add’l physical memory. – Gain 30% in application server memory capacity – Handles 5000 simulated users
+ 60%
System Throughput: 286 TPS
3 x 8-core POWER7 partitions
System Throughput: 460 TPS
4 x 8-core POWER7 partitions
LPAR 4 (AppServer)
LPAR 3 (AppServer)
LPAR 2 (AppServer)
LPAR 1 (DB + App)
48 GB true . 14 GB expanded LPAR 4 (IDLE)
LPAR 3 (AppServer)
LPAR 2 (AppServer)
LPAR 1 (DB + App)
48 GB true . 0 GB expanded
Note: This is an illustrative scenario based on using a sample workload. This data represents measured results in a controlled lab environment. Your results may vary. © 2010 IBM Corporation
IBM Power Systems
Active Memory Expansion - CPU & Performance 2 1
% CPU utilization for expansion
1 = Plenty of spare CPU resource available
Very cost effective
2 = Constrained CPU resource – already running at significant utilization
Amount of memory expansion There is a knee-of-cure relationship for CPU resource required for memory expansion – Busy processor cores don’t have resources to spare for expansion – The more memory expansion done, the more CPU resource required
Knee varies depending on how compressible memory contents are © 2010 IBM Corporation
IBM Power Systems
AIX Workload Partitions Separate regions of application space within a single AIX image Improved administrative efficiency by reducing the number of AIX images to maintain Software partitioned system capacity –Each Workload Partition obtains a regulated share of system resources –Each Workload Partition can have unique network, filesystems and security
Two types of Workload Partitions –System Partitions –Application Partitions
Workload Partition Test
Separate administrative control –Each System Workload partition is a separate administrative and security domain
Shared system resources
Workload Partition Billing
Workload Partition Application Server
Workload Partition BI
Workload Partition Web Server
Workload Partition Test
Operating System, I/O, Processor, Memory
AIX 21
© 2008 IBM Corporation
© 2010 IBM Corporation
IBM Power Systems
AIX Live Application Mobility Move a running Workload Partition from one server to another for outage avoidance and multi-system workload balancing
Workload Partition App Server
Workload Partition Web
Workload Partition Data Mining
Workload Partition e-mail
Workload Partition QA
Workload Partition Dev
Workload Partition Billing
AIX Workload Partitions Manager
Policy
AIX
Works on any hardware supported by AIX 6, including POWER5 and POWER4 22
© 2008 IBM Corporation
© 2010 IBM Corporation
IBM Power Systems
Virtual I/O Server
© 2010 IBM Corporation
IBM Power Systems
PowerVM Virtual I/O Server (VIOS)
Workload management and provisioning
AIX 5 partitions
Linux partitions
AIX 6 AIX 6
AIX 6
Global Instance
e-
Workload Partition mail
Global Instance
Workload Partition Dev
e-
Workload Partition mail
Workload Partition Dev
Workload Partition
Workload Partition
QA Workload Partition Billing
Hardware Management Console
Hypervisor
Workload Partition Data Mining
i5/OS ®
QA Workload Partition Billing
Virtual I/O servers
Unassigned on demand resources
Workload Partition Data Mining
Virtual processors
Virtual Network
Virtual adapters
Processors Service processor
Memory Expansion slots Local devices & storage Networks and network storage
© 2010 IBM Corporation
IBM Power Systems
Virtual I/O Server - Value Proposition “Your new system will be ready in …” “20 Minutes” or “20 Days”
Economical I/O Model 10% 10% 10% 10% 10% 10% 10% 10%
}
40% 40%
Quick Deployment
Virtual
SAN + Net Cables Switches Ports + Power
Reduced Infrastructure
Server Consolidation © 2010 IBM Corporation
IBM Power Systems
Virtual I/O Server Home Website
Download Latest Readme
Master Datasheet Red Books
Online Manual & Command Ref.
