BAB IV HASILPENELITIANDAN PEMBAHASAN A. Hasil Penelitan 1. Deskripsi Data Proses dari analisis data dalam penelitian ini adalah sebagai berikut: langkah awal melakukan deskripsivariabel, sepertidi jelaskan pada bab sebelumnya bahwa dalam variabel penelitian ini terdiri dari: Kemampuan Akurasi passingsepakbola (Y) sebagai varibel terikat, Kekuatan Otot Tungkai (X1) dankelentukanPinggang (X2) sebagai variabel bebas. Setelah di lakukan tes kekuatanOtot Tungkai (X1) dan kelentukan Pinggang (X2) terhadap kemampuan akurasi Passingdalam permainan sepakbolapemain PS Anggrek kota Bengkulu, maka di peroleh data (pada lampiran 1, lampiran 2 dan lampiran 3). Berdasarkan
dari
hasil
ketiga
yaitu
tes
KekuatanOtot
Tungkai
dankelentukanPinggang terhadap kemampuan Akurasi Passingdalam permainan sepakbolapemain PS Anggrek kota Bengkulu, maka diperoleh nilai rata- rata, nilai maksimal dan nilai minimal yang di peroleh siswa pada masing-masing tes yang di lakukan . Untuk lebih jelasnya dapat di perhatikan pada tabel di bawah ini :
37
Tabel 7. Deskripsi Data Nama Tes
Jumlah Hasil Tes
Nilai Terendah
Nilai Tertinggi
Nilai Rata-Rata
Norma Penilaian
Kekuaatan Otot Tungkai
5643 391,2 2992
173 cm 5,4 cm 85 poin
208 cm 22,6 cm 108 poin
188,1 130,3 97,4
Kurang S Cukup Sedang
kelentukanPinggang kemampuan akurasi passing
2. Analisis Data Setelah di peroleh data Kekuaatanotot tungkai, kelentukanpinggang terhadap
kemampuan
Akurasipassingdalam
permainan
sepakbola,Maka
dilanjutkan dengan analisis data yang bertujuan untuk menguji kebenaran hipotesis yang telah di rumuskan.Hipotesis akan di terima atau di tolak nantinya tergantung dari hasil pengolahan data yang di lakukan . Sebelum dilakukan analisis data lebih lanjut maka akan di lakukan uji syarat statistik terlebih dahulu yaitu uji normalitas dengan menggunakan rumus uji lilifors dan uji homogenitas menggunakan Uji Varians ( uji F dari Havlley) setelah itu baru di lakukan uji korelasi dengan menggunakan rumus Pearson Product moment , lalu melakukan uji korelasi berganda dan untuk mengetahui seberapa besar kontribusi Kekuaatanotot
tungkai,
kelentukanpinggang
terhadap
kemampuan
AkurasiPassingsepakbola dalam permainan sepakbola dengan menggunakan rumus koefesien determinasi.
38
3. Uji Normalitas a. Uji Normalitas Data KekuaatanOtot Tungkai (π1) Data tes Kekuatan Otot Tungkai di buat dalam daftar Distribusi Frekuensi. Range ( R)
= Skor tertinggi β Skor terendah = 208 β 173 = 35
Banyak kelas (K)
= 1 + 3,3 log n = 1 + 3,3 Log 30 = 1 + 3,3.1,47 = 1 + 4,851 = 5,851 = 6 (dibulatkan)
Panjang Interval (P) = R/K = 35/6 = 5,833 = 6 ( dibulatkan) Berdasarkan data β data yang di peroleh di atas, maka dapat dibuat tabel distibusi frekuensi data tes Kekuatan otot tungkai seperti pada tabel bawah ini:
39
Tabel 8 Distribusi Data Tes KekuatanOtot Tungkai Kelas
Interval
1
Xi
XiΒ²
173-178 5
175,5
30800,25 877,5
154001,3
2
179-184 5
181,5
32942,25 907,5
164711,3
3
185-190 8
187,5
35156,25 1500
281250
4
191-196 7
193,5
37442,25 1354,5
262095,8
5
197-202 3
199,5
39800,25 598,5
119400,8
6
203-208 2
205,5
42230,25 411
84460,5
1143
218371,5 5649
1065920
β
Fi
30
Fi.Xi
Fi.XiΒ²
Rata β Rata
Mean =
β πΉπ.ππ β πΉπ
Mean = 5649/ 30 = 188,3 Standar deviasi
π. β ππ. π₯π 2 β (ππ. π₯π)2 π=β π(π β 1)
π=β
π=β
30.β 1065920β(5649)2 30(30β1)
66399 870
=β
31977600β31911201
= β76,32 = 8,5 40
870
Menghitung Kenormalan Data Berdasarkan pada perhitungan data pada daftar distibusi frekuensi, selanjutnya menghitung kenormalan data tersebut dengan menggunakan rumus uji lilifors. Bedasarkan tabel diatas didapatkan harga πΏβππ‘π’ππ sebesar 0,0954 (lampiran 1), sedangkan harga πΏπ = 0,1610 Dengan demikian πΏβππ‘π’ππ <πΏπ yakni 0,0954 < 0,1610 , hasil ini dapat di simpulkan bahwa data tes Kekuatanotot tungkai berdistribusi Normal. b. Uji Normalitas Data kelentukanpinggang (π2) Range ( R)
= Skor tertinggi β Skor terendah = 22,6 β 5,4 = 17,2
Banyak kelas (K)
= 1 + 3,3 log n = 1 + 3,3 Log 30 = 1 + 3,3.1,47 = 1 + 4,851 = 5,851 = 6 (dibulatkan)
Panjang Interval (P)= R/K = 17,2/6 = 2,86 = 3 ( dibulatkan) Berdasarkan data β data yang di peroleh di atas, maka dapat dibuat tabel distibusi frekuensi data kelentukanpinggang seperti pada tabel bawah ini:
41
Tabel 9. Distribusi Frekuensi Data Tes Kelentukan Pinggang Kelas 1 2 3
