Bidang Unggulan : Bahan Alam dan Lingkungan Kode/Bidang Ilmu :112/ MIPA-Kimia
LAPORAN AKHIR PENELITIAN
HIBAH UNGGULAN PROGRAM STUDI
MODIFIKASI LEMPUNG ALAM MENJADI ADSORBEN DAN PEMANFAATANNYA SEBAGAI PENYERAP LIMBAH DETERJEN
KETUA PENELITI
: PUTU SUARYA, S.SI., M.SI.(NIDN: 0031127202)
ANGGOTA PENELITI
: DRS. I WAYAN SUIRTA, M.SI.(NIDN:0019076502)
JURUSAN KIMIA FAKULTAS MIPA UNIVERSITAS UDAYANA OKTOBER 2015
RINGKASAN
Dalam penelitian ini akan dipelajari mekanisme proses interkalasi surfaktan ke dalam antarlapis lempung. Adsorben yang dihasilkan akan dipelajari sifat kimia dan fisikanya, kemudian adsorben ini akan digunakan untuk mengadsorpsi limbah deterjen dan selanjutnya juga akan dipelajari kemampuan sifat desorpsinya. Modifikasi lempung akan diawali dengan proses aktivasi lempung menggunakan asam sulfat, yang bertujuan untuk menghomogenkan kation antarlapis dari lempung (Diaz dan Santos, 2001). Proses interkalasi surfaktan akan menjadi lebih mudah terjadi apabila kation antar lapis telah homogen. Hasil karakterisasi terhadap lempung menunjukkan bahwa lempung yang telah dimodifikasi memiliki karakter yang lebih baik dilihat dari peningkatan luas permukaan spesifik dan keasaman permukaannya. Hasil peneltiannya menunjukkan terjadi peningkatan jumlah situs aktif dari lempung alam (A0) sebesar 3,9823 x 1020 atom/gram menjadi 10,947 x 1020 atom/gram pada lempung teraktivasi asam sulfat 2 M (AA) dan pada lempung teraktivasi asam sulfat 2 M dan terinterkalasi BKC 3% (AAB) sebesar 11,320 x 1020 atom/gram. Hasil uji kemampuan adsorpsinya terhadap limbah deterjen menunjukkan bahwa pada kajian variasi waktu adsorpsi, adsorben A0 mempunyai waktu kontak optimum 15 menit sedangkan AA dan AAB sampai dengan waktu 60 menit masih menunjukkan peningkatan daya adsorpsi terhadap limbah deterjen.
Kata Kunci: Lempung, Montmorillonit, adsorpsi, limbah deterjen
PRAKATA
Puji syukur penulis panjatkan kehadapan Tuhan Yang Maha Esa karena atas rahmat Beliaulah penulis berhasil melaksanakan penelitian ini sampai pada tahap akhir dan sekaligus dapat menyusun laporan akhir ini tepat pada waktunya. Penelitian dapat terlaksana karena adanya bantuan dari berbagai pihak. Oleh karena itu, pada kesempatan ini penulis ingin mengucapkan terima kasih kepada: 1. Dikti sebagai pemberi dana untuk pelaksanaan peneleitian ini. 2. LPPM Universitas Udayana yang telah memberikan kesempatan kepada peneliti untuk melaksanakan kegiatan ini. 3. Jurusan Kimia F.MIPA Universitas Udayana yang telah memberikan sarana dan prasarana dalam pelaksanaan penelitian ini. 4. Prof. Dr. Ida Bagus Putra Manuaba, M.Phil. atas bimbingannya dan saran-sarannya dalam pelaksanaan penelitian ini. 5. Rekan-rekan team peneliti yang telah meluangkan waktu dalam pelaksanaan penelitian ini. 6. Rekan mahasiswa yang telah membantu penelitian ini. Penulis menyadari bahwa laporan ini jauh dari sempurna, oleh karena itu penulis mengharapkan kritik dan saran dari berbagai pihak demi kesempurnaan laporan ini. Penulis berharap semoga laporan ini dapat bermanfaat bagi pembacanya. Akhir kata, atas segala saran dan masukan yang bersifat membangun dari segala pihak, penulis mengucapkan terima kasih.
Penulis
DAFTAR ISI
Halaman HALAMAN JUDUL ....................................................................................
i
LEMBAR PENGESAHAN ...........................................................................
ii
RINGKASAN ..............................................................................................
iii
BAB I PENDAHULUAN .............................................................................
1
BAB II TINJAUAN PUSTAKA ...................................................................
3
2.1 Tanah Lempung ...........................................................................
3
2.2 Adsorpsi ......................................................................................
11
2.3 Studi Pustaka dan hasil yang sudah dicapai ..................................
11
2.4 Studi Pendahuluan yang sudah dilaksanakan................................ .
12
BAB III TUJUAN DAN MANFAAT PENELITIAN.....................................
13
BAB IV METODE PENELITIAN................................................................
14
3.1 Preparasi Lempung Teraktivasi Asam Sulfat dan Terinterkalasi Benzalkunium Klorida ...........................................................
15
3.2 Adsorpsi Lempung Hasil Aktivasi Terhadap Limbah deterjen......
15
BAB V HASIL YANG SUDAH DICAPAI....................................................
20
5.1 Karakterisasi lempung.....................................................................
20
5.2 Uji daya adsorpsi lempung terhadap limbah deterjen................. ..
27
BAB VI RENCANA TAHAP BERIKUTNYA........................................... ....
30
BAB VII KESIMPULAN DAN SARAN........................................................
31
7.1 Kesimpulan....................................................................................
31
7.2 Saran..............................................................................................
32
DAFTAR PUSTAKA LAMPIRAN
BAB I PENDAHULUAN
Lempung bentonit sangat menarik untuk diteliti karena lempung ini mempunyai struktur berlapis dengan kemampuan mengembang (swelling) dan memiliki kation-kation yang dapat ditukarkan (Hensen dan Smit, 2002).
Meskipun lempung bentonit sangat berguna untuk
adsorpsi, namun kemampuan adsorpsinya terbatas (Cool dan Vansant, 1998).
Dengan
memanfaatkan sifat tukar kationnya, lempung dapat dimodifikasi sehingga mempunyai sifat adsorpsi selektif terhadap senyawa organik. Bali sebagai daerah tujuan wisata, tentunya dituntut untuk berperilaku serba instan. Salah satunya adalah banyaknya berdiri loundry. Produk samping dari loundry adalah limbah hasil pencucuian yang banyak mengandung deterjen. Mikroorganisme yang ada di perairan bebas sangat sulit memutuskan rantai karbon (bercabang), akhirnya limbah deterjen terakumulasi menimbulkan buih dan busa berlebih sehingga menghambat proses pembusukan limbah lainnya yang ada pada perairan. Selama ini penangan khusus dari limbah belum dilakukan sehingga akan menimbulkan pencemaran baik pencemaran tanah maupun pencemaran air. Jenis surfaktan yang sering digunakan para peneliti adalah ammonium kuarterner, misalnya benzalkonium klorida. Pada proses nterkalasi, jenis surfaktan ini akan menghasilkan nanoruang dua dimensi pada antarlapis lempung.
Nanoruang dua dimensi ini terjadi melalui
interaksi antara ion organoammonium dengan ruang antar lapis silikat sehingga menyebabkan terbukanya ruang pada antar lapis sampai ke ukuran nano. Pertukaran antara kation antar lapis dengan ion organoamonim ini akan menghasilakn perubahan sifat permukaan pada kisi-lapis lempung (Ogawa dan Kuroda, 1997). Susianah (2005) melaporkan pemanfaatan lempung yang telah dimodifikasi dengan surfaktan dapat menyerap senyawa senyawa-senyawa organik. Interkalasi surfaktan ke dalam antarlapis lempung menyebabkan terbukanya ruang pada antar lapis sampai ke ukuran nano sehingga dapat digunakan untuk mengadsorpsi molekul dengan ukuran yang lebih besar.Surfaktan juga berpengaruh terhadap besarnya jumlah situs aktif yang terjadi pada lempung
yang
dimodifikasi.
Mengingat hal hal tersebut diatas maka penelitian ini sangat penting untuk diteliti mengenai proses interkalasi surfaktan benzalkonium klorida dan kemampuan adsorpsinya terhadap limbah deterjen. Dengan harapan bahwa penambahan surfaktan ke dalam antarlapis lempung dapat meningkatkan ruang antarlapis dan merubah sifat lempung menjadi selektif terhadap senyawa organik (dalam hal ini deterjen).
Penambahan surfaktan juga akan
memperbanyak jumlah situs aktif pada lempung, dengan demikian interaksi antara deterjen dengan
lempung
akan
menjadi
lebih
banyak
terjadi.
BAB II TINJAUAN PUSTAKA
2.1
Tanah Lempung Tanah lempung adalah tanah yang memiliki partikel-partikel mineral yang termasuk bahan
anorganik dan bahan koloid yang menghasilkan sifat-sifat plastis pada tanah bila
dicampur
dengan air (Grim, 1953). Mineral lempung terdiri dari silikon, aluminium, dan oksigen, penyusun lainnya berupa magnesium, besi, alkali, dan alkali tanah yang jumlahnya relatif kecil.Sifat-sifat yang dimiliki tanah lempung yaitu; ukuran butir halus (kurang dari 0,002 mm), permeabilitas rendah,kenaikan air kapiler tinggi, bersifat sangat kohesif, kadar kembang susut yang tinggi, proses konsolidasi lambat (Hardiyatmo, 1999). Lempung sangat penting dalam kimia tanah, karena mempunyai kimia permukaan yang berbeda dari butiran mineral yang berukuran lebih besar dan lempung memiliki komposisi yang sangat imbang antara fraksi kasar dan halus, dan juga sering dianggap sebagai tekstur yang optimal untuk pertanian.Kebanyakan mineral-mineral dalam lempung tanah berukuran kristalin, struktur tidak teratur atau amorf, yang mana dalam keadaan amorf lempung umumnya tidak mempunyai bentuk yang dapat dikenal ataupun sususnan internal atom secara geometris.Ada beberapa dari lempung dapat bersifat amorf, seperti gel-gel silika, alumina, dan besi oksida (Tan, 1992).