White Papers https://www14.software.ibm.com/webapp/set2/sas/f/vios https://www14.software.ibm.com/webapp/set2/sas/f/vios/documentation/home.html
© 2010 IBM Corporation
IBM Power Systems
Your Reference Library
© 2010 IBM Corporation
IBM Power Systems
Processor Virtualisation Evolution (CPU Sharing)
Old Style Separate Systems
LPAR Server Consolidation LPAR size via start time boundaries
DLPAR Dynamic live boundary changes Manual or scripts
SPLPAR Shared Processor automatic adjusts at millisecond level by Hypervisor
Pre-2000
~2001
~2002
~2005
© 2010 IBM Corporation
IBM Power Systems
Processor Virtualisation Evolution (CPU Sharing)
SPLPAR Shared Processor automatic adjusts at millisecond level by Hypervisor
Harvesting “Spare” capacity ready for adding more workloads at zero hardware cost
Partition Mobility Make a cluster of your machines & flow your workload between them
~2005
~2006
~2008
© 2010 IBM Corporation
IBM Power Systems
Virtual I/O Server (Adapter Sharing)
The I/O centric view of the world: CPU used to “modify & feed data” to the networks & disks
Network
Disk
© 2010 IBM Corporation
IBM Power Systems
VIOS
Pure Virtual VIOS
Disk
VIOS
Network
Network
VIOS
Disk
Virtual except high I/O LPARs
Disk
Pure Direct
Production Direct the rest Virtual
Network
Disk
Network
Virtual I/O Server (Adapter Sharing)
VIOS
Reduced Cost © 2010 IBM Corporation
IBM Power Systems
Where are You? A
B
C
D
E
F
1
2
3
4
© 2010 IBM Corporation
VI O S
IBM Power Systems
Storage Virtualisation
With NPIV
VIO client
VIO client
Note
Generic SCSI disk
EMC 5000 LUN
vSCSI
FC Adapters
IBM 2105 LUN Virtual FC Adapters
Virtual SCSI Adapters SCSI SAS
VIOS
VIOS
Storage Virtualiser
2. 1
FC Adapters
Pass Through mode
VIOS Admin in charge SAN
EMC 5000 LUN
IBM 4700 LUN
NPIV SAN
EMC 5000 LUN
SAN Admin Back in charge
IBM 4700 LUN © 2010 IBM Corporation
VI O S
IBM Power Systems
NPIV What you do?
1.
2. 1
HMC 7.3.4 configure – – –
Virtual FC Adapter Just like virtual SCSI On both Client and Server
Virtual I/O Server © 2010 IBM Corporation
IBM Power Systems
NPIV What you do?
2.
VI O S
2. 1
Once Created: LPAR Config Manage Profiles Edit click FC Adapter Properties and the WWPN is available
© 2010 IBM Corporation
VI O S
IBM Power Systems
Previous Virtual SCSI to Fibre Channel VIOS
AIX
LVM
LVM multipathing
fibre channel HBAs
LVM multipathing
AIX MPIO
Disk Driver
Disk Driver
Disk Driver
VSCSI target
VSCSI HBA
VSCSI HBA
2. 1
VSCSI target
fibre channel HBAs
PHYP
SAN © 2010 IBM Corporation
IBM Power Systems
New NPIV pure Fibre Channel VIOS
AIX
VI O S
LVM
2. 1
Storage Multipathing Disk Driver
fibre channel HBAs
passthru module
VFC HBA
VFC HBA
passthru module
fibre channel HBAs
PHYP
SAN No VIOS side multipath, more client setup per LPAR but Thinner Stack
© 2010 IBM Corporation
VI O S
IBM Power Systems
Heterogeneous Multipathing
VIOS
AIX Client LPAR
Passthru module
Fibre HBA
Fibre HBA
NPIV
NPIV
A
2. 1
Note: Multipath FC & FC
POWER Hypervisor
Storage Controller SAN Switch
Note: NOT vSCSI
SAN Switch
A
B
C
D
A’ ’
B’
C’
D’
© 2010 IBM Corporation
Jan Suchy
[email protected] +420 737 264 298
Virtualizace IBM PowerVM - přínosy a úspory v praxi
© 2010 IBM Corporation
Konsolidace a centralizace IT
- Teorie - Metodologie - Praktická ukázka
© 2010 IBM Corporation
IBM Power Systems
Situace: IT systémy a infrastruktura dosahují kritických hodnot
Dramatické bujení serverů a síťových zařízení Nadměrné užívání energií a vytváření tepelných ztát Nepřiměřené napájení a chlazení infrastruktury Datová úložiště a jejich synchronizace Předpoklad toho, že „všechno“ je připojeno Lineární náklady na IT obsluhu Prudce rostoucí náklady za licence SW Nevysvětlitelné výpadky
Mezitím, očekávání zákazníků, tlak konkurence, regulační opatření a tlaky na fiskální výsledky neustále rostou. © 2010 IBM Corporation
IBM Power Systems
Proč virtualizovat?