Interval 5,4-8,3 8,4-11,3 11,4-14,3
Fi 4 9 5
Xi 6,85 9,85 12,85
XiΒ² 46,9225 97,0225 165,1225
Fi.Xi 27,4 88,65 64,25
Fi.XiΒ² 187,69 873,2025 825,6125
4 5 6 β
14,4-17,3 17,4-20,3 20,4-23,3
4 6 2 30
15,85 18,85 21,85 86,1
251,2225 355,3225 477,4225 1393,035
63,4 113,1 43,7 400,5
1004,89 2131,935 954,845 5978,175
Rata β Rata
Mean =
β πΉπ.ππ β πΉπ
Mean = 400,5/ 30 = 13,35 Standar deviasi
π. β ππ. π₯π 2 β (ππ. π₯π)2 π=β π(π β 1)
π=β
π=β
30.β 5978,17β(400,5)2 30(30β1)
18944,85 870
=β
179345,1β160400,25
= β21,77 = 4.66
42
870
Menghitung Kenormalan Data Berdasarkan pada perhitungan data pada daftar distibusi frekuensi, selanjutnya menghitung kenormalan data tersebut dengan menggunakan rumus uji lilifors. Bedasarkan tabel diatas didapatkan harga πΏβππ‘π’ππ sebesar 0,1422 (lampiran 1), sedangkan harga πΏπ = 0,1610 Dengan demikian πΏβππ‘π’ππ <πΏπ yakni 0,1422< 0,1610 , hasil ini dapat di simpulkan bahwa data tes Kekuatanotot tungkai berdistribusi Normal. c. Uji Normalitas Data Kemampuan akurasi Passingsepakbola (π) Range ( R)
= Skor tertinggi β Skor terendah = 108β 85 = 23
Banyak kelas (K)
= 1 + 3,3 log n = 1 + 3,3 Log 30 = 1 + 3,3.1,47 = 1 + 4,851 = 5,851 = 6 (dibulatkan)
Panjang Interval (P) = R/K =23/6 = 3,83= 4 (dibulatkan) Berdasarkan data β data yang di peroleh di atas, maka dapat dibuat tabel distibusi frekuensi data tes kemampuan passingsepakbola seperti pada tabel bawah ini:
43
Tabel 10. Distribusi frekuensi Data Tes Kemampuan Akurasi Passing Kelas 1 2 3 4 5 6 β
Interval 85-88 89-92 93-96 97-100 101-104 105-108
Fi 2 3 8 8 7 2 30
Xi 86,5 90,5 94,5 98,5 102,5 106,5 579
XiΒ² 7482,25 8190,25 8930,25 9702,25 10506,25 11342,25 56153,5
Fi.Xi 173 271,5 756 788 717,5 213 2919
Fi.XiΒ² 14964,5 24570,75 71442 77618 73543,75 22684,5 284823,5
Rata β Rata Mean =
β πΉπ.ππ β πΉπ
Mean = 2919/ 30 = 97,3 Standar deviasi
2
2
π. β ππ. π₯π β (ππ. π₯π) π=β π(π β 1) π=β π=β
30.β 284823,5β(2919)2 30(30β1) 24144 870
=β
8544705β8520561 870
= β27,75= 5,26
Menghitung Kenormalan Data Berdasarkan pada perhitungan data pada daftar distibusi frekuensi, selanjutnya menghitung kenormalan data tersebut dengan menggunakan rumus uji lilifors.
44
Bedasarkan tabel diatas didapatkan harga πΏβππ‘π’ππ sebesar 0,0483 (lampiran 1), sedangkan harga πΏπ = 0,1610 Dengan demikian πΏβππ‘π’ππ <πΏπ yakni 0,0483< 0,1610 , hasil ini dapat di simpulkan bahwa data tes Kekuatanotot tungkai berdistribusi Normal. 4. Uji Homogenitas a. Uji Homogenitas antara Kekuatanotot tungkai,kelentukan pinggang terhadap dengan kemampuan passing dalam permainan sepakbola. Varians Data πΏπ Berdasarkan tabel penolong untuk menghitung angka statistik (lampiran ) maka di peroleh βX =5643, βY = 2922 , β XΒ² = 1063715, βYΒ² = 285496 dari data tersebut maka dapat di hitung varians data π1 dan varians data Y seperti dibawah ini, dan dapat di lihat varians mana yang lebih besar dan yang lebih kecil.
(βπ)Β²
S
βπ 2 β π β = πβ1
1063715 β S =β
(5643)Β² 30
30β1
1063715 β =β
31843449 30
29
1063715 β 1061448,3 π=β 29
45
S=β
2266,7 29
= β78,16 = 8,84
S = 8,84
SΒ² = 78,14
Varians Data πΏπ Berdasarkan tabel penolong untuk menghitung angka statistik (lampiran ) maka di peroleh βX = 391,2, βY = 2922 , β XΒ² = 5741,34 , βYΒ² = 285496 dari data tersebut maka dapat di hitung varians data π2 dan varians data Y seperti dibawah ini, dan dapat di lihat varians mana yang lebih besar dan yang lebih kecil.
(βπ)Β²
S
βπ 2 β π β = πβ1
5741,34 β S =β
(391,2)Β² 30
30β1
S= β
S=β
153037,4 30
5741,34 β =β
29
5741,34 β 5101,24 29
640,05 29
S =4,69
= β22,07 = 4,69
SΒ² = 21,99
46
Varians Data Y
(βπ¦)Β²
S
βπ¦ 2 β π β = πβ1
285496 β S =β
(2922)Β² 30
30β1
S=β
893,2 29
S = 5,54
285496 β =β
8538084 30
29
=β
285496 β 284602,8 29
=β30,8 = 5,54 SΒ² = 30,69
Uji Homogenitas dengan mengunakan Uji Varians ( Uji F dari Havley)
πΉβππ‘π’ππ =
πππππππ‘πππππ ππ πππππππ ππππππππ
πΉβππ‘π’ππ =
78,14 21,99
= 3,55
Dari perhitungan diatas di dapat nilai πΉβππ‘π’ππ sebesar 3,55 sedangkan nilai
πΉπ‘ππππ pada taraf signifikan 5% dengan dk=(b),(n-1)=(1) (30-1) = 1, 29 di mana 1 sebagai pembilang dan 29 sebagai penyebut adalah sebesar 4,18. πΉβππ‘π’ππ < πΉπ‘ππππ yaitu 3,55< 4,18 ini berarti tidak terdapat perbedaan varians dari masing β masing variabel atau harga variansnya Homogen.