2.1.1 Kimia permukaan lempung Permukaan mineral lempung tanah biasanya mengandung muatan elektronegatif yang memungkinkan terjadinya reaksi pertukaran kation, muatan ini merupakan hasil dari satu atau beberapa lebih dari reaksi yang berbeda. Permukaan lempung dibagi menjadi dua kategori diantaranya: Adanya subtitusi isomorfik. Prosesnya disebut sumber utama muatan negatif dalam lempung lapisan 2:1. Sebagian dari silicon dalam lapisan tetrahedral dapat diganti oleh ion yang berukuran sama, yang biasanya Al3+ begitu juga dengan sebagian dari aluminium dalam octahedral dapat digantikan oleh Mg2+ tanpa mengganggu struktur Kristal. Muatan negative yang dihasilkan dari proses subtitusi isomorfik tersebut dianggap sebagai muatan permanen karena tidak berubah dengan berubahnya pH. Kemudahan terjadi subt itusi isomorfik
tergantung dari ukuran dan valensi ion-ion yang terlibat. Proses hanya terjadi antara ion-ion berukuran sebanding. Disosiasi gugus hidroksil yang terbuka. Keberadaan gugus –OH pada tepi Kristal dapat juga mengakibatkan muatan negative khususnya pada pH tinggi. Hydrogen dari hidroksil (OH-) terurai sedikit dari permuakaan lempung menjadi bermuatan negative dari oksigen. Muatan negative tipe ini disebut muatan berubah-ubah atau muatan tergantung pH. Sebaliknya proton(H+)tidak hanya dapat terdisosiasi dari gugus-OH (hidroksil) yang terbuka tetapi dapat juga menyerap atau memperoleh proton, proses ini akan tejadi pada media yang sangat asam (pH rendah) sehingga dapat menghasilkan muatan positif pada permukaan lempung. Reaksi untuk disosiasi proton: MediumAlkalin
: -Al-OH+OH-→-Al-O-+H2O
Mediumasam
: -Al-OH+H+→-AI-OH+
Pada mineral lempung kering, muatan negative pada permukaanakan dinetralkan oleh kationkation lain yang mengelilingi partikel tersebut secara exchangeable cation akibat
adanya
perbedaan kekuatan muatan dimungkinkan antar kation yang ada disekeliling partikel lempung bisa saling mendesak posisi atau bertukar. Kemanapuan mendesak dari kation- kation dapat dilihat dari besarnya potensi mendesak sesuai urutan berikut: Al3+>Ca2+>Mg2+>NH4+>K+>H+>Na+>Li+ Kation Li+ tidak dapat mendesak kation lain yang berada dikirinya (Tan,1991).
2.1.2 pH tanah pH tanah yang dimaksud adalah banyaknya konsentrasi ion H pada suatu sampel tanah. Menurut Tan (1991) kebanyakan partikel lempung berinteraksi dengan ion H+.telah tersedia banyak bukti bahwa suatu lempung jenuh hydrogen mengalami dekomposisi spontan. Ion hydrogen menerobos lapisan octahedral dan menggantikan atom Al. Alumunium yang dilepaskan kemudian dijerap oleh kompleks lempung dan suatu kompleks lempung–AlHterbentuk dengan cepat.Ion Al+ dapat terhidrolisis dan mengahsilkan ion H+sepertit erlihat
pada reaksi berikut ini: Lempung
Al + 3H2O
H+
Al(OH)3 + HLempung
Reaksi tersebut menyumbang pada peningkatan konsentrasi ion H+ dalam tanah.tanah dipisahkankedalam beberapakelas sepertiditunjukkanpada gambar2.1 biasanyatanahmasam dijumpai
pada daerah yang memiliki
iklim basah dan tanah tersebut konsentrasi ionH+
lebihbesardaripadaionOH-.Tanah-tanah inidapat mengandung Al, Fe, jumlah besar. Tanah tanahalkalin biasanya beriklim agak
dan Mn terlarut dalam
kering hingga kering. Akibat
reaksi alakalinnya, tanah tersebut hanya mengandung sedikit Al, Fe, dan Mn terlarut.
Gambar 2.1.Kisaran-kisaran pH tanah atau kelas-kelas reaksi tanah..(DariN.C.Brady,The Nature and Properties of Soi ledisi ke8 macmillan NewYork) Dari gambar diatas pH dikatakan asam jika nilai dibawah 7 dan dikatakan basa jika nilai pH diatas 7. 2.1.3 Sifat umum mineral lempung Air sangat mempengaruhi sifat tanah lempung, karena butiran dari tanah lempung sangat halus, sehingga luas
per mukaan spesifikasinya menjadi lebih besar. Dalam suatu partikel
lempung yang ideal, muatan negative dalam keadaan seimbang, terjadi substitusi isomorf dan kontinuitas perpecahan susunannya, sehingga muatan negative pada permukaan partikel Kristal lempung. Salah satu untuk mengimbangi
muatan negatif, partikel tanah lempung menarik
muatan positif (kation) dari garam yang ada dalam air porinya. Hal ini disebut pertukaran ionion. Molekul air dan partikel lempung akan menimbulkan lekatan yang sangat kuat,karena air akan tertarik secara elektrik dan air akan berada disekitar partikel lempung yang disebut air lapisan ganda, sedangkan air yang berada pada lapisan dalam disebut air resapan.Lapisan air inilah yang menimbulkan gaya tarik menarik antar partikel lempung yang disebut unhindered moisture film. Molekul air merupakan molekul dipolar karena atom hydrogen tidak tersusun simetris disekitar atom oksigen, melainkan membentuk sudut ikatan 105° akibatnya molekul-molekul air berperilaku seperti batang-batang kecil yang mempunyai muatan positif di satu sisi dan muatan negative di sisi lain. Sudut dipolar air terlihat pada Gambar 2.2 berikut.
Gambar 2.2. Sifat dipolar molekul air ( Das Braja. M, 1985) Interaksiantaramolekul-molekulair dengan partikel lempung dapat melalui tiga proses. Pertama, kutub positif dipolar air
akan saling tarik menarik
dengan
muatan
negatif
permukaan partikel lempung. Kedua, molekul air diikat oleh partikel lempung melalui ikatan hydrogen (hydrogen air ditarik oksigen atau hidroksil lain yang ada pada permukaan partikel lempung). Proses ketiga, penarikan molekul air
oleh muatan negatif permukaan lempung
secara berantai melalui kation yang menampung dalam larutan air.Faktor paling dominan adalah proses
ikatan
hydrogen.
Pada Gambar2.3 Hadiyatmo (1992)
menunjukkan bahwa molekul air bersifat dipolar,
yang berarti memiliki muatan positifd an negative pada ujung yang berlawanan sehingga dapat tertarik oleh permukaan lempung secara elektrik dalam beberapa kasus diantaranya: a.
Tarikan antar permukaan negatif dan partikel lempung dengan ujungpositifdipolar.
b.
Tarikan antar kation-kation dalam lapisan ganda dengan muatan negatif dari ujung dipolar. Kation-kation
ini tertarik oleh permukaan partikel lempung yang bermuatan
negatif. a.
Atom-atom hidrogen dalam molekul air, yaitu ikatan hidrogen antara atom oksigen dalam molekul-molekul air.
Gambar 2.3. Molekul air dipolar dalam lapisan ganda (Hardiyanto, 1992)
Semakin luas permukaan spesifikt anah lempung, air yang tertarik secara elektrik disekitar partikel lempung yang disebut air lapisan ganda jumlahnya akan semakin besar. Air lapisan ganda inilah yang mengakibatkan sifat plastis tanah lempung. Konsentrasi air resapan dalam mineral lempung memberi bentuk dasar dari susunan tanahnya, tiap partikelnya terikat satu sama lain lewat lapisan air serapannya. Selain itu, jarak antar partikel juga akan mempengaruhi hubungan tarik menarik atau tolak menolak antar partikel tanah lempung yang diakibatkan oleh
pengaruh ikatan hidrogen,gaya Van Der Walls serta semacam ikatan kimia
organiknya. Bertambahnya jarak akan mengurangi gaya antar partikel. Gaya elektrostatik (gaya tarik menarik antara partikel bermuatan)yangterjadipada permukaan lempung (bermuatan negatif) dengan kation-kation yang berada diantaranya,
berpengaruh terhadap penyusutan
ketebalan lapisan ganda karena jumlah air yang terhidrasi menjadi berkurang (Tan,1991). Lempung akan bersifat labil bila kation-kation yang berada diantara partikel lempung
yaitu kation-kationyang lemah atau dapat dengan mudah digantikan oleh kation-kation yang lain atau molekul-molekul air yang konsentrasinya tinggi. Kation yang lemah adalah kation-kation yang berasal dari garam-garam mineral yang terdapat dialam misalnya Na+.Sehingga akan dihasilkan
gaya elektrostatis yang lemah
serta jari-jari antar partikel besar, sehingga akan
didapatkan lempung yang mengembang disaat banyak air dan menyusut pada saat air keluar dari
lempung dengan perbedaan kembang susut yang besar dapat dilihat pada Garnbar 2.4,
sedang kan lempung yang bersifat stabil dapat dilihat pada Gambar 2.5. (Tan,1991).
2.1.4 Mineral lempung Mineral lempung dapat terbentuk dari hasil dekomposisi silikat primer berupa Si-O tetrahedral yang mana satu atom Si4+ dapat berikatan dengan 4 atom oksigen dan Al-O oktahedral, yaitu satu atom Al3+ berikatan dengan enam atom oksigen. Pada penggantian Si dengan satu atom Al dalam molekul tetrahedral atau penggantian Al dengan kation yang bervalensi dua, contohnya Fe2+ dan Mg2+ dalam molekul oktahedral sering terjadi. Seiring banyak terjadinya penggatian dalam struktrur tetrahedral dan oktahedral serta perbandingan antara jumlah struktur oktahedral dengan tetrahedral merupakan faktor pembeda utama antara mineral-mineral lempung (Evangelou, 1998). Mineral lempung memiliki struktrur yang berlapis, yaitu tersusun oleh lapisan aluminat dan lapisan silikat. Berdasarkan susunan lapisannya mineral lempung dapat dibedakan menjadi dua kelpompok utama, yaitu kelompok kaolinit dapat dilihat pada Gambar 2.1 yang mempunyai lapisan 1:1, dan kelompok smektit dapat dilihat pada Gambar 2.4 memiliki lapisan 2:1.