Efektivní využití zdrojů Zjednodušení správy a údržby Snížení množství HW vybavení Dynamické změny HW parametrů Nové služby bez nákupu infrastruktury
Snížení energetických a prostorových nároků
Snížení nákladů © 2010 IBM Corporation
IBM Power Systems
Typická malé vytížení serverů Typický UNIX nebo x86 server běžící jednu úlohu a operační systém je vytěžován na 10 - 20% 100%
Konfigurace pro plánovaný růst
(20% nepoužito)
80%
Kolik jsme zaplatili…
60%
Konfigurace plánované pro špičky
(50% nepoužito)
Systémy čekající na I/O a paměťový přístup i u prac. systémů (20% unused?)
40% 20% 0%
Kolik dostáváme…
Výsledkem je, že 80% hardware, software, údržbou, místem, a energiemi za které jste zaplatili, je plýtváno. © 2010 IBM Corporation
IBM Power Systems
Náklady na vlastnictví serverů
Spending (US$B)
Installed Base (M Units)
$300
50 45
$250
Náklady na napájení a chlazení x8
$200
Náklady na administraci a management x4 Náklady za pořízení nových serverů
40 35 30
$150
25 20
$100
15 10
$50
5 $0
20 10
20 09
20 08
20 07
20 06
20 05
20 04
20 03
20 02
20 01
20 00
19 99
19 98
19 97
19 96
0
Source: IDC, Virtualization 2.0: The Next Phase in Customer Adoption
© 2010 IBM Corporation
IBM Power Systems
Finanční přínos konsolidace / virtualizace
Náklady Údržba
Software
Personál
Možné úspory
Hlavní součásti
69% - 76%
Menší počet nových serverů redukuje náklady na údržbu.
65% - 69%
31% - 45%
FINANCIAL SERVICES COMPANY 59.3
Conventional Virtualized
22.3 (62% less)
Menší počet kopií, méně procesorů vede k nižšímu počtu licencí a tím k nižší podpoře a poplatkům za údržbu software.
MANUFACTURING COMPANY
Redukce počtu serverů a propracovaná technologie managementu virtuálních prostředí vede k redukci požadavků na administrátory systémů.
RETAIL COMPANY
25.3
Conventional Virtualized
9.9 (61% less)
Conventional
21.3 9.7 (55% less)
Virtualized 0
Vybavení
52% - 61%
Menší počty serverů, menší rozměry a váha, energeticky efektivnější technologie zajistí menší požadavky na místo a energie v datových centrech.
Maintenance System software Database software Personnel Facilities
10
20
30
40
50
60
$ Millions Technology Group, February 10, 2007. Study methodology: Companies in financial services, manufacturing and retail with $15 Billion+ revenues and total 200,000+ employees focusing on UNIX large enterprise environments with multiple, broad-ranging applications. Study compared the cost of the company's workload running on multiple vendor servers and employing minimal virtualization to the cost of the company's workload. This cost analysis was performed for financial services, manufacturing and retail example environments with an overall average savings of up to 62% in TCO savings by virtualizing. TCO depends on the specific customer environment, the existing environments and staff, and the consolidation potential. © 2010 IBM Corporation
IBM Power Systems
Historie serverové virtualizace
Již v roce 1961 je předveden Compatible Time Sharing System (CTSS), umožňující sdílení procesorového času (time sharing) – první VM (virtuální stroj). 1964: rok uvedení platformy mainframe na trh, počátek vývoje operačního systému CP-40, který nabízí každému uživateli kompletní server za pomoci virtualizace prostředků. 1969: CP-67 verze 2, 1970: CP-67 verze 3; tento operační systém je provozován ve 44 datových centrech. 70. léta: přichází nová generace mainframů. Do roku 1989 prodáno více než 20 000 licencí VM. 90. léta virtualizace se objevuje v unixovém světě. Po roce 2000 virtualizace vstupuje do x86 světa.
© 2010 IBM Corporation
IBM Power Systems
Kdy virtualizovat?