47
5. Uji Korelasi Uji korelasi ini di lakukan untuk mengetahui apakah ada hubungan yang signifikan antara Kekuatan otot tungkai terhadap kemampuan passingatlet PS. Anggrek,kelentukanpinggang terhadap kemampuan passing atlet PS. Anggrek dalam
permainan
sepakbola
dan
Kekuatan
otot
tungkai
dengan
kelentukanpinggang. Uji korelasi ini menggunakan rumus pearson product moment. Sebelum data dimasukan ke dalam rumus tersebut maka terlebih dahulu dibuat tabel kerja (Lampiran ). Setelah dibuat tabel kerja korelasi kekuatanotot tungkai terhadap kemampuan passingatlet PS. Anggrek, maka diperoleh βX =5643 , βY =2922 , β XΒ² =106375 , βYΒ² =285496 , βXY=550794langkah selanjutnya dimasukan ke dalam rumus pearson product moment dan di lanjutkan dengan pengujian hipotesis. Perhitungan data menggunakan Rumus pearson product moment ππ₯π¦ =
ππ₯π¦ =
ππ₯π¦ =
n β XY β (β X)(β Y) β{n β X 2 β (β X)2 }{n β Y 2 β (β Y)2 } 30 .550794 β (5643)(2922) β{30.1063715 β (5643)2 {30.285496 β (2922)2 } 16523820 β 16488846 β{31911450 β 31843449}{8564880 β 8538084}
ππ₯π¦ =
34974 β{68001}{26796}
=
34974 β1822154796
=
34974 = π, ππ 42686,7
Berdasarkan perhitungan di atas di peroleh nilai πβππ‘π’ππ sebesar 0,81 sedangkan ππ‘ππππ pada Ξ± = 5% dan dk = n-2 = 30-2 = 28 adalah 0,374 (pada tabel 48
r).Untuk mengetahui lebih lanjut keeratan hubungan antara kedua variabel tersebut, kemudian pengujian dilanjutkan dengan uji t, yaitu sebagai berikut :
=
πβ(π β 2)
t=
t=
t=
β1 β π 2
;
db = n β 2 = 30 β 2 = 28
0,81β(30 β 2) β1 β 0,812 0,81β(28) β1 β 0,65 0,8.5,3 β0, 35
=
4,29 = π, ππ 0,59
ππ‘ππππ (dilampiran ) pada Ξ± = 5% dengan db 28 adalah 2,048. Dari analisi diatas maka diperoleh bahwa π‘βππ‘π’ππ > π‘π‘ππππ yaitu 7,27> 2,048, maka dengan demikian dapat dikatakan bahwa terdapat hubungan erat antara Kekuatanotot tungkai terhadap kemampuan passingatlet PS. Anggrek Setelah dibuat tabel kerja korelasikelentukanpinggang terhadap kemampuan passing atlet PS. Anggrek, maka diperoleh βX =391,2 , βY =2922 , β XΒ² =5741,34
, βYΒ² =285496 , βXY=38693,6langkah selanjutnya dimasukan ke
dalam rumus pearson product moment dan di lanjutkan dengan pengujian hipotesis. Perhitungan data menggunakan Rumus pearson product moment
ππ₯π¦ =
n β XY β (β X)(β Y) β{n β X 2 β (β X)2 }{n β Y 2 β (β Y)2 }
49
ππ₯π¦ =
ππ₯π¦ =
ππ₯π¦ =
30 .38693,6 β (391,2)(2922) β{30.5741,34 β (5643)2 {30.285496 β (2922)2 } 1160808 β 16488846 β{200163,6 β 168428,2}{1349700 β 1304164} 29755,2 β{31735,44}{45536}
=
29755,2 β1445104996
=
29755,2 = π, ππ 38014,5
Berdasarkan perhitungan di atas di peroleh nilai πβππ‘π’ππ sebesar 0,78 sedangkan ππ‘ππππ pada Ξ± = 5% dan dk = n-2 = 30-2 = 28 adalah 0,374 (pada tabel r). Untuk mengetahui lebih lanjut keeratan hubungan antara kedua variabel tersebut, kemudian pengujian dilanjutkan dengan uji t, yaitu sebagai berikut :
=
πβ(π β 2)
t=
t=
t=
β1 β π 2
;
db = n β 2 = 30 β 2 = 28
0,78β(30 β 2) β1 β 0,782 0,78β(28) β1 β 0,6 0,78.5,3 β0, 4
=
4,13 = π, π 0,63
ππ‘ππππ (dilampiran ) pada Ξ± = 5% dengan db 28 adalah 2,048. Dari analisi diatas maka diperoleh bahwa π‘βππ‘π’ππ > π‘π‘ππππ yaitu 6,5 > 2,048, maka dengan demikian
dapat
dikatakan
bahwa
terdapat
hubungan
erat
antarakelentukanpinggang terhadap kemampuan passingsepakbola pada pemain PS. Anggrek
50
Setelah dibuat tabel kerja korelasi korelasi Kekuatanotot tungkai dan kelentukanpinggang, maka diperoleh βX =5643 , βY =391,2 , βXΒ² =1063715 , βYΒ² =285496 , βXY=74508,3langkah selanjutnya dimasukan ke dalam rumus pearson product moment dan di lanjutkan dengan pengujian hipotesis. Perhitungan data menggunakan Rumus pearson product moment
ππ₯π¦ =
ππ₯π¦ =
ππ₯π¦ =
ππ₯π¦ =
n β XY β (β X)(β Y) β{n β X 2 β (β X)2 }{n β Y 2 β (β Y)2 } 30 .74508,3 β (5643)(391,2) β{30.1063715 β (5643)2 {30.285496 β (391,2)2 } 2235249 β 2207541,6 β{31911450 β 31843449}{200163 β 153037,4} 27707,4 β{68001}{47125,6}
=
27707,4 β1305806883
=
27707,4 = π, ππ 36135,95