Gambar.2.4 Diagram struktur lapisan kaolinit (Lapendes, 1978)
Gambar.2.5 Diagram struktur lapisan montmorillolit (Lapendes, 1978) Komposisi kimia dari kaolinit yaitu SiO2 46%, Al2 O3 39,5% dan air 14,0%. Warna kaolinit murni umumnya putih, putih kelabu, kekuning-kuningan atau kecoklat-coklatan (Sanchez, 1976). Ukuran partikel bervariasi dengan diameter antara 0,1-1 µm. Nilai kapasitas tukar kation (KTK) berada pada 1- 10 meq/100g (Evangelou, 1998). Kaolinit mempunyai muatan negatif yang berubah-ubah, atau tergantung pada pH. Dilihat dari strukturnya, posisi dari gugus-gugus OH membuka kemungkinan untuk disosiasi H+, yang merupakan faktor penyebab terbentunya muatan berubah-ubah, terutama pada gugus hidroksil pada permukaan terbuka dari situs oktahedral. Partikel kaolinit tidak mudah dihancurkan dikarenakan dari kekokohan ikatan stukturnya, hal tersebut yang menjadi penyebab sifat-sifat plastisitas dan daya mengerut dan mengembang yang rendah.Luas permukaannya yang sempat membatasi kapasitas jerapan kation.Luas permukaan spesifiknya yaitu 7-30 m2/g (Tan, 1992). Smektit merupakan nama untuk mineral golongan Na, Ca, Mg, Fe dan litium alumina silikat. Jenis mineral golongan ini adalah natrium montmorillonit, kalsium montmorillonit, saponit, nontronit, dan hektorit.Keistimewaan mineral lempung smektit yaitu kemampunnya yang menyerap dan/atau mengganti bukan hanya kation tapi juga molekul organik polar seperti etilen glikol, amina, dan polialkohol. Smektit memiliki ukuran partikel yang sangat kecil yaitu
0,01-0,1µm yang menyebabkan besarnya luas permukaan bahan, hal tersebut yang menyebabkan smektit memiliki kemampuan yang tinggi sebagai adsorben dan jika dicampur dengan air akan menghasilkan daya ikat yang kuat. Kapasitas tukar kation (KTK) yaitu 60-100 meq/100 g lempung dan warnanya pada umumnya putih, kecoklatan, hijau kecoklatan atau hijau kebiruan (Evangelou, 1998).Batuan golongan smektit paling banyak ditemukan yaitu bentonit (Murray, 1991). Mineral ini memiliki susunan kimia dengan rumus Al2O3.4SiO2.xH2O yang terdiri dari 85% mineral montmorillonit dengan kation Na +, Ca2+, dan K+ yang mudah dipertukarkan. Diliahat dari penampakan luar, dalam keadaan basah bentonit berwarna abu-abu kehijauan dan putih kekuningan dalam keadaan kering.
2.1.5 Aktivasi asam pada lempung Kapasitas adsorpsi dapat ditingkatkan dengan dua cara yaitu pemanasan dan kontak asam. Pada proses pemanasan lempung dipanaskan pada temperatur 300-3500C untuk memperluas permukaan butiran (Zulkarnaen,Wardoyo, S., dan Marmer, D. H 1990). Sedangkan dengan cara kontak asam mempunyai tujuan untuk menukar ion-ion K+, Na+, Ca2+ pada lempung dengan ion H+ dalam ruang antar lapis dan melepas ion Al3+, Fe3+, Mg2+ dan pengotor lainnya dari kisi-kisi struktur sehingga secara fisik lempung lebih aktif. Secara umum jenis asam yang digunakan adalah asam sulfat (Suhala, S. dan Arifin, M.,1997). Melalui aktivasi kapasitas adsorpsi lempung mengalami peningkatan.Lempung mempunyai struktur bertingkat dan kapsitas pertukaran ion yang aktif pada bagian dasar. Oleh karena itu strukturnya dapat diganti seperti struktur bagian dasar dengan cara penambahan asam yaitu asam sulfat. Pengaruh valensi kation sangat dominan terhadap memudahkan pertukaran ion dari permukaan yang bermuatan.Semakin tinggi valensi kation, maka semakin tinggi pula kapasitas penggantian kationnya. Untuk ion-ion yang memiliki valensi yang sama, maka yang memiliki kapsitas penggantian ion lebih tinggi adalah ion yang mempunyai ukuran yang lebih besar. Ion yang monovalen seperti H + dapat menggantikan ion yang memiliki valensi yang lebih tinggi. Konsentrasi ion H+ yang
tinggi pada lempung
mengakibatkan pecahnya situs lempung dan menembus lapisan oktahedral, sehingga melepaskan spesies Al3+, Fe3+, dan Mg2+ (Kumar,1995). Proses pelepasan aluminium dari lempung dapat ditulis
dengan
reaksi
sebagai
berikut
ini
:
(Al4)(Si8)O20(OH)4 + 3 H+
(Al3)(Si8)O20(OH)2 + Al3++2 H2O
(Al4)(Si8)O20(OH)4 + 6 H+
(Al2)(Si8)O20 + 2 Al3+ + 4 H2O
Aktivasi dengan asam sulfat telah dilakukan pada penelitian Kumar dkk.(1995), yang menyatakan bahwa lempung dengan diaktivasi H2SO4 4 N dapat meningkatkan porositas, keasaman permukaan terjadi karena lempung dapat
mengalami perubahan struktur
montmorillonit sehingga memiliki sifat yang lebih efektif sebagai pendukung katalis. Perubahan struktur terjadi pada luas permukaan
dan mempunyai keasaman permukaan yang maksimal.
Asam sulfat (H2SO4) adalah asam yang mempunyai valensi dua, hal tersebut dikarenakan dapat melepas dua ion H+ untuk ditukarkan.Asam sulfat dikenal sebagai oksidator pada suhu tinggi yang dapat melarutkan senyawa-senyawa organik.Kemampuan asam sulfat dalam melarutkan senyawa yang ada di dalam tanah dapat dilihat dari nilai hilang berat tanah selama perlakuan, seperti pada Tabel 2.1. Tabel 2.1. Persentase berat tanah yang hilang akibat perlakuan dengan H2SO4 (Alim, 2001) H2SO4 M
% Berat yang hilang
3
37,7
6
43,1
12
39,8
15
42,3
18
41,7
Tabel 2.1 di atas menunjukkan bahwa asam sulfat pada luas 3-18 M dapat memberikan kencenderungan yang kosntan terhadap berat tanah yang hilang. Artinya, pada konsentrasi tersebut
kemampuan
asam
untuk
melarutkan
komponen
tanah
telah
maksimal.
2.2
Adsorpsi Adsopsi merupakan suatu proses terjadinya peristiwa penyerapan suatu zat pada
permukaan atau antar fasa, dimana molekul dari suatu materi terkumpul pada bahan pengadsorpsi.materi atau partikel yang diadsorpsi disebut adsorbat, sedangkan bahan yang berfungsi sebagai pengadsorpsi disebut adsorben. Adsorpsi terjadi karena adanya interaksi gaya permukaan padatan dengan molekul - molekul adsorbat. Energi adsorpsi yang dihasilkan bergantung pada tipe adsorpsi yang terjadi (Gregg S.J, 1982). Adsorpsi dibedakan menjadi dua jenis, yaitu adsorpsi fisika disebabkan oleh gaya Van Der Waals (penyebab terjadinya kondensasi gas untuk membentuk cairan yang ada pada permukaan adsorbens) dan adsorpsi kimia terjadi reaksi antara zat yang diserap dengan adsorben, banyaknya zat yang teradsorbsi tergantung pada sifat khas zat padatnya yang merupakan fungsi tekanan dan suhu(Atkins, 1997).
2.3 Studi Pustaka dan Hasil yang Sudah Dicapai Keberhasilan penggunaan lempung sebagai bahan penyerap logam dan senyawa organik mendorong perkembangan penelitian penggunaan lempung untuk menyerap limbah organik. Dalam hal ini termasuk pengembangan modifikasi lempung sehingga selektif sebagai penyerap senyawa organik. Beberapa jenis surfaktan yang sering digunakan oleh para peneliti adalah ammonium kwartener
seperti
cetylpyridinium
chloride,
dodecylpyridium
chlorideride,
tetramethylammmonium tribomide dan benzalconium cloride(Lemke dkk., 1998).
Surfaktan
jenis ammonium klorida sering dipakai untuk interkalsi karena menghasilkan nano ruang dua dimensi pada antar lapis lempung. Nanoruang dua dimensi ini terjadi melalui interaksi antara ion organoammonium dengan ruang antar lapis lempungdalam lapis silikat sehingga menyebabkan terbukanya ruang pada antar lapis lempung sampai pada ukuran nano (Gambar 2.6). Pertukaran antara kation antar lapis dengan ion organoammonium ini menghasilkan perubahan sifat permukaan pada kisi-lapis lempung Ogawa dan Kuroda, 1997).
Interkalan
Interkalat
Material terinterkalasi
Gambar 2.6 Mekanisme interkalasi Interkalasi merupakan suatu proses penyisipan spesies kimia secara reversibel ke dalam antarlapis suatu struktur yang mudah mengembang (antarlapis silikat montmorillonit) tanpa merusak strukturnya. Spesies kimia yang disisipkan disebut dengan interkalat, sedangkan material tempat interkalat disisipkan disebut interkalan. Spesies kimia yang umumnya digunakan adalah ion alkilamonium, kation amina bisiklis dan beberapa logam kompleks (Bruce, 1992). Pada penelitian ini yang dipilih sebagai interkalat adalah surfaktan kationik yaitu benzalkonium klorida (BKC), dengan rumus molekul C9H13ClNR, dimana R berupa alkil C8H17 sampai C18H37. Surfaktan BKC termasuk golongan amonium klorida. Surfaktan jenis amonium klorida sering dipakai untuk interkalasi karena menghasilkan nanoruang dua dimensi pada antarlapis lempung. Nanoruang dua dimensi ini terjadi melalui interaksi antara ion organoamonium dengan ruang antarlapis lempung dalam lapis silikat sehingga menyebabkan terbukanya ruang antarlapis yang menghasilkan perubahan pada kisi lapis lempung (Susianah, 2005).
2.4 Studi Pendahuluan yang Sudah Dilaksanakan Studi pendahuluan yang sudah dilakukan adalah (1) Preparasi lempung terpilar besi oksida yang berpotensi untuk menyerap senyawa pengotor pada minyak cengkeh (Suarya, 2005), (2)Aktivasi lempung oleh asam sulfat yang berpotensi sebagai penyerap senyawa pengotor pada minyak cengkeh (Suarya, 2007), Sintesis lempung teraktivasi asam terpilar aluminium oksida
dan pemanfaatannya sebagai penjernih minyak cengkeh (Suarya, 2008). Preparasi lempung teraktivasi asam dan terpilar besi oksida untuk meningkatkan kadar etanol melalui proses destilasi
adsorpsi
(Suarya,
2014)
BAB III TUJUAN MANFAAT PENELITIAN 3.1 Tujuan Penelitian 1. Mengetahui sifat fisiko-kimia (luas permukaan, dan keasaman permukaan) dari lempung montmorillonit teraktivasi asam sulfat 2 M terinterkalasi BKC 3 %. 2. Mengetahui pengaruh interkalasi BKC ke dalam lempung montmorillonit teraktivasi asam sulfat 2 M terhadap kapasitas adsorpsinya pada limbah deterjen
3.2 Manfaat Penelitian Penelitian ini diharapkan dapat memberikan informasi ilmiah mengenai pengaruh interkalasi BKC 3 % ke dalam lempung montmorillonit teraktivasi asam sulfat 2 M terhadap sifat fisiko-kimia dari lempung tersebut dan memanfaatkannya sebagai adsorben untuk menurunkan kadar
limbah
deterjen.
BAB IV METODE PENELITIAN
3.1 Bahan dan Alat Bahan yang digunakan Benzalkonium klorida (BKC) 50 % produksi PT Brataco, AgNO3 (p.a), NaOH (p.a), H2SO4 (p.a), HNO3 (p.a), Lempung bentonit dari PT. Brataco, Deterjen, Metilen biru kolrida (p.a).