Starý přřístup: Každý server je dimenzován na špičky požadovaného výkonu, mnohé jsou předimenzované 100
100
100
100
100
80
80
80
80
80
60
60
60
60
60
40
40
40
40
40
20
20
20
0
0
0
+
20
+
0
500 Capacity = Units
20 0
Server 1
Server 2
Server 3
Server 4
Server 5
CPU Capacity Units = 100
CPU Capacity Units = 100
CPU Capacity Units = 100
CPU Capacity Units = 100
CPU Capacity Units = 100
Návrh serveru odpovídá maximálnímu současnému zatížení.
server hosující několik virtualních serverů 250
C PU C apacity U nits
Nový přřístup: Server s dynamickými virtuálními servery, které umožní automatický přesun procesorů.
Server 5
200
Server 4 150
Server 3
100
Server 2
50
Server 1
0 1
2
3
4
5
6
7
8
9
10
11
12
minute time intervals, stacked CPU utilization
© 2010 IBM Corporation
IBM Power Systems
Vliv virtualizace na procesory
Jeden fyzický server: Single Appliation Server (2 CPUs) Průměrné vytížení: 20.7% 80% Špičkové vytížení: 79% 70% 60% Více virtualních serverů zvyšuje průměrné vytížení 50% ale špičkové se příliš nemění: 40% 30% 8:1 průměrné: 39%, špičkové 76% 20% 16:1 průměrné: 48%, špičkové 78% 10% 0% 64:1 průměrné: 61%, špičkové 78% Počet potřebných procesorů roste pomaleji než počet přidávaných serverů.
16 to 1 Consolidation (12 CPUs)
8 to 1 Consolidation (8 CPUs)
64 to 1 Consolidation (36 CPUs)
80%
80%
80%
70%
70%
70%
60%
60%
60%
50%
50%
50%
40%
40%
40%
30%
30%
30%
20%
20%
20%
10%
10%
10%
0%
0%
0%
© 2010 IBM Corporation
IBM Power Systems
Koncepty virtualizace serverů Hardware Partitioning Apps
...
Apps
Apps
OS
OS
OS
Partition Controller
Bare Metal Hypervisor
Adjustable partitions
...
Hosted Hypervisor
Apps
Apps
OS
OS
...
Apps OS
Hypervisor Hypervisor Host OS
SMP Server Server is subdivided into fractions each of which can run an OS
Board-level partitioning S/370 SI->PP & PP->SI, Sun Domains, HP nPartitions Core/thread-level partitioning Original POWER4™ LPAR HP vPartitions Sun Logical Domains
SMP Server Hypervisor provides fine-grained timesharing of all resources
Hypervisor firmware z®
System PR/SM and z/VM PowerVM hypervisor
Hypervisor Software VMware ESX Server Xen Hypervisor Microsoft Hyper-V
SMP Server Hypervisor uses OS services to do timesharing of all resources
Hypervisor software runs on a host operating system VMware GSX Microsoft Virtual Server HP Integrity VM User Mode Linux® Linux KVM
častá kombinace třetí možnosti s první nebo druhou © 2010 IBM Corporation
IBM Power Systems
PowerVM poráží VMware ve výkonu AIM7 PowerVM vs vSphere 4.0 Single VM Scaling 140000 120000
jobs/min
100000
-52% -42%
80000
PowerVM
-43%
60000
vSphere 4.0 -41%
40000 -36%
20000 0 1vcpu
2vcpu
4vcpu
6vcpu
8vcpu
Number of virtual processors P550 8cores, 5GHz, 64GB RAM, PowerVM HP DL370 Intel Xeon 5550 2.9T GHz (Turbo Mode) 8 cores, 128GB RAM (HT enabled in BIOS, Intel VTx with EPT HW Virtualization Assist) Red Hat 5.3 (x86_64) with AIM7 Compute Benchmark © 2010 IBM Corporation
IBM Power Systems
PowerVM poráží Hyper-V ve výkonu AIM7 PowerVM vs Windows HyperV VM Scaling 140000 120000
jobs/min
100000 -89%
80000 -86%
PowerVM
60000 -75%
HyperV
40000 -77%
20000 0 1VM
4VMs
6VMs
8VMs
Number of Virtual Machines P550 8cores, 5GHz, 64GB RAM, PowerVM HP DL370 Intel Xeon 5550 2.9T GHz (Turbo Mode) 8 cores, 128GB RAM (HT enabled in BIOS, Intel VTx with EPT HW Virtualization Assist) RHEL 5.3 (GA, x86_64) with AIM7 Compute Benchmark © 2010 IBM Corporation
IBM Power Systems
Možnosti virtuálních serverů
Statické virtuální servery – Změna charakteristik vyžaduje restartování OS Dynamické virtuální servery Zátěž virtuálních serverů – CPU, zlomky CPU v průběhu 24 hodin – RAM – Bez nutnosti restartování OS SAP SAP SAP CRM R/3 TEST Virtualizace IO PROD PROD DEV – Disky – LAN Automaticky reagující (dynamické) virt. servery – CPU – RAM Live partition – Uživatelsky definovaná pravidla mobility Mobilita virtuálního serveru – Zachování běhu aplikace
© 2010 IBM Corporation
IBM Power Systems
Příklad: virtualizace a mobilita
Požadavek: Více výkonu pro ‚modrou‘ databázi. Zachovat zdroje ‚červené‘ a ‚zelené‘ databáze. Zachovat běh ostatních databází (možné snížit výkon).