Berdasarkan perhitungan di atas di peroleh nilai πβππ‘π’ππ sebesar 0,76 sedangkan ππ‘ππππ pada Ξ± = 5% dan dk = n-2 = 30-2 = 28 adalah 0,374 (pada tabel r). Untuk mengetahui lebih lanjut keeratan hubungan antara kedua variabel tersebut, kemudian pengujian dilanjutkan dengan uji t, yaitu sebagai berikut :
=
πβ(π β 2)
t=
β1 β π 2
;
db = n β 2 = 30 β 2 = 28
0,76β(30 β 2) β1 β 0,762
51
t=
t=
0,76β(28) β1 β 0, 57 0,76.5,3 β0, 43
=
4,02 = 3,37 0,65
ππ‘ππππ (dilampiran ) pada Ξ± = 5% dengan db 28 adalah 2,048. Dari analisi diatas maka diperoleh bahwa π‘βππ‘π’ππ > π‘π‘ππππ yaitu 3,37> 2,048, maka dengan demikian
dapat
dikatakan
bahwa
terdapat
hubungan
erat
antara
kelentukanpinggang terhadap kemampuan passsingsepakbola pada pemain PS. Anggrek
6. Uji korelasi Berganda Untuk melihat hubungan antara Kekuatan otot tungkai (π1) dan pinggulpinggang
(π2 )
secara
bersama
β
sama
terhadap
passingsepakbola pada pemain PS. Anggrek (Y) sebagai berikut : πππ Β² + ππππ Β² β πππππ ππππ πππππ πΉπππ ππ = β π π β π π±π π±π Β²
(0,87 )Β² + (0,74)2 β 2 (0,87)(0,74)(0,76) π
π¦π₯1 π₯2 = β 1 β (0,76)Β²
π
π¦π₯1π₯2 = β
0.75+ 0,54β 2.0,49
π
π¦π₯1π₯2 = β
0,31
1β0,57
0,43
=β
1,29 β 0,98 0,43
= β0,72 = 0,84
52
kemampuan
Berdasarkan perhitungan di atas di peroleh nilai r korelasi berganda dari kekuatan otot tungkai (π1) dan pinggulpinggang (π2 ) dengan kemampuan passing(Y) sebesar 0,84 sedangkan ππ‘ππππ pada Ξ± = 5% dan dk = n-2 = 30-2 = 28 adalah 0,374 (pada tabel r). Untuk mengetahui koefesien tersebut maka di uji F sebagai berikut :
πΉπ / π² π= (π β πΉπ )/ (πβ π β π)
πΉ=
πΉ=
(0,84)Β² / 2 (1 β(0,84)Β²)/ (30 β 2 β 1)
0,375 0,009
=
0,75 / 2 (1 β0,75)/ (27)
=
0,375 0,25/ 27
=41,6
Berdasarkan perhitungan di atas di peroleh uji πΉβππ‘π’ππ sebesar 41,1 sedangkan πΉπ‘ππππ pada Ξ± = 5% dan dk = n-2 = 30-2 = 28 adalah 4, 20. Jadi πΉβππ‘π’ππ >πΉπ‘ππππ (41,6> 4, 20) maka dapat dinyatakan bahwa korelasi berganda tersebut signifikan dan dapat diberlakukan dimana sampel diambil. 7. Pengujian Hipotesis Dari
hasil
analisi
data
πβππ‘π’ππ > ππ‘ππππ yaitu 0,81> 0,374
yang
telah
dilakukan
diatas
diperoleh
dan 0,78> 0,374 dan 0,76> 0,374 ini
membuktikan bahwa dapat menerima hipotesa a (Ha) dan menolak hipotesa o (Ho) yang telah diajukan yaitu ada hubungan yang signifikan antara kekuatan otot tungkai dan Pinggulpinggang secara bersama β sama terhadap kemampuan Passingatlet PS. Anggrek kota Bengkulu.
53
B. Pembahasan 1. Hubugan KekuatanOtot Tungkai terhadap Kemampuan Akurasi passing sepakbola pada pemain PS Angrek kota Bengkulu Dalam
permainan
sepakbola
Seorang
pemain
harus
menguasai
keterampilan dasar menendang bola atau akurasi passing. Danny Mielke (2007;67) Sesuai dengan Pendapat diatas mengemukakan bahwa passing merupakanseni memindahkan bola dari satu pemain ke pemain lain. Passing paling baik dilakukan dengan menggunakan kaki, tetapi bagian tubuh lain juga bisa digunakan. Kamu bisa menggerakkan bola dengan cepat lagi sehingga dapat menciptakan ruang terbuka yang lebih besar
dan berpeluang melakukan
tendangan shooting yang lebih banyak jika dapat melakukann passing dengan keterampilan dan ketepatan yang tinggi. Hasil penelitian signifikan
antar
membuktikan
bahwa
kekuatanOtot
Tungkai
terdapat
Hubungan
terhadap
secara
Kemampuan
AkurasiPassingyakni sebesar= 0,81. Artinya ada hubungan variabel kekuatanOtot Tungkai terhadap kemampuan AkuraiPassingsepakbola pemain PS. Anggrek kota Bengkulu. Selain itu dari uji signifikan koefisien Huungan antaraotot tungkai terhadap kemampuan AkurasiPassing
diperoleh hasil analisis statistik.πβππ‘π’ππ sebesar
0,81>ππ‘ππππ sebesar 0,374 (pada tabel r) , maka dapat disimpulkan terdapat hubungan yang signifikan antara X1 terhadap Y ( Sangat kuat ) table Sugiyono, (2013:231)
54
Kekuatan otot Tungkai yang dihasilkan dari latihan merupakan sekelompok otot untuk bergerak dengan motorik tinggi berfungsi untuk mempermudah mempelajari teknik yang sangat bergantung dari masing-masing individu, karena semakin bagus otot tungkai seorang pemain sepakbola dalam melakukan akurasi Passing ke teman, maka dapat menciptakan ruang yang terbuka untuk melakukan Passing dengan keterampilan yang tinggi.