Peralatan yang digunakan Peralatan yang digunakan adalah peralatan gelas yang biasa digunakan di laboratorium. Sedangkan untuk karakterisasi digunakan spektrofotometer infra merah (IR), Difraksi Sinar X (XRD), Spektrofotometer Ultraviolet (UV Vis), Gas Sorption Analyzer, Penggerus Porselin, Ayakan 80 dan 200 mesh, Seperangkat alat gelas, Hot plate dan magnetic stirrer, Termometer, Piala Teflon, pH meter, Oven , Furnace / tungku kalsinasi dan Desikator. Cara kerja Preparasi lempung teraktivasi asam sulfat dan terinterkalasi surfaktan benzalkonium klorida dilakukan dengan dua tahap yakni ; (1) lempung diaktivasi dengan asam sulfat konsentrasi 1,2 M selanjutnya dicuci sampai bebas ion sulfat, (2) interkalasi surfaktan BKC kedalam antarlapis lempung dengan perlakuan kajian variasi konsentrasi BKC (1; 3 dan 5 %). Hasil preparasi ini selanjutnya dikarakterisasi luas permukaan, keasamaman permukaan, basal spacing dan gugus fungsi berturut-turut menggunakan Gas Sorption Analyzer, titrasi, Difraksi Sinar X dan spektrofotometer inframerah.
3.2 Uji Kapasitas Adsorpsi Lempung Hasil Preparasi Terhadap Limbah Deterjen Uji kapasitas adsorpsi lempung hasil preparasi terhadap limbah deterjen dilakukan dengan mengukur kajian variasi waktu adsorpsi, kajian variasi volume limbah terhadap adsorben dan kajian pengaruh perlakuan lempung hasil preparasi terhadap kemampuan adsorsinya. Kajian variasi waktu adsorpsi dilakukan dengan memvariasi waktu kontak adasorpsi yakni; 5; 15; 30; 45 dan 1 jam.Waktu kontak optimum digunakan untuk langkah penelitian berikutnya.Kajian variasi volume dilakukan dilakukan dengan memvariasi volume limbah deterjen terhadap berat adsorben (10, 20, 30, 40 dan 50 ml limbah terhadap 1 gram lempung).Sedangkan kajian pengaruh perlakuan lempung hasil preparasi terhadap kemampuan adsorpsinya dilakukan dengan menginteraksikan limbah deterjen pada masing-masing adsorben hasil preparasi.
Luaran Penelitian Luaran dari peneltian ini adalah 1. Penerapan IPTEK dalam penanganan masalah pencemaran lingkungan khususnya limbah deterjen melalui proses adsorpsi dengan lempung hasil modifikasi 2. Publikasi hasil penelitian pada jurnal nasional 3. Pengkajian hasil modifikasi material dalam penerapan masalah lingkungan sehingga dapat terus dipelajari pengananan masalah lingkungan dengan menerapkan metode yang dipelajari.
BAB V HASIL DAN PEMBAHASAN 5.1 Karakterisasi lempung 5.1.1 Luas permukaan adsorben
Luas permukaan adsorben merupakan karakter fisik yang sangat penting dalam proses adsorpsi, karena luas permukaan mempengaruhi banyaknya adsorbat yang teradsorpsi dan juga tergantung pada situs aktif. Menurut Perrich, (1981) menyatakan bahwa semakin luas permukaan adsorben, semakin banyak adsorbat yang dapat terserap, sehingga proses adsorpsi dapat berjalan semakin efektif dan semakin kecil ukuran partikel maka semakin luas permukaan adsorben. Pada penelitian ini, luas permukaan ditentukan dengan metode metilen biru. Panjang gelombang maksimum metilen biru yang digunakan yaitu 684 nm. Banyaknya molekul metilen biru yang dapat diadsorpsi sebanding dengan luas permukaan adsorben
Hasil pengukuran luas permukaan adsorben lempung montmorillonit tanpa dimodifikasi (A0), lempung teraktivasi H2SO4 2 m M (AA), dan lempung teraktivasi H2SO4 2 M terinterkalasi BKC 3 %(AAB) disajikan dalam Lampiran 3 dan dirangkum dalam Tabel 5.1 Tabel 5.1. Nilai Luas Permukaan Adsorben S (m2/g) Adsorben A0
18,3677
AA
18,4878
AAB
18,4881
keterangan : S = luas permukaan adsorben
Penentuan luas permukaan adsorben menggunakan metode metilen biru berdasarkan penentuan kapasitas adsorben yang menunjukkan banyaknya molekul metilen biru yang dapat diadsorpsi pada permukaan adsorben. Berdasarkan data pada Tabel 5.1, menunjukkan bahwa adsorben AA dan AAB memiliki luas permukaan relatif lebih tinggi dibandingkan lempung tanpa dimodifikasi A0. Hal ini disebabkan oleh adanya aktivasi lempung dengan asam dan menginterkalasinya dengan surfaktan BKC menjadikan pori pada lempung lebih terbuka, sehingga dapat menyerap molekul metilen biru lebih banyak dibandingkan A0. Peningkatan luas permukaan pada lempung teraktivasi asam dikarenakan adanya protonasi gugus OH menjadi OH2+ yang disertai terikatnya kation H+. Adanya jumlah H+ yang semakin banyak dengan penambahan asam sulfat dapat mendesak (Ca, Mg, Fe, K, dan Na) yang menempati ronggarongga pada lapisan alumina silikat. Daisamping itu fungsi penambahan asam sulfat dapat melepaskan ion Al, Fe, dan Mg dan pengotor-pengotor lainnya dari kisi-kisi struktur. 5.1.2 Keasaman permukaan adsorben Penentuan jumlah keasaman total adsorben bertujuan untuk mengetahui jumlah mmol situs asam yang terikat pada adsorben tiap gramnya. Adsorben lempung A0, AA dan AAB ditentukan keasamaannya dengan metode titrasi asam basa. Berikut ini hasil pengukuran keasaman permukaan adsorben disajikan dalam Lampiran 4 dan dirangkum dalam Tabel 5.2. Tabel 5.2. Nilai Keasaman Permukaan Adsorben Adsorben
Kal rata-rata (mmol/g)
Situs Aktif (1020 atom/g)
A0
0,6613 ± 0,0074
3,9823
AA
1,8179 ± 0,0227
10,947
AAB
1,8798± 0,0197
11,320
(keterangan : Kal, keasaman permukaan adsorben
Dari Tabel 5.2 menunjukkan terjadinya peningkatan keasaman permukaan pada adsorben lempung termodifikasi (AA dan AAB), jika dibandingkan dengan adsorben lempung tanpa dimodifikasi (A0). Keasaman permukaan adsorben terus meningkat sampai pada lempung teraktivasi H2SO4 2 M terinterkalasi 3% BKC lempung yang diaktivasi H2SO4 2 M
(AAB> AA> A0. Terlihat pada tabel bahwa
terinterkalasi BKC 3% (AAB) mempunyai keasaman
permukaan yang tertinggi, 1,8798 ± 0,0197 mmol/g, sedangkan keasaman permukaan yang terendah dimiliki oleh lempung tanpa dimodifikasi (A0) sebesar 0,6613 ± 0,0074 mmol/g. Peningkatan keasaman permukaan yang terjadi pada adsorben tersebut disebabkan oleh pengaktifan lempung dengan asam sulfat. Hal ini diperkuat oleh pernyataan Leonard dalam Simpen (2001), bahwa pengolahan lempung montmorillonit dengan asam-asam mineral (asam sulfat) dapat meningkatkan keasaman lempung, karena telah terjadi substitusi tetrahedral dan oktahedral akibat protonasi pada ikatan Si-O-Si dan Al-O-Al (ditunjukkan pada Gambar 5.1 dan 5.2). Selain itu, diduga lempung juga mendapatkan sumbangan situs aktif dari surfaktan kationik yang telah diinterkalasikan ke dalam antarlapis lempung, sehingga keasaman lempung menjadi bertambah. Anderson dan Boudart dalam Simpen (2001), menyatakan lempung montmorillonit dapat menunjukkan karakter keasaman baik asam BrØnsted maupun asam Lewis. Situs asam BrØnsted terbentuk karena adanya kation H+ (dari aktivasi dengan asam sulfat) yang berfungsi menyeimbangkan muatan negatif pada lempung montmorillonit. Sedangkan adanya N+ yang berasal dari BKC yang diinterkalasikan akan membentuk situs asam Lewis yang berfungsi sebagai akseptor elektron.
Gambar 5.1. Substitusi Tetrahedral (Leonard dalam Simpen, 2001)
Gambar 5.2. Substitusi Oktahedral (Leonard dalam Simpen, 2001)
5.2 Uji Daya Serap Lempung Terhadap Limbah Deterjen
5.2.1 Penetuan waktu kontak optimum
Salah satu variabel yang mempengaruhi proses penyerapan adalah waktu kontak antara adsorben dengan adsorbat. Penentuan waktu kontak optimum dilakukan pada konsentrasi 50 ppm dengan memvariasikan waktu kontak yaitu 0, 15,
30, 45 dan 60 menit.
Gambar 5.3. Kurva pengaruh waktu kontak terhadap adsorpsi deterjen dengan jumlah deterjen yang terserap. Berdasarkan Gambar 5.3 dapat dijelaskan, pada awal adsorpsi (yakni t = 15 menit) lempung alam (A0) mempunyai kemampuan mengadsorpsi limbah deterjen paling tinggi bila dibanding dengan lempung teraktivasi asam (AA) dan lempung teraktivasi asam terinterkalasi BKC yakn sebesar 4,8817 mg/g. Dengan pertambahan waktu yakni 30, 45 dan 60 menit, dapat diamati bahwa lempung alam mengalami penurunan dalam mengikat limbah deterjen. Hal ini mengindikasikan bahwa lempung alam pada t = 15 menit sudah mengalami kejenuhan untuk mengikat limbah deterjen, sehingga dengan pertambahan waktu adsorspsi akan berakibat terjadinya pelepasan ikatan antara deterjen dengan lempung. Hal yang berbeda ditunjukkan oleh lempung yang sudah dimodifikasi yakni dengan bertambahnya waktu adsorpsi menyebabkan terjadinya peningkatan jumlah deterjen yang terikat oleh lempung. Pada lempung AA, pertambahan waktu adsorpsi hingga 60 menit mengakibatkan jumlah deterjen yang teradsorpsi melebihi dari adsorpsi oleh lempung A0 yakni sebesar 4,9181 mg/g.
Fenomena yang sama ditunjukkan oleh lempung AAB, yang mana lempung ini
mempunyai kemampuan mengikat deterjen paling tinggi yakni sebesar 4,9977 mg/g pada t= 60 menit. Hubungan antara jumlah situs aktif yang dimiliki oleh masing-masing adsorben sangat berkaitan dengan kemampuan daya adsorpsinya. Lempung AAB mempunyai situs aktif paling besar yakni 11,320 1020 atom/g mempunyai kemampuan menyerap deterjen paling tinggi, selanjutnya diikuti oleh lempung AA dan A0.