SAP APP SAP DB SAP CRM
SAP QA
SAP DEV
SAP BW
Outsourcing pro finanč©n2010 í instituce , EU IBM Corporation
IBM Power Systems
Příklad: virtualizace a mobilita Požadavek: Konsolidace cca 350 serverů na 20 fyzických serverech. Libovolný virtuální server je spustitelný na libovolném fyzickém serveru. Tedy cca 7000 profilů pro virtuální servery a jejich přesuny. Desítky tisíc virtuálních LAN, disků apod.
Státní správa, Skandinávie © 2010 IBM Corporation
IBM Power Systems
Metodologie konsolidace
© 2010 IBM Corporation
IBM Power Systems
Metodologie konsolidace – IBM Zodiac
Zachytit stávající stav >>> 4) Náklady / údržžba, prostřředí, SW, podpora
1) Soupis IT systémů ů
2) Aplikace / funkcionalita
3) Hranice datacentra
© 2010 IBM Corporation
IBM Power Systems
Metodologie konsolidace – IBM Zodiac výsledek
© 2010 IBM Corporation
IT Resource Optimisation Zodiac v6.07 Jan Suchy
Zodiac Infrastructure Study prepared for Financial Services Company
© 2010 IBM Corporation
IBM Power Systems
Confidentiality and Liability
The data used to generate this report is primarily based on IBM experience and available industry data. This report is intended to illustrate the kinds of potential benefits that may be achieved by some customers through infrastructure simplification. This does not mean that in your or any other customer consolidation that such benefits will be achieved. Potential benefits depend, among other factors, on the specific customer environment, the existing customer environment and staff, and the consolidation potential. IBM is providing this report to you on an AS IS basis without warranties of any kind. In no event will IBM be liable to you for any direct, indirect, special or other consequential damages for any use of this report. Any configurations contained in this report are provided as samples by IBM representing typical solutions for consolidation. Whilst each configuration has been reviewed by the IBM configuration tool for accuracy in a specific situation, they are intended to illustrate typical capacity & costs, and there is no guarantee that the configurations will integrate into the customer's operational environment. If there are concerns about any elements of a proposal then a Solution Assurance Review should be conducted. The entire IDEAS International dataset is used under their copyright and may not be supplied or included in its entirety in any client report; however, a small sample may be used in order to illustrate the internal sizing process used to select target servers for the client. © 2010 IBM Corporation
IBM Power Systems
Business Case Summary
Client:FSC Total initial investment in in storage & server technology to initiate a simplified architecture: CZK 29 022 636 Our illustration shows a potential reduction of recurring costs. Business Case Period: 4 years. Base Case: CZK 188 579 860 Alternate Case: CZK 105 549 628 Potential Cost Reduction: CZK 83 030 232 Estimated Payback Period: 1yr 4m The total investment cost does not include write-off charges for current assets. Migration Cost: Not included Please refer to backup slides for further details of computations.