2. Hubungan Kelentukan Pinggang terhadap Kemampuan akurasiPassing pemain PS. Anggrek Kota Bengkulu. Teknik akurasipassing dipengaruhi oleh banyak faktor, untuk memperoleh hasilpassing yang demukakan oleh Dany Maelky(2007;67) diinginkan sesuai dengan kebutuhan diantaranya posisikan tubuhmu agar sebidang dengan arah passing yang kamu tujuh, tarikla kaki yang akan menendang kebelakang, dan sentuhla bola dengan menggunakan kaki bagian dalam. Selain itu juga seorang pemain harus dapat mempertahankan otot sendi untuk meregang secara maksimal dan memperluas gerakan serta mempertahankannya dalam beberapa waktu untuk dapat mempunyai kelentukan pinggang yang baik untuk memperoleh akurasi Passing yang baik. Hasil penelitian membuktikan bahwa terdapat Hubungan yang signifikan antara Kelentukan Pinggang terhadap KemampuanPassing dengan korelasi yakni sebesar = 0,78. Artinya ada hubungan variabel Pinggul Pinggangterhadap KemampuanPassing PS. Anggrek kota Bengkulu. Selain itu dari uji signifikan koefisien korelasi antara Flexibility pinggang terhadap kemampuan shooting
55
diperoleh hasil analisis πβππ‘π’ππ sebesar 0,78 >ππ‘ππππ sebesar 0,374 (pada tabel r), maka dapat disimpulkan terdapat hubungan yang signifikan antara X2 terhadap Y (kuat)dalam table Sugiyono, (2013:231). Agar seorang pemain dapat memiliki Pinggul pinggang yang lebih baik lagi dan berhubungan lebih besar lagi terhadap Kemampuan AkurasiPassing dapat dilakukan dengan latihan-latihan kelentukan pinggang seperti : , kayanga dan berbagai variasi latihan lainya untuk meningkatkan kelentukan otot pinggang.
3. Hubungan kekuatanOtot Tungkai dan kelentukan
Pinggang secara
bersama-sama terhadap Kemampuan akurasiPassing pada pemain PS. Anggrek Kota Bengkulu. Passingyang baik di mulai ketika tim yang sedang menguasai bola menciptakan ruang diantara lawan yang bergerak dan membuka ruang disekeliling pelaian. Kemampuan AkurasiPassing yang baik didukung oleh kekuatnotot tungkai dan kelentukanpinggang yang dimiliki oleh pemain, yaitu ketika melakukan gerakan tarikan kelentukan
kebelakang saat Pasing membutuhkan unsure
pinggang tubuh pemain dan kemampuan Passingkegawang
dibutuhkan kekuatanOtot Tungkai. Penelitian membuktikan bahwa terdapat hubungan kekuataOtot Tungkai dan kelentukan
Pinggang
secara
bersama-sama
dengan
Kemampuan
akurasiPassingsebesar =0,84 Artinya ada hubungannya variabel kekuatanOtot Tungkai dan Kelentukan Pinggang secara bersama-sama terhadap Kemampuan AkurasiPassingatlet PS. Anggrek kota Bengkulu.
56
Selain itu dari uji signifikan korelasi ganda antara kekuatan otot tungkai dan kelentukanpinggang secara bersama-sama terhadap kemampuan AkuarasiPassing diperoleh hasil analisis statistik πβππ‘π’ππ sebesar 0,84>ππ‘ππππ sebesar 0,374 (pada tabel r), maka dapat disimpulkan terdapat hubungan yang signifikan antara X1 dan X2 secara bersama-sama terhadap Y ( Sangat kuat ) dalam table Sugiyono, (2013:231) Sehubungan
dengan
hal
itu,
tentu
agar
mencapai
Kemampuan
AkurasiPassing yang sangat bagus lagi, selain melatih kemampuan Kelentukan Pinggang dan kekuatanOtot Tungkai, seorang pemain sepakbola juga harus memperhatikan dan melatih faktor-faktor lain yang dapat mempengaruhi dan memberikan berkontribusi hingga 100 % terhadap Kemampuan Passing. seperti : koordinasi mata kaki saat melakukan Passing juga sangat menentukan terhadap arah dan ketepatanPassing. Kemudian, Selain faktor tersebut sarana dan prasarana, program latihan juga dapat memberikan hubungan terhadap akurasi Passsing seorang pemain sepakbola. Berdasarkan penjelasan di atas, jelas sekali bahwasannya untuk mencapai tingkat Kemampuan Passing yang lebih baik, pemain sepakbola hendaknya juga memperhatikan faktor-faktor tersebut.
57
BAB V SIMPULAN DAN SARAN
A. Simpulan Berdasarkan
hasil
penelitian
tentang
HubunganOtot
Tungkai
dan
KelentukanPinggang terhadap kemampuan AkurasiPassing dalam permainan sepakbolapemain PS. Anggerk kota Bengkulu maka dapat diambil kesimpulan sebagai berikut : 1. Hubungan
KekuatanOtot
Tungkai
terhadap
Akurasi
Passingpemain
PS.Anggrek kota Bengkulusebesar 0,81. Berdasarkan perhitungan di atas di peroleh nilai πβππ‘π’ππ sebesar 0,81 sedangkan ππ‘ππππ pada Ξ± = 5% dan dk = n-2 = 30-2 = 28 adalah 0,374 (pada tabel r). jadi terdapat hubungan yang signifikan antara kekuatan otot tungkai terhadap akurasi passing pemainPS.Anggrek kota Bengkulu. 2. Hubungan kelentukan pinggang terhadap Akurasi Passingpemain PS.Anggrek kota Bengkulusebesar 0,78. Berdasarkan perhitungan di atas di peroleh nilai πβππ‘π’ππ sebesar 0,78 sedangkan ππ‘ππππ pada Ξ± = 5% dan dk = n-2 = 30-2 = 28 adalah 0,374 (pada tabel r). jadi terdapat hubungan yang signifikan antara kelentukan pinggang terhadap akurasi passing pemainPS.Anggrek kota Bengkulu. 3. Hubungan kekuatan otot tungkai dankelentukan pinggang secara bersama-sama terhadap Akurasi Passingpemain PS.Anggrek kota Bengkulusebesar 0,84. Berdasarkan perhitungan di atas di peroleh nilai πβππ‘π’ππ sebesar 0,84 sedangkan
58
ππ‘ππππ pada Ξ± = 5% dan dk = n-2 = 30-2 = 28 adalah 0,374 (pada tabel r). jadi terdapat hubungan yang signifikan antara kekuatan otot tungkai dan kelentukan pinggang secara bersama-sama terhadap akurasi passing pemainPS.Anggrek kota Bengkulu. B. Saran Sehubungan dengan kesimpulan yang telah diambil maka dikemukakan saran sebagai berikut: 1. Bagi pelatih pada umumnya dan khususnya pelatih Sepakbola PS. Anggrek kota Bengkulu disarankan untuk melatih unsurOtot Tungkai dan Kelentukan Pinggang
dengan
cara
melatih
otot-otot
yang
dominan
dalam
KemampuanPassingpesepakbola.Selain itu melatih meningkatkan kemampuan AkurasiPassing para pemain karena kemampuan Passing sangat diperlukan untuk menciptakan peluang, kemenangandan juga meningkatkan kondisi fisik para pemain. 2. Bagi atlet pada umumnya dan khususnya pemain PS. Anggrek kota Bengkulu. disarankan dapat meningkatkan KemampuanPassing dengan cara melakukan latihan secara sistematis dan berkesinambungan. 3. Bagi peneliti yang ingin melanjutkan penelitian ini agar dapat menjadikan penelitian ini sebagai bahan informasi dan meneliti dengan jumlah populasi atau sampel yang lebih besar serta di daerah yang berbeda.