Satu hal penting yang bisa dipelajari dari
penentuan waktu optimum ini adalah semakin besar situs aktif maka waktu kontak optimum yang terjadi akan semakin lama. Hasil ini cukup relevan dengan hasil penelitian (Auliah A, 2009) menyatakan bahwa adsorpsi fosfat dengan lempung diaktivasi secara fisika menghasilkan waktu kontak optimum yaitu 8 jam.
5.2.2 Penentuan kapasitas Adsorpsi Penentuan kapasitas adsorpsi dilakukan dengan cara mengontakkan lempung aktif dengan larutan deterjen dengan memvariasi konsentrasi yaitu 10, 25, 50, 75 dan 100 ppm. Hasil absorbansi filtrat fosfat dimasukkan kedalam persamaan regresi kurva standar larutan deterjen sehingga diperoleh konsentrasi akhir dari deterjen setelah berinteraksi dengan lempung aktif. Data pengaruh konsentrasi deterjen terhadap banyaknya deterjen yang teradsorpsi tiap gram lempung aktif (x/m) ditunjukkan Gambar 5.4.
Jumlah deterjen yang terserap( mg/g lempung) 10 9 8 7 6 Jumlah deterjen yang terserap( mg/g lemppung)
5 4 3 2 1 0 AAB10
AAB25
AAB50
AAB75
AAB100
Gambar 5.4 kurva variasi konsentrasi deterjen terhadap kapasitas adsorpsi
Dari Gambar 5.4 dapat dilihat bahwa pada konsentrasi 10 ppm sampai 50 ppm terjadi kenaikan adsorpsi. Hal ini dikarenakan semakin besar konsentrasi larutan deterjen maka semakin banyak partikel-partikel lempung yang bertumbukan dan berinteraksi dengan deterjen, sehingga kemampuan adsorpsinya meningkat. Konsentrasi deterjen optimum terjadi pada konsentrasi 50 ppm dengan kapasitas adsorpsi sebesar 5,284 mg/g. sedangkan pada konsentrasi diatas 75 ppm terjadi penurunan kemampuan adsorpsi. Hal ini dikarenakan lapisan lempung aktif telah jenuh/penuh dengan deterjen, sehingga ada deterjen yang tidak terserap oleh lempung aktif. Hal ini berbeda yang hasilkan pada penelitian (Auliah Amry, 2009) menyatakan bahwa
konsentrasi
optimum deterjen sebesar 20 ppm, konsentrasi deterjen yang teradsorpsi pada lempung yang diaktivasi secara fisika pada suhu 3500C ditentukan dengan metode asam askorbat. Prinsip pada metode ini adalah senyawa deterjen direaksikan dengan ammonium molibdat dengan kalium antimol tartat dalam suasana asam. asam fosfomolibdat yang dihasilkan kemudian direduksi dengan asam askorbat menjadi kompleks molibdenium yang berwarna biru. Intensitas warna biru dari senyawa molibdenium ini sebanding dengan konsentrasi deterjen yang tidak teradorpsi.
.
BAB VI KESIMPULAN DAN SARAN 7.1 Kesimpulan Kesimpulan sementara yang bisa ditarik dari penelitian yang telah dilakukan adalah: 1. Karakter lempung terbaik bila dilihat dari luas permukaan dan keasaman permukaannya adalah lempung yang diaktivasi dengan asam sulfat 2 M dan diinterkalasi dengan BKC 3%. 2. Kondisi optimum daya adsorpsi lempung alam (A0) dalam mengadsorpsi limbah deterjen didapatkan pada waktu kontak 15 menit, sedangkan lempung yang sudah dimodifikasi (AA dan AAB) sampai dengan penambahn waktu 60 menit masih terjadi peningkatan penyerapan limbah deterjen. 3. Kapasitas adsorpsi lempung terhadap larutan deterjen sebesar 5,284 mg/g
7.2 Saran Pada penelitian ini perlu dipelajari pengaruh waktu adsorpsi yang lebih lama, karena interaksi antara adsorben dan adsorben sangat ditentukan oleh waktu.
DAFTAR PUSTAKA 1. Bruce, D.W., and O’ Hare, D., 1992, Inorganics Materials, John Wiley & Sons Ltd, New York 2. Harlim Tjodi, 2003, Kajian Umum Limbah cair Rumah Tangga dan Industri , Jurusan Kimia F.MIPA dan Lembaga Penelitian Universitas Hasanudin, Makasar 3. Lemke, S.L, 1998, Adsorption of Zearolenone by organophilic montmorillonite Clay, J. Agric Food Chem., 46, 3789-3796 4. Masel, R.I., 1996, “Principle of Adsorption and Reaction on Solid Surface”, edisi ke-1, John Wiley & Sons, Inc., Canada, 118 – 113, 235 – 230 5. McCabe, R., 1996, “Clay Chemistry”, edisi kedua, John Wiley& Sons, Inc., Oxford, 314 -325. 6. Ogawa,M and Koruda, K., 1998, Preparation of inorganic nanocomposites Through Intercalation of Organoammonium Ion Into Layered silicates,Bull. Chem. Soc. Jpn.., 70, 2593-2618 7. Susianah, T., 2005, Interkalasi Surfaktan Kationik ke dalam Struktur Antarlapis Lempung Bentonit dan Pemanfaatannya sebagai Adsorben Pengotor Minyak Daun Cengkeh, Tesis S-2, Universitas Gadjah Mada, Yogyakarta. 8. Suarya, P. 2005.Preparasi Lempung Terpilar Besi Oksida dan Pemanfaatnnya sebagai Penyerap Pengotor Minyak Daun Cengkeh, Tesis, Jurusan Kimia FMIPA Universitas Gadjah Mada, Jogjakarta 9. Suarya, P. 2007. Adsorpsi Pengotor Minyak Daun Cengkeh oleh Lempung Teraktivasi Asam, Hasil Penelitian, Jurusan Kimia FMIPA Universitas Udayana, Jimbaran 10. Suarya, P. 2008.Preparasi Lempung Teraktivasi Asam Sulfat Terpilar Aluminium Oksida dan Pemanfaatnnya sebagai Penyerap Pengotor Minyak Daun Cengkeh, Hasil Penelitian, Jurusan Kimia FMIPA Universitas Udayana, Jimbaran 11. Wijaya, K., Mudasir, Tahir, I., dan Asean, F., 2003, Inklusi Senyawa p-Nitroanilin ke dalam Pori-pori Montmorillonit Terpilar TiO2, Review Kimia, 6(2), hal. 84-94. 12. Zainudin, M., 1999, Metode penelitian, Universitas Airlangga, Surabaya
Lampiran 1. Pembuatan Larutan 1. Pembuatan Larutan H2SO4 2 M Untuk membuat 1000 mL H2SO4 2 M, diambil sebanyak 111,04 mL H2SO4 pekat dan diencerkan dengan akuades pada labu ukur 1000 mL sampai tanda batas. Cara perhitungannya adalah sebagai berikut : H2SO4 yang tersedia adalah 96 % (v/v); 1L = 1,84 kg; BM = 98,08 g/mol [H2SO4] =
= 18,0098 M
V1.M1= V2.M2 V1.18,0098 = 1000 mL. 2M V1 = 111,04 mL 2. Pembuatan Larutan HCl 0,1 M Untuk membuat 1000 mL HCl0,1 M, diambil sebanyak 8,3 mL HClpekat dan diencerkan dengan akuades pada labu ukur 1000 mL sampai tanda batas. Cara perhitungannya adalah sebagai berikut : HClyang tersedia adalah 37 % (v/v); 1L = 1 = 36,5 g/mol [HCl] =
= 11,96 M
V1.M1= V2.M2 V1.11,96 = 1000 mL. 0,1M V1 = 8,36 mL 3. Pembuatan Larutan BaCl2.2H2O 0,25 M Untuk membuat 100 mL BaCl2.2H2O 0,25 M, ditimbang dengan teliti 6,0750 g BaCl2.2H2O, kemudian dilarutkan dengan 20 mL akuades dan diencerkan dalam labu ukur 100 mL sampai tanda batas. Cara perhitungannya adalah sebagai berikut : M BaCl2.2H2O = Berat BaCl2.2H2O = 0,25 M x 243 g/mol x Berat BaCl2.2H2O = 6,0750 g
4. Pembuatan Larutan H2C2O4
Untuk membuat 100 mL H2C2O4 0,025 M, ditimbang dengan teliti 0,225 g H2C2O4, kemudian diencerkan dalam labu ukur 100 mL sampai tanda batas. Cara perhitungannya adalah sebagai berikut : M H2C2O4 = Berat H2C2O4= 0,025 M x 90 g/mol x Berat H2C2O4= 0,225 g 5. Pembuatan Larutan Metilen Biru 100 ppm Untuk membuat 1000 mL larutan stok metilen biru 100 ppm, ditimbang dengan teliti 0,1 g metilen biru kemudian diencerkan dengan akuades dalam labu ukur 1000 mL sampai tanda batas. Cara perhitungan sebagai berikut: Metilen biru 100 ppm