Cumulative Cost 250 000 000.00
200 000 000.00
150 000 000.00
100 000 000.00
50 000 000.00
0.00 E.O.year 0
year 1
year 2 C urrent
year 3
year 4
Alt.C ase
© 2010 IBM Corporation
IBM Power Systems
p7-770(48)3.1 116 ud16 Ostatní Aplikace
Grand Total
Average of new Utln
Average of old Utln
New RIPS
Old RIPS
Old Load
New #Cores
Old #Cores
New #CPU
Old #CPU
New Images
Old Images
New Servers
Old Servers
FullName
new-mod
Target Servers by Solution Group
13
2 17 14 129 12 174 96 45 347.2 90 694.3 113 643.8 50% 40%
13
2 17 14 129 12 174 96 45 347.2 90 694.3
13
2 17 14 129 12 174 96 45 347.2 90 694.3 113 643.8 50% 40%
113 643.8 50% 40%
Reduction of Physical Servers: 13 : 2 © 2010 IBM Corporation
IBM Power Systems
Increase Energy Efficiency (for Available Capacity)
85% less servers 25% more capacity 78% less electricity 120
114
18.000
16.201
16.000
100 91
14.000
80
12.000 10.000
60 8.000 40
6.000
32
4.000 20
13
2.857 7
2.000
2 -
C urrent #Physical Servers
Alt.C ase Total RIP C apacity
Systems kW
RIPs/Watt
Energy Efficiency Improvement: 467% © 2010 IBM Corporation
IBM Power Systems
116: Ostatní Aplikace Ostatní Aplikace
Capacity Server Type Total Cores Used Cores Total CPUs #Logical Servers #Physical Servers Ave.Log.Srv RIP Total RIP Capacity Total RIP Workload Ave CPU %Utilisation
Target Utilisation 0 Decimal Places
Annual Operating Costs (AOC) Staff Cost Code Software Cost Code Software Cost /CPU Software Cost /Lsrv Software Cost /Psrv Software M&S Hardware Maint Space Power Staff Cost Depreciation Total AOC est.potential saving /yr One Time Costs (OTC) Software Purchase Hardware Purchase Transition Total OTC Write-Off Net Cash Investment Year Projection OTC + 4x AOC 0yr saving Payback Period Project
Current 174.00 174.00 129.00 17.00 13.00 5 335.0 90 694.3 45 347.2 50.00%
Actual AltCase2 7:1 p7-770(64)3.1 128 69 16 14 2.00 8 167.6 114 345.9 45 347.2 39.66%
AltCase1 7:1 p7-770(48)3.1 96 66 12 14 2.00 8 117.4 113 643.8 45 347.2 39.90%
Unix aixF5.oraEE 1 802 880 0 0 15 549 840 4 649 664 18 286 667 279 1 043 280 0 21 928 349 25 216 616
Unix aixF5.oraEE 1 802 880 0 0 14 873 760 3 487 248 13 714 585 558 1 043 280 0 20 003 560 27 141 405
392 000 38 304 848 0 38 696 848 0 38 696 848
294 000 28 728 636 0 29 022 636 0 29 022 636
121 760 580 66 819 280 1yr 6m
105 549 628 83 030 232 1yr 1m
Year Projection Thousands
116: ud16
200 000 180 000 160 000 140 000 120 000 100 000 80 000 60 000
Unix unix/16 182 915 0 0 23 596 000 20 132 000 263 429 1 745 936 1 407 600 0 47 144 965
0
188 579 860 Time 0yr 0m
40 000 20 000 0 1 Transition Software Purchase Staff C ost Power Software M&S
2
3
Hardware Purchase Depreciation Space Hardware Maint
© 2010 IBM Corporation
IBM Power Systems
116: Ostatní Aplikace Environmental Analysis
Power & Space
Current 165.0 3.9
Alt.Case.2 32.0 0.8
Alt.Case 24.0 0.6
70.0
Total RackU Racks (42/40U utilised) Systems kW Distribution kW Mechanical kW Total kW
31.7 5.7 26.0 63.5
9.5 1.7 13.0 24.3
7.0 1.3 13.0 21.3
40.0
60.0 50.0
30.0 20.0 10.0
Energy Efficiency Relative RIPs /Watt Watts/Log.Srv Power Cost per Logical Server
0.0
1.0 3484.4 102 772
3.3 8786.3 47 695
4.5 8732.3 41 854
150.3 27.1 123.3 300.6 6.6
45.1 8.1 61.6 114.9 2.5
33.2 6.0 61.6 100.8 2.2
1 Systems kW
2 Distribution kW
3 Mechanical kW
CO2 Emission Systems Distribution Mechanical tonnes CO2 / yr tonnes CO2 / kRIP
© 2010 IBM Corporation
Otázky a odpovědi…
Dekuji za pozornost_
© 2010 IBM Corporation