59
Daftar pustaka Arsil, (2009). Evaluasi Pendidikan Jasmani dan Olahraga. Malang: Wineka Media. Gladi (2003). Jurnal Ilmu Keolahragaan, Jakarta: Pembina Universitas PPS UNJ Feri Kurniawan. (2012). Buku Pintar Pengetahuan Olahraga. Jakarta : Laskar Aksara. Gempur Santoso (2005). Metode Penelitian. Jakarta: Perpustakaan Nasional Hendra Septian, (2013). Hubungan Daya Ledak Otot Tungkai Dengan Keterampilan Tendangan Sabit Siswa SMA 6 Kota Bengkulu (Skripsi). Bengkulu :UNIB
HendriIrawadi. (2011). Kondisi Fisik Dan Pengukurannya. Padang: FIK-UNP. Lutan, dalam henda Septian, (2004). Standing broad jump Laelatul Badriah, Dewi. (2006). Metodologi Penelitian Ilmu-Ilmu Kesehatan, Bandung ;Multazam Joseph A. Luxbacher, Ph. D (2012). Sepakbola, Jakarta : Rajawali pers Koger, Robert (2007). Latihan Dasar Andal Sepak Bola Remaja. Jakarta: Sakra Mitra Kompetensi Mielke, Danny (2007). Dasar-Dasar Sepak Bola. Bandung: Human Kinetics Mulyono Biyakto Atmojo (2007). Tes Pengukuran Pendidikan Jasmani Dan pendidikan Ratal Wirjasantosa (1984). Supevisi pendidikan Olahraga, Rio Junaidi. (2013). Kontribusi Kelentukan Otot Pinggang Terhadap Kemampuan Heading Siswa Putra SMA Negeri 1 Kota Bengkulu (skripsi). Bengkulu: UNIB.
60
Rusman Jaya, Pory. (2009). Hubungan Kelentukan Dengan Kemampuan Mendrible Bola Dalam Permainan Sepakbola Pada Siswa Putra Kelas IV dan SD Negeri 08 Pematang Tiga (skripsi). Padang : FIK-UNP. Sudjana, 2002. Metode Statika. PT Tarsito : Bandung Suharsimi Arikunto. (1992). Prosedur Penelitian Suatu Pendekatan Praktik Jakarta :Rineka Cipta. Sunarto. (2001). Metodologi Penelitian Ilmu Sosial dan Pendidikan. Surabaya : Unesa University Press. Sugioyono (2013) Statistik Untuk Penelitian. Bandung: Affabet Bandung Sugioyono (2012) Metode Penelitian Kuantitatif Kualitatif dan R&D. Bandung: Affabet Bandung
Sumber lain: http://benjcordero.blogspot.com/2013/02/arti-Otot sepakbola-beserta.
61
tungkai-dalam-
LAMPIRAN
62
Lampiran 1 Tabel Data Sampel Penelitian N0
Nama
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
RC RG MC AB RZ AM HE YO JJ AM RO AD WW PI AD EK M.I FB AG DI BB AJ FJ ZK TM ED DJ RZ FJ RH
63
Lampiran 2 TabelHasil Tes Standing Broad Jump Pemain PS. Anggrek(X1) N0
Nama
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
RC RG MC AB RZ AM HE YO JJ AM RO AD WW PI AD EK M.I FB AG DI BB AJ FJ ZK TM ED DJ RZ FJ RH Jumlah ( β ) Nilai Terendah Nilai Tertinggi Rata-Rata
Tes Standing Broad Jump ( Cm ) 1 2 3 175 186 180 180 175 187 187 190 193 165 170 173 187 180 175 188 180 179 195 200 204 169 175 179 187 195 180 187 180 184 185 191 189 166 170 179 181 178 173 190 186 191 188 187 180 190 186 199 190 195 191 200 208 205 180 178 184 170 176 173 178 169 170 185 189 181 170 175 171 171 176 169 200 189 201 189 194 190 180 185 189 197 190 186 170 179 186 190 188 192
Tes Terbaik
Norma Penilaian
186 Cm 187 cm 193 cm 173 cm 187 cm 188 cm 204 cm 179 cm 195 cm 187 cm 191 cm 179 cm 181 cm 191 cm 187 cm 199 cm 195 cm 208 cm 184 cm 176 cm 178 cm 189 cm 175 cm 176 cm 201 cm 194 cm 189 cm 197 cm 186 cm 192 cm 5643 cm
Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali Kurang sekali
175 cm 208 cm 188,1 cm
64
Lampiran 3 TabelHasil Tes Kelentukan Tubuh N0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Pemain PS. Anggrek(X2) Nama Tes Flexiometer ( Cm ) RC 8,9 cm RG 11,9 cm MC 20,5 cm AB 5,4 cm RZ 11,9 cm AM 12,7 cm HE 19,1 cm YO 9,1 cm JJ 17,2 cm AM 9 cm RO 14,8 cm AD 16,3 cm WW 7,9 cm PI 10,3 cm AD 16,3 cm EK 18,1 cm M.I 10,8 cm FB 22,6 cm AG 9,6 cm DI 6,8 cm BB 5,9 cm AJ 9,7 cm FJ 8,6 cm ZK 9,9 cm TM 18,9 cm ED 12,9 cm DJ 13,8 cm RZ 17,5 cm FJ 11,5 cm RH 17,4 cm 391,2 cm Jumlah ( β ) Nilai Terendah 5.4 cm Nilai Tertinggi 22.6 cm 13,04 Rata-Rata