= x 1000 mL = 100 mg = 0,1 g
Larutan metilen biru 50 ppm V1. M1 = V2. M2 V1. 100 ppm = 500 mL. 50 ppm V1 = 250 mL
Dengan cara yang sama dibuat larutan metilen biru 1 ppm, 2 ppm, 3 ppm, 4 ppm, 50 ppm. M1
V1
M2
V2
100 ppm
1 mL
1 ppm
100 mL
100 ppm
2 mL
2 ppm
100 mL
100 ppm
3 mL
3 ppm
100 mL
100 ppm
4 mL
4 ppm
100 mL
6. Pembuatan Larutan NaOH 0,1 M Untuk membuat 500 mL NaOH 0,1 M, ditimbang dengan teliti 2,0000 g NaOH dan dilarutkan dengan akuades dalam labu ukur 500 mL sampai tanda batas. Cara perhitungannya adalah sebagai berikut: M=
x
Berat NaOH = 0,1 M x 40 g/mol x Berat NaOH = 2,0000 g
Pembuatan larutan NaOH 0, 01 M V1. M1 = V2. M2 V1. 0,1 M = 100 mL. 0,01 M V1 = 10 mL
Lampiran 2. Perhitungan Keasaman Permukaan 2.1 Data Pengamatan a. Standarisasi larutan NaOH [H2C2O4] = 0,025 mol/L Indikator yang digunakan adalah pp Perubahan yang terjadi adalah dari tidak berwarna menjadi merah muda. Tabel 2.1 Data Standarisasi Larutan NaOH Percobaan
Volume H2C2O4 (mL)
Volume NaOH (mL)
1
25
9,15
2
25
9,20
3
25
9,00
Untuk titrasi I : Volume NaOH
= 9,15 mL
BM H2C2O4
= 126,07 g/mol
[H2C2O4.2H2O]
= 0,025 M
Dalam 25 mL =
L x 0,0250 mol/L
= 6,25 x10-4 mol Reaksi : H2C2O4 + 2NaOH
Na2C2O4 + H2O
Jumlah mol NaOH = 2 x mol H2C2O4 = 2 x 6,25 x10-4 mol = 0,00125 mol = 1,25 mmol [NaOH] =
= 0,1366 M
Dengan cara yang sama diperoleh data sebagai berikut : Vol H2C2O4
Vol NaOH
[NaOH]
[NaOH] rata-rata
(mL)
(mL)
(M)
(M)
1
25
9,15
0,1366
2
25
9,20
0,1359
3
25
9,00
0,1388
Titrasi
0,1371
b. Standarisasi larutan HCl Indikator yang digunakan adalah pp Perubahan warna yang terjadi adalah dari tidak berwarna menjadi merah muda Tabel 2.2 data standarisasi HCl Percobaan
Volume HCl (mL)
Volume NaOH (mL)
1
25
27,10
2
25
26,90
3
25
27,00
Untuk titrasi I : Vol NaOH
= 27,10 mL
Vol HCl
= 25 mL
[NaOH]
= 0,1371 M
[HCl]
Vol NaOH x [NaOH] = Vol HCl x [HCl]
27,10 mL x 0,1371 M = 25 mL x [HCl]
[HCl] = 0,1486 M
Dengan cara yang sama maka didapatkan data sebagai berikut: Vol HCl
Vol NaOH
[HCl]
[HCl] rata-rata
(mL)
(mL)
(M)
(M)
1
25
27,10
0,1486
2
25
26,90
0,1475
3
25
27,00
0,1481
Titrasi
0,1481
c. Penentuan keasaman adsorben
Data Pengamatan Blanko :
Volume NaOH 0,1 M = 25 mL Indikator yang digunakan adalah pp Volume HCl 0,1 M yang digunakan = 26,70 mL 1. Lempung Ao Indikator yang digunakan adalah pp Perubahan warna yang terjadi adalah dari merah muda menjadi warna larutan lempung coklat kekuningan Tabel 2.3 Lempung Ao Perbobaan
Massa sampel (g)
Volume HCl (mL)
1
1
22,30
2
1
22,20
3
1
22,25
2. Lempung AA Indikator yang digunakan adalah pp Perubahan warna yang terjadi adalah dari merah muda menjadi warna larutan lempung coklat kekuningan
Tabel 2.4 Lempung AA Perbobaan
Massa sampel (g)
Volume HCl (mL)
1
1
14,30
2
1
14,50
3
1
14,60
3. Lempung AAB Indikator yang digunakan adalah pp Perubahan warna yang terjadi adalah dari merah muda menjadi warna larutan lempung coklat kekuningan Tabel 2.5 Lempung AAB Perbobaan
Massa sampel (g)
Volume HCl (mL)
1
1
14,10
2
1
14,15
3
1
13,90
2.2 Perhitungan
KaL (
)=
Keterangan: V1 = volume HCl titrasi blanko (mL) V2 = volume HCl titrasi Adsorben (mL) B
= Berat Adsorben (g)
Lempung Ao 1. KaL (
)=
= 0,6538
2. KaL (
)=
= 0,5687
3. KaL (
)=
= 0,6513
Rata-rata : Rata-rata KaL (
)= =
=0,6246 mmol/gram
Dengan cara yang sama diperoleh data sebagai berikut: Kode
AA
(mL)
(mL)
(
22,30
0,6538
22,20
0,6687
3
22,25
0,6613
1
14,30
1,8426
14,50
1,8129
14,60
1,7981
14,10
1,8724
Pengulangan
2
2
26,70
26,70
3 AAB
KaL Rata-rata
V2
1 Ao
KaL
V1
1
26,70
)
(
)
0,6613
1,8179
1,8798
2
14,15
1,8649
3
13,90
1,9021
Standar deviasi untuk keasaman permukaan padas BA KaL rata-rata
Titrasi
KaL (x)
(x- )
(x- )2
-0,0075
0,00005625
0,0074
0,00005476
0
0
SD
( ) 1
0,6538
2
0,6687
3
0,6613
0,6613
0,0297
∑ =0,000111
SD =
=
=
=
= 0,0074
Jadi nilai keasaman permukaan total adsorben padas BA adalah 0,6613±0,0074 mmol/gram. Jumlah situs aktif = KaL x bilangan avogadro = 0,6613 mmol/gram x 10-3 mol/ gram x 6,022.1023 mol-1 = 3,9823 x 1020 atom/gram Dengan cara yang sama diperoleh data sebagai berikut: KaL KaL Kode
Rata-rata
Ulangan (
1
SD
)
0,6538
Jumlah situs aktif
(mmol/gram) (
Ao
Nilai Keasaman
(atom/gram)
)
0,6613
0,0074
0,6613±0,0074
3,9823 x 1020
AA
AAB
2
0,6687
3
0,6613
1
1,8426
2
1,8129
3
1,7981
1
1,8724
2
1,8649
3
1,9021
1,8179
0,0227
1,8179±0,0227
10,947 x 1020
1,8798
0,0197
1,8798±0,0197
11,320 x 1020
Lampiran 3. Perhitungan Luas Permukaan 3.1 Data hasil pengukuran absorbansi larutan standar metilen biru 3 ppm Grafik panjang gelombang maksimum diperoleh dari pengukuran larutan metilen biru 3 ppm. Panjang gelombang maksimum adalah 664,25 nm dimana panjang gelombang ini digunakan sebagai acuan pengukuran absorbansi larutan standar dan absorbansi filtrat metilen biru pada sampel. (Grafik terlampir) 3.2 Data hasil pengukuran absorbansi larutan standar metilen biru No
Konsentrasi (ppm)
Absorbansi
1
1
0,1593
2
2
0,3249
3
3
0,5772
4
4
0,7512
5
5
0,9056
Perhitungan koefisien korelasi linier dari larutan standar. Dengan menggunakan persamaan regresi y = bx + a, denga y adalah absorbansi, x adalah konsentrasi larutan yang diukur, b adalah slope, a adalah intersep, dan r adalah koefesien korelasi, dimana:
No
X
Y
X2
Y2
XY
1
1
0,1593
1
0,025376
0,1593
2
2
0,3249
4
0,10556
0,6498
3
3
0,5772
9
0,33316
1,7316
4
4
0,7512
16
0,564301
3,0048
5
5
0,9056
25
0,820111
4,528
n=5
15
2,7182
55
1,848509
10,0735
= 0,1919
= -0,0320
= 0,9931 Jadi, persamaan garis regresi metilen biru : y = 0,1919x – 0,0320 dengan harga koefisien korelasi 0,9931 Kurva kalibrasi Metilen Biru
3.3 Data hasil absorbansi filtrat metilen biru pada penentuan waktu kontak optimum Lempung tanpa aktivasi (Ao) T (menit)
Berat sampel (g)
Absorbansi
5
1
0,0013
15
1
-0,0125
30
1
-0,0092
45
1
-0,0194
60
1
-0,0171
T (menit)
Berat sampel (g)
Absorbansi
5
1
-0,0206
15
1
-0,0165
30
1
-0,0204
45
1
-0,0255
60
1
-0,0259
Lempung teraktivasi H2SO4 2M (AA)
Lempung teraktivasi H2SO4 2M dan BKC 3% (AAB) T (menit)
Berat sampel (g)
Absorbansi
5
1
-0,0241
15
1
-0,0207
30
1
-0,0215
45
1
-0,0205
60
1
-0,0227
3.4 Penentuan waktu kontak optimum terhadap metilen biru Nilai absorbasni yang diperoleh pada tabel diatas dimasukkan pada persamaan garis regresi y = 0,1919x – 0,0320 dalam menghitung konsentrasi metilen biru yang tersisa dalam filtrat. Dimana y = absorbansi, x = konsentrasi filtrat setelah penyerapan.