65
Norma Penilaian Kurang Kurang Baik Kurang sekali Kurang Cukup Baik Kurang Cukup Kurang Cukup Cukup Kurang Kurang Cukup Baik Kurang Baik Kurang Kurang Kurang sekali Kurang Kurang Kurang Baik Cukup Cukup Cukup Kurang Cukup
Lampiran 4 TabelHasil Tes Keterampilan AkurasiPassingsepakbola PS. Anggrek (Y) No Nama Tes Shooting At The Ball Jumlah Norma skor Penilaian Bola Waktu Skor Skor masuk bola waktu 55 Sedang 3 12,58 38 93 poin 1 RC Sedang 2 RG 3 12,53 55 44 99 poin Sedang 3 12,14 55 41 96 poin 3 MC 45 Sedang 2 12,72 40 85 poin 4 AB 55 Sedang 3 11,75 44 99 poin 5 RZ 3 11,79 55 43 98 poin Sedang 6 AM 66 4 12,16 41 107 poin Baik 7 HE 55 Sedang 3 12,46 39 94 poin 8 YO 37 4 12,78 66 103 poin Sedang 9 JJ 45 Sedang 2 11,24 44 89 poin 10 AM Sedang 4 13,57 66 34 100 poin 11 RO 55 Sedang 3 11,29 46 101 poin 12 AD 45 Sedang 2 11,19 46 91 poin 13 WW 55 3 11,96 42 97 poin Sedang 14 PI 55 Sedang 15 AD 3 11,92 42 97 poin 4 12,57 66 38 104 poin Baik 16 EK 55 Sedang 3 11,79 43 98 poin 17 M.I 66 4 11,94 42 108 poin Baik 18 FB Sedang 3 12,13 55 40 95 poin 19 AG 55 Sedang 3 12,41 39 94 poin 20 DI 45 Sedang 21 BB 2 11,11 43 88 poin 55 Sedang 3 11,79 43 98 poin 22 AJ Sedang 3 12,79 55 37 92 poin 23 FJ 3 12,12 55 41 96 poin Sedang 24 ZK 66 4 12,63 38 104 poin Baik 25 TM 66 Sedang 4 13,02 37 103 poin 26 ED 66 Sedang 4 13,11 36 102 poin 27 DJ Sedang 4 12,87 66 37 103 poin 28 RZ Sedang 3 12,17 55 40 95 poin 29 FJ Sedang 3 11,87 55 44 99 poin 30 RH 2928 poin Jumlah ( β ) Nilai Terendah 82 poin Nilai Tertinggi 108 poin Rata-Rata 97,6 poin
66
Lampiran 5
N0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
TabelKorelasi Tes Standing Broad Jump Terhadap Kemampuan Passing Sepakbola PS. Anggrek Nama Y π1 π2 π12 186 93 RC 32400 1225 187 99 RG 31329 900 193 96 MC 35344 1521 173 85 AB 32761 1681 187 99 RZ 30625 625 188 98 AM 39204 1936 204 107 HE 36100 1600 179 94 YO 43264 2209 195 103 JJ 31329 841 187 89 AM 34596 1444 191 100 RO 41209 2025 AD 179 101 34969 1521 181 91 WW 32400 900 191 97 PI 37636 1764 187 97 AD 36864 1681 199 104 EK 30976 729 195 98 M.I 40401 2025 FB 208 108 30276 1681 184 95 AG 35344 1521 176 94 DI 42436 2116 178 88 BB 30625 625 189 98 AJ 32041 900 175 92 FJ 35721 1600 176 96 ZK 30976 784 201 104 TM 44100 2304 194 103 ED 39601 1936 189 102 DJ 30976 900 197 103 RZ 42436 2116 186 95 FJ 33124 2116 192 99 RH 38025 1764 Jumlah ( β ) 5647 2928 1067088 44990 188,233 97,6 Rata-Rata 35569.6 1499.67
67
π1 . Y 6300 5310 7332 7421 4375 8712 7600 9776 5133 7068 9135 7293 5400 8148 7872 4752 9045 7134 7332 9476 4375 5370 7560 4928 10080 8756 5280 9476 8372 8190 217001 7233.3667
Lampiran 6 No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
TabelKorelasi Tes Kelentukan Tubuh Terhadap
Kemampuan Passing SepakbolaPS. Anggrek Y X X2 Y2 Rc 93 8,9 79,21 8649 Ra 99 11,9 141,61 9801 Mc 20,5 96 420,25 9216 Ab 5,4 85 29,16 7225 Ro 99 11,9 141,61 9801 Am 12,7 98 161,29 9604 He 19,1 107 364,81 11449 Yo 9,1 94 82,81 8836 Jj 17,2 103 295,84 10609 Am 9 89 81 7921 Ro 14,8 100 219,04 10000 Ad 16,3 101 265,69 10201 Ww 7,9 91 62,41 8281 Pi 97 10,3 106,09 9409 Ad 16,3 97 265,69 9409 Ek 18,1 104 327,61 10816 M. I 10,8 98 116,64 9604 Fe 108 22,6 510,76 11664 An 95 9,6 92,16 9025 Di 6,8 94 46,24 8836 Bb 5,9 88 34,81 7744 Aj 9,7 98 94,09 9604 Fj 8,6 92 73,96 8464 Zk 96 9,9 98,01 9216 Tm 18,9 104 357,21 10816 Ed 12,9 103 166,41 10609 Dj 102 13,8 190,44 10404 Rz 17,5 103 306,25 10609 Fj 11,5 95 132,25 9025 Ra 17,4 99 302,76 9801 Jumlah ( β ) 385,3 2928 5566,11 286648 Rata-Rata 12,84333 97,6 185,537 9554,933