Untuk lempung tanpa aktivasi pada waktu 5 menit dengan y = 0,0013
y = 0,1919x – 0,0320 0,0013 = 0,1919x – 0,0320 X = 0,1737 ppm Csisa = 0,1737 ppm
Dengan cara yang sama didapat data sebagai berikut: Lempung tanpa aktivasi (Ao) T (menit)
Absorbansi
Csisa (ppm) (x)
5
0,0013
0,1737
15
-0,0125
0,1018
30
-0,0092
0,1190
45
-0,0194
0,0658
60
-0,0171
0,0778
Lempung teraktivasi H2SO4 2M (AA) T (menit)
Absorbansi
Csisa (ppm) (x)
5
-0,0206
0,0596
15
-0,0165
0,0809
30
-0,0204
0,0606
45
-0,0255
0,0340
60
-0,0259
0,0319
Lempung teraktivasi H2SO4 2M dan BKC 3% (AAB) T (menit)
Absorbansi
Csisa (ppm) (x)
5
-0,0241
0,0413
15
-0,0207
0,0590
30
-0,0215
0,0549
45
-0,0205
0,0601
60
-0,0227
0,0486
Dari data tersebut kemudian ditentukan jumlah metilen biru yang diserap dengan menggunakan persamaan Xm = Keterangan : Xm
= berat metilen biru yang terserap oleh satu gram sampel (mg/g)
B
= berat sampel yang digunakan (g)
C1
= konsentrasi larutan metilen biru awal (ppm)
C2
= konsentrasi larutan metilen biru akhir (ppm)
V
= volume larutan metilen biru yang digunakan (mL)
Untuk lempung tanpa aktivasi pada waktu 5 menit. Diketahui : C1 = 50 ppm ; C2 = 0,1737 ; V = 20 mL ; B = 0,2 gr
Xm = Xm = = 4,9826 Dengan cara yang sama didapat data sebagai berikut: Lempung tanpa aktivasi (Ao) T (menit)
Csisa (ppm) (x)
Xm (mg/g)
5
0,1737
4,98263
15
0,1018
4,98982
30
0,1190
4,9881
45
0,0658
4,99342
60
0,0778
4,99222
Lempung teraktivasi H2SO4 2M (AA) T (menit)
Csisa (ppm) (x)
Xm (mg/g)
5
0,0596
4,99404
15
0,0809
4,99191
30
0,0606
4,99394
45
0,0340
4,9966
60
0,0319
4,99681
Lempung teraktivasi H2SO4 2M dan BKC 3% (AAB)
T (menit)
Csisa (ppm) (x)
Xm (mg/g)
5
0,0413
4,99587
15
0,0590
4,9941
30
0,0549
4,99451
45
0,0601
4,99399
60
0,0486
4,99514
3.5 Data hasil absorbansi filtrat metilen biru pada penentuan luas permukaan spesifik Waktu kontak Kode sampel
Berat (g)
Absorbansi
Xm (mg/g)
(menit) Ao
0,2
45
0,0761
4,94367
AA
0,2
60
0,0958
4,93341
AAB
0,2
5
0,0180
4,97395
3.6 Penentuan luas permukaan spesifik lempung Dalam penentuan luas permukaan menggunakan persamaan:
Keterangan : S
= luas permukaan adsorben ( m2/g )
N
= bilangan avogadro ( 6, 022.10-2 mol-1)
Xm
= berat adsorbat teradsorpsi ( g/g )
a
= luas penutupan oleh 1 molekul metilen biru (197.10-20 m2)
Mr
= massa molekul relatif metilen biru ( 320,5 g/mol )
Perhitungan untuk sampel tanpa aktivasi (Ao) dengan Xm = 4,94367 Xm = 4,94367 mg/g Xm = 4,94367.10-3 g/g
= 18,23827 Dengan cara yang sama didapatkan data luas permukaan spesifik lempung sebagai berikut: S(
)
Kode Sampel
Absorbansi
Csisa (ppm)
Xm (mg/g)
Ao
0,0761
0,563314
4,94367
18,23827
AA
0,0958
0,665972
4,93341
18,20042
AAB
0,0180
0,260552
4,97395
18,34998
Lampiran 4. Penentuan waktu optimum adsorbansi detergen 4.1 Pengukuran absorbansi larutan standar detergen Data absorbansi larutan standar detergen. Konsentrasi (ppm)
Absorbansi
1
0,114
2
0,251
4
0,528
8
0,813
4.2 Perhitungan koefisien korelasi linier dari larutan standar detergen Berdasarkan data absorbansi larutan standar detergen diatas maka dapat ditentukan persamaan regresi linier larutan standar detergen yaitu: y = bx + a, dimana y = absorbansi, x = konsentrasi, b = slope dan a = intersep serta r = koefisien korelasi linier. No
X
Y
X2
Y2
XY
1
1
0,114
1
0,012996
0,114
2
2
0,251
4
0,063001
0,502
3
4
0,528
16
0,278784
2,112
4
8
0,813
64
0,660969
6,504
n=4
15
1,706
85
1,01575
9,232
= 0,09762
= 0,03458
= 0,9971 Jadi, persamaan garis regresi detergen : y = 0,0762x + 0,03458 dengan harga koefisien korelasi 0,9971. Kurva kalibrasi Detergen 4.3 Data hasil absorbansi filtrat detergen pada penentuan waktu kontak optimum Lempung tanpa aktivasi (Ao) T (menit)
Berat sampel (g)
C sisa Absorbansi (ppm)
15
0,2
0,173
1,183
30
0,2
0,361
0,361
45
0,2
0,180
1,250
60
0,2
0,222
1,917
Lempung teraktivasi H2SO4 2M (AA) T (menit)
Berat sampel (g)
C sisa Absorbansi (ppm)
15
0,2
0,307
2,792
30
0,2
0,319
2,915
45
0,2
0,572
5,504
60
0,2
0,310
2,819
Lempung teraktivasi H2SO4 2M dan BKC 3% (AAB) T (menit)
Berat sampel (g)
C sisa Absorbansi (ppm)
15
0,2
0,400
3,746
30
0,2
0,380
3,537
45
0,2
0,339
3,116
60
0,2
0,059
0,023
Dari data tersebut kemudian ditentukan jumlah detergen yang diserap dengan menggunakan persamaan Wads = Keterangan : Wads
= berat detergen yang terserap oleh satu gram sampel (mg/g)
B
= berat sampel yang digunakan (g)
C1
= konsentrasi larutan detergen awal (ppm)
C2
= konsentrasi larutan detergen akhir (ppm)
V
= volume larutan detergen yang digunakan (mL)
Untuk lempung tanpa aktivasi pada waktu 5 menit. Diketahui : C1 = 50 ppm ; C2 = 1,183 ; V = 20 mL ; B = 0,2 gr
Wads = Wads = = 4,8817(mg/g) Dengan cara yang sama maka didapatkan data sebagai berikut: Lempung tanpa aktivasi (A0) C1
V
B
C2
T
Wads
(mL)
(g)
(ppm)
(menit)
(mg/g)
Absorbansi (ppm) 50
0,173
20
0,2
1,183
15
4,8817
50
0,361
20
0,2
0,361
30
4,9639
50
0,180
20
0,2
1,250
45
4,875
50
0,222
20
0,2
1,917
60
4,8083
Lempung teraktivasi H2SO4 2M (AA) C1
V
B
C2
T
Wads
(mL)
(g)
(ppm)
(menit)
(mg/g)
Absorbansi (ppm) 50
0,307
20
0,2
2,792
15
4,7208
50
0,319
20
0,2
2,915
30
4,7085
50
0,572
20
0,2
5,504
45
4,4496
50
0,310
20
0,2
2,819
60
4,9181
Lempung teraktivasi H2SO4 2M dan BKC 3% (AAB)
C1
V
B
C2
T
Wads
(mL)
(g)
(ppm)
(menit)
(mg/g)
Absorbansi (ppm) 50
0,400
20
0,2
3,746
15
4,6254
50
0,380
20
0,2
3,537
30
4,6463
50
0,339
20
0,2
3,116
45
4,6884
50
0,059
20
0,2
0,023
60
4,9977
LAMPIRAN 5 DAFTAR RIWAYAT HIDUP PENELITI 1. Ketua Peneliti A. Identitas Diri 1.
Nama Lengkap (dengan
Putu Suarya, S.Si., M.Si
L/P
gelar) 2.
Jabatan Fungsional
Lektor
3.
Jabatan Struktural
-
4.
NIP
19721231199802 1 001
5.
NIDN
0031127202
6.
Tempat dan Tanggal Lahir
Gesing, 31 Desember 1972
7.
Alamat Rumah
Desa Sibetan kec. Bebandem kab. Karangasem Bali
8.
9.
Nomor Telepon/Faks/ HP Alamat Kantor
-/ - / 081337958766
Jurusan Kimia FMIPA Universitas Udayana, Kampus Bukit jimbaran, Kuta, Badung Bali
10. Nomor Telepon/Faks
0361-703137 / 703137
11. Alamat e-mail
[email protected]
12. Lulusan yang Telah
S1 = 10 orang
Dihasilkan Kimia Anoganik I (di S-1 Kimia) Kimia Anoganik II (di S-1 Kimia
Kimia Anoganik III(di S-1 Kimia) Korosi (di S-1 Kimia) Kapita Selekta Kimia Anoraganik (di S-1 13. Mata Kuliah yang Diampu
Kimia) Kimia Katalis (di S-1 Kimia) Kimia Organologam (di S-1 Kimia) Bioanoraganik (di S-1 Kimia)
B. Riwayat Pendidikan
S-1
S-2
Nama Perguruan Tinggi
Universitas Udayana
Universitas Gadjah Mada
Bidang Ilmu
Kimia
Kimia
Tahun Masuk – Lulus
1990-1995
1998-2001
Judul Skripsi / Thesis / Pengaruh CaCl2 dan Suhu Disertasi aktivasi Pada Arang Sekam Padi dan Kemampuan Adsorpsinya pada Metilen Biru Klorida
Preparasi Lempung Terpilar Besi Oksida dan Pemanfaatannya untuk Menjernihkan Minyak daun Cengkeh
Nama Drs. Made Sweda, M.Sc. Pembimbing/Promotor Drs I Wayan Wyadnya
Dr. Yateman Aryanto
C. Pengalaman Penelitian Dalam 5 Tahun Terakhir (Bukan Skripsi, Tesis, maupun Disertasi)
Prof. Dr. Sri Juari
No.
Tahun
Judul Penelitian
Pendanaan Sumber*
1
Produksi bioetanol berbahan sekam padi dan peningkatan kadar etanol dengan lempung terpilar besi oksida
DIKTI
Modifikasi Silika gel dari 20010/2011 Sekam Padi dengan Ligan Difenil Karbason dan Aplikasinya untuk Mengadsorpsi Cr III dan Cr VI
DIKTI
3.
2009/2010
Sintesis Silika Gel dari Sekam Padi
Dosen MudaDikti
10
4
2007
Adsorpsi Pengotor Minyak daun Cengkeh Menggunakan Lempung Teraktivasi asam
Dosen MudaDikti
10
2.
2012/2013
Jml (Juta Rp) 50
Hibah bersaing
50
Hibah Bersaing
D. Pengalaman Pengabdian Kepada Masyarakat Dalam 5 Tahun Terakhir
No.
Tahun
Judul Pengabdian Kepada Masyarakat
Pendanaan Sumber*
1
1.
2.
2012/2013 Pembuatan sabun mandi anti bakteri dari daun mimba
Jml (Juta Rp) 4
Bakti Ilmiah Mahasiswa Jurusan 2009/2010 Kimia Tahun 2010 di Desa Baha, Kecamatan Mengwi, Kabupaten Badung
-
-
2010/2011 Bakti Ilmiah Mahasiswa Jurusan Kimia Tahun 2011 di Desa Kerta, Kecamatan Payangan, Kabupaten Gianyar
-
-
E. Pengalaman Penulisan Artikel Ilmiah Dalam Jurnal Dalam 5 Tahun Terakhir
No.
Judul tulisan
Tahun
Diterbitkan sebagai: *)
01
Optimasi Jenis Pelarut dalam Ekstraksi Zat Warna Alam dari Batang Pisang Kepok (Mussa paradisiacal L. cv kepok) dan Pisang Susu (Mussa paradisiacal L. cv susu)
2011
Artikel pada Jurnal Kimia Vol.5, No.1, Januari 2011
02
Interkalasi Tetra Etil Orto Silikat (TEOS) Pada Lempung Teraktivasi Asam Sulfat dan Pemanfaatannya Sebagai
2010
Artikel pada Jurnal Kimia Vol.4, No.1, Januari 2010
Adsorben Limbah Warna Garmen
03
Interkalasi Benzalkonium Klorida ke dalam Antar Lapis Lempung dan Pemanfaatannya sebagai Penjernih Minyak Daun Cengkeh
2009
Artikel pada Jurnal Kimia Vol.3, No.1, Januari 2009
04
Studi Adsorpsi-desorpsi Logam Timbal dalam Larutan dengan Cangkang Telur
2008
Artikel pada Sigma Jurnal Sain dan Teknologi vol. 11 No 2 Jjuli 2008
05
Biosorption of Cr(III) Ion On Algae Eucheuma spinosum Biomassa
2008
Artikel pada Indonesian Journal of Chemistry Vol. 8, No. 1, March 2008.,
F. Pengalaman Penyampaian Makalah Secara Oral Pada Pertemuan / Seminar Ilmiah Dalam 5 Tahun Terakhir
No.
Nama Pertemuan Ilmiah/Seminar
Judul Artikel Ilmiah
Waktu dan Tempat
1. G. Pengalaman Penulisan Buku dalam 5 Tahun Terakhir No. Judul Buku
Tahun
Jumlah Halaman
H. Pengalaman Perolehan HKI Dalam 5 – 10 Tahun Terakhir
Penerbit
No.
Judul / Tema HKI
Tahun
Jenis
Nomor P/ID
I. Pengalaman Merumuskan Kebijakan Publik/Rekayasa Sosial Lainnya Dalam 5 Tahun Terakhir
No.
Judul/Tema/Jenis Rekayasa Sosial Lainnya yang Telah Diterapkan
Tahun
Tempat Respon Penerapan Masyarakat
J. Penghargaan yang Pernah Diraih dalam 10 tahun Terakhir (dari pemerintah, asosiasi atau institusi lainnya) No.
Jenis Penghargaan
Institusi Pemberi Penghargaan
Tahun
1.
Semua data yang saya isikan dan tercantum dalam biodata ini adalah benar dan dapat dipertanggungjawabkan secara hukum.Apabila di kemudian hari ternyata dijumpai ketidaksesuaian dengan kenyataan, saya sanggup menerima risikonya. Demikian biodata ini saya buat dengan sebenarnya untuk memenuhi salah satu persyaratan dalam pengajuan Hibah Penelitian Fundamental
Denpasar, 10 Febroari 2015 Pengusul,
(Putu Suarya, S.Si., M.Si.)
NIP 19721231199802 1 001
2.Anggota Peneliti II
Nama
: Drs. I Wayan Suirta, M.Si.
Pendidikan
: S2 Kimia
Golongan / Pangkat
: IVa/Pembina
Jabatan Fungsional Akademik: Lektor Kepala
Perguruan Tinggi
: Universitas Udayana
Alamat
: Kampus Bukit Jimbaran Bali
Telp/Faks
: (0361)701812 ext 255 Fax. (0361) 7895807
Alamat Rumah
: Jl Nuansa Hijau Utama XXVI/6 Ubung Denpasar
Bali Telp
: (0361) 415423 RIWAYAT PENDIDIKAN PERGURUAN TINGGI
Tahun lulus
Program Pendidikan
Perguruan Tinggi
Jurusan/Program Studi
1991
S1
Universitas Airlangga
Kimia
1998
S2
Universitas Gajah Mada
Kimia
PELATIHAN PROFESIONAL Tahun Jenis Pelatihan (Dalam/Luar Negeri)
Penyelenggara
Jangka Waktu
1993
Program Pencangkokan Bidang Kimia di UGM
Jurusan Kimia UGM
2 bulan
1995
Program Matrikulasi Ilmu Kimia di UGM
Pascasarjana UGM
1 tahun
2004
Program Applied Approach (AA)
Universitas Udayana
5 hari
2004
Peserta Workshop Kimia Bahan Alam
Universitas Andalas 7 hari Padang
PENGALAMAN MENGAJAR Mata Kuliah
Program
Institusi/Jurusan/Program Sem/Tahun
pendidikan
Studi
Akademik
Kimia Organik I
S1
Jurusan Kimia
1993 – sekarang
Kapita Selekta Kimia Organik
S1
Jurusan Kimia
1998 – sekarang
Kimia Organik Bahan Alam
S1
Jurusan Kimia
1998 – sekarang
PraktikumKimia Organik Bahan Alam
S1
Jurusan Kimia
1998 – sekarang
Praktikum Organik II
Kimia
S1
Jurusan Kimia
1998 – sekarang
Sintesis Kimia Organik
S1
Jurusan Kimia
1998 – sekarang
Uji Bioaktifitas
S1
Jurusan Kimia
2006 – sekarang
Kimia Organik I
S1
Jurusan Farmasi
2006 – sekarang
PRODUK BAHAN AJAR Mata Kuliah
Program Pendidikan
Jenis Bahan Ajar Sem/Tahun Akademik (cetak dan non cetak)
Kimia Organik I : Alkana, alkena, alkuna, alcohol, ester, tiol
S1
Non cetak
Genap/2009/2010
Sintesis Organik Diskoneksi
Senyawa Pendekatan
S1
Non cetak
Ganjil/2009/2010
Penuntun Praktikum Kimia Organik Bahan Alam
S1
Non cetak
Ganjil/2007/2008
Penuntun Praktikum Kimia Organik II
S1
Non cetak
Genap/207/2008
PENGALAMAN PENELITIAN Tahun Judul Penelitian
Ketua/Anggota Tim
Sumber Dana
2001
Isolasi Senyawa Aktif dari Jamur Kayu Ketua (Ganoderma applanatum) yang Berpotensi sebagai Agen Antikanker
DIK
2004
Isolasi dan Identifikasi Senyawa Antibakteri dari Ketua Ekstrak Buah Mengkudu (Morinda citrifolia L)
DIK
2006
Toksisitas Minyak Atsiri (Linalool) dalam Biji Ketumbar (Coriandrum sativum L)
Anggota
DIPA
2006
Senyawa Antitumor pada (Momordica charantia L.)
Ketua
Dosen Muda
2007
Antiradikal Bebas Senyawa Flavonoid pada Ekstrak Metanol Buah Mengkudu (Morinda citrifolia L.)
Anggota
DIPA
2007
Senyawa Antibakteri dari Ekstrak Rimpang Kunyit (Curcuma domestica Val)
Ketua
DIPA
2007
Sintesis Biodiesel dari Minyak Jelantah Kelapa Ketua Sawit
Dosen Muda
2009
Studi Reprodusibilitas Pola Puncak Anggota kromatogram dan Spektrum UV Puncak-puncak Kromatogram pada Teknik High Performance Thin Layer Chromatography (HPTLC) – Spektrofotodensitometri untuk Analisis Karakteristik Kimia”Drugs Profiling” Narkoba
Penelitian Fundamental
Tanaman
Pare
KARYA ILMIAH Tahun
Judul
1998
Sintesis Senyawa Bisiklo [3.2.1] oktana dari Limonen
Penerbit/Jurnal Review Kimia Vol 1.No 1
Hasil Isolasi Minyak Kulit Jeruk Manis, Citrus sinensis 2000
Identifikasi Hasil Destilasi Minyak Pelumas Bekas pada Suhu di Bawah 100OC
Chemical Reviews Vol 3 No2 ISSN : 1410 – 8321
2001
Reaksi Brominasi Gugus Alil pada Limonen
Chemical Reviews Vol 4No 1, ISSN : 1410 – 8321
2001
Isolasi Senyawa Bioaktif dari Tumbuhan Rumput Chemical Reviews Vol 4No Mutiara, Hedyotis corymbosa L. Lamk yang Berpotensi 3, ISSN : 1410 – 8321 sebagai Antitumor
2002
Isolasi, Identifikasi dan Uji Toksisitas Golongan Chemical Reviews Vol 5No Senyawa aktif pada Kulit Akar Mondokaki, 3, ISSN : 1410 – 8321 Ervatamiadivaricata L Burk.
2003
Isolasi dan Identifikasi Senyawa Atsiri yang Memiliki Chemical Reviews Vol 6. Aktifitas Antibakteri pada Daun Tenggulun No 2, ISSN : 1410 - 8321
2003
Isolasi, Identifikasi dan Uji Toksisitas Golongan Chemical Reviews Vol 6.No Senyawa aktif pada Kulit Batang Mondokaki, 2, ISSN : 1410 – 8321 Ervatamiadivaricata L Burk.
2004
Isolasi dan Identifikasi Senyawa Golongan Flavonoid dari Daun Mimba, Azadirachta indica A Juss
2007
Isolasi dan Identifikasi Senyawa Aktif Larvasida dari Jurnal Kimia Vol 1 No 2 Biji Mimba, Azadirachta indica A.Juss terhadap Larva ISSN 1907 – 9850 Nyamuk Demam Berdarah (Aedes aegypti)
2008
Isolasi dan Identifikasi Senyawa yang Berpotensi Jurnal Kimia Vol 2 No 1 sebagai Antitumor pada Daging Buah Pare, ISSN 1907 – 9850 Momordicacharantia L.
2009
Preparasi Biodiesel dari Minyak Jelantah Kelapa Sawit
2010
Sintesis Senyawa orto-Fenilazo-2-naftol Indikator dalam Titrasi
Chemical Reviews Vol 7. No 3, ISSN : 1410 – 8321
Jurnal Kimia Vol 3 No 1 ISSN 1907 – 9850
sebagai Jurnal Kimia Vol 4 No 1 ISSN 1907 – 9850
PESERTA KONFERENSI/SEMINAR/LOKAKARYA/SIMPOSIUM
Tahun
Kegiatan
Tempat
2002
Peserta seminar kurikulum kimia FMIPA
Unair, Surabaya
2003
Peserta Seminar HAKI
Hotel Putri Bali, Nusa Dua
2006
Pembicara Akademik
2006
Pembicara Workshop Penyusunan SAP dan GBPP Kurikulum 2005
JurusanKimia FMIPA, Unud
2007
Pemakalah Seminar MIPA Terapan
MIPA, Udayana
2007
Peserta Workshop E-Learning
Jurusan Kimia FMIPA, Unud
2008
Peserta Seminar Chemical Safety and Security Universitas Udayana Workshop
2010
Peserta Seminar “Quality Equipments Performances”
Seminar
Penyempurnaan
Chemicals
Pedoman Jurusan Kimia FMIPA, Unud
Ensure Hotel Mercure, Surabaya
KEGIATAN PROFESIONAL/PENGABDIAN KEPADA MASYARAKAT Tahun
Kegiatan
Tempat
2007
Karakteristik dan Efek Penggunaan Narkoba bagi Generasi Muda untuk Meningkatkan Pengetahuan Ibu-Ibu
Desa Bongkase, Badung
2007
Daur Ulang Kaleng Bekas Menjadi Tawas dan Aplikasinya untuk Penjernihan Air
SMA N – 1 Abiansemal, Badung
2008
Pelatihan Singkat Cara Membuat Pembasmi Jentik Nyamuk dari Daun Sirih
Desa Penarukan, Kerambitan, Tabanan
2008
Bakti Sosial Mahasiswa Jurusan Kimia Tahun 2008
Desa Baturiti, Tabanan
2010
Bakti Ilmiah Mahasiswa
Desa Tusan, Banjarangakan, Kelungkung
2010
Pembuatan Sabun Mandi Antimikroba Alami dari Desa Tibubiyu, Kerambitan,
Daun dan Minyak Biji Mimba dengan Teknik Formulasi Sederhana
Tabanan
JABATAN DALAM PENGELOLAAN INSTITUSI Peran/Jabatan
Institusi (Univ, Fak, Jurusan, Lab, Studio, Tahun … s.d. … Manajemen system Informasi Akademik dll)
Kepala Laboratorium Kimia Organik
Jurusan Kimia Universitas Udayana
2001 – 2004
ORGANISASI PROFESI/ILMIAH Tahun
Jenis/Nama Organisasi
Jabatan/jenjang keanggotaan
1998 - sekarang
Himpunan Kimia Indonesia (HKI)
Anggota