Nama
68
X .Y 827,7 1178,1 1968 459 1178,1 1244,6 2043,7 855,4 1771,6 801 1480 1646,3 718,9 999,1 1581,1 1882,4 1058,4 2440,8 912 639,2 519,2 950,6 791,2 950,4 1965,6 1328,7 1407,6 1802,5 1092,5 1722,6 38216,3 1273,877
Lampiran 7 Tabel :Uji lilifors kekuatan otot tungkai pemain PS. Anggrek No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Xi 173 175 176 176 178 179 179 181 183 184 186 186 187 187 187 188 189 189 191 191 192 193 194 195 195 197 199 201 204 208
Zi F(Zi) S(Zi) F(Zi)-S(Zi) -1,8000 0,0359 0,0333 0,0026 -1,5647 0,0594 0,0667 -0,0073 -1,4471 0,0749 0,1333 -0,0584 -1,4471 0,0749 0,1333 -0,0584 -1,2118 0,1131 0,1667 -0,0536 -1,0941 0,1379 0,2333 -0,0954 -1,0941 0,1379 0,2333 -0,0954 -0,8588 0,1977 0,2667 -0,0690 -0,6235 0,2676 0,3000 -0,0324 -0,5059 0,3085 0,3333 -0,0248 -0,2706 0,3936 0,4000 -0,0064 -0,2706 0,3936 0,4000 -0,0064 -0,1529 0,4404 0,5000 -0,0596 -0,1529 0,4404 0,5000 -0,0596 -0,1529 0,4404 0,5000 -0,0596 -0,0353 0,4880 0,5333 -0,0453 0,0824 0,5319 0,6000 -0,0681 0,0824 0,5319 0,6000 -0,0681 0,3176 0,6217 0,6667 -0,0450 0,3176 0,6217 0,6667 -0,0450 0,4353 0,6664 0,7000 -0,0336 0,5529 0,7088 0,7333 -0,0245 0,6706 0,7486 0,7667 -0,0181 0,7882 0,7823 0,8333 -0,0510 0,7882 0,7823 0,8333 -0,0510 1,0235 0,8461 0,8667 -0,0206 1,2588 0,8944 0,9000 -0,0056 1,4941 0,9319 0,9333 -0,0014 1,8471 0,9671 0,9667 0,0004 2,3176 0,9896 1,0000 -0,0104
69
Lampiran 8 Tabel:Uji lilifors kelentukan Pinggang Pemain PS. Anggrek No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Xi 5,4 5,9 6,8 7,9 8,6 8,9 9 9,1 9,6 9,7 9,9 10,3 10,8 11,5 11,9 12,7 12,9 13,8 14,8 16,3 16,3 17,2 17,4 17,5 17,8 18,1 18,9 19,1 20,5 22,6
Zi F(Zi) S(Zi) F(Zi)-S(Zi) -1,7060 0,0446 0,0333 0,0113 -1,5987 0,0559 0,0667 -0,0108 -1,4056 0,0808 0,1000 -0,0192 -1,1695 0,1230 0,1333 -0,0103 -1,0193 0,1562 0,1667 -0,0105 -0,9549 0,1711 0,2000 -0,0289 -0,9335 0,1762 0,2333 -0,0571 -0,9120 0,1814 0,2667 -0,0853 -0,8047 0,2119 0,3000 -0,0881 -0,7833 0,2177 0,3333 -0,1156 -0,7403 0,2297 0,3667 -0,1370 -0,6545 0,2578 0,4000 -0,1422 -0,5472 0,2946 0,4333 -0,1387 -0,3970 0,3483 0,4667 -0,1184 -0,3112 0,3783 0,5000 -0,1217 -0,1395 0,4483 0,5333 -0,0850 -0,0966 0,4641 0,5667 -0,1026 0,0966 0,5359 0,6000 -0,0641 0,3112 0,6217 0,6333 -0,0116 0,6330 0,7357 0,7000 0,0357 0,6330 0,7357 0,7000 0,0357 0,8262 0,7939 0,7333 0,0606 0,8691 0,8051 0,7667 0,0384 0,8906 0,8133 0,8000 0,0133 0,9549 0,8289 0,8333 -0,0044 1,0193 0,8438 0,8667 -0,0229 1,1910 0,8830 0,9000 -0,0170 1,2339 0,8907 0,9333 -0,0426 1,5343 0,9370 0,9667 -0,0297 1,9850 0,9761 1,0000 -0,0239
70
Lampiran 9 Tabel :Uji lilifors akurasi passing pemain PS. Anggrek
No 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Xi 85 88 89 91 92 93 93 94 94 95 95 96 96 97 97 98 98 98 99 99 100 101 102 103 103 103 104 104 107 108
F(Zi)Zi F(Zi) S(Zi) S(Zi) -2,3384 0,0099 0,0333 -0,0234 -1,7681 0,0392 0,0667 -0,0275 -1,5779 0,0581 0,1000 -0,0419 -1,1977 0,1170 0,1333 -0,0163 -1,0076 0,1587 0,1667 -0,0080 -0,8175 0,2090 0,2333 -0,0243 -0,8175 0,2090 0,2333 -0,0243 -0,6274 0,2676 0,3000 -0,0324 -0,6274 0,2676 0,3000 -0,0324 -0,4373 0,3336 0,3667 -0,0331 -0,4373 0,3336 0,3667 -0,0331 -0,2471 0,4052 0,4333 -0,0281 -0,2471 0,4052 0,4333 -0,0281 -0,0570 0,4801 0,5000 -0,0199 -0,0570 0,4801 0,5000 -0,0199 0,1331 0,5517 0,6000 -0,0483 0,1331 0,5517 0,6000 -0,0483 0,1331 0,5517 0,6000 -0,0483 0,3232 0,6255 0,6667 -0,0412 0,3232 0,6255 0,6667 -0,0412 0,5133 0,6950 0,7000 -0,0050 0,7034 0,7580 0,7333 0,0247 0,8935 0,8106 0,7667 0,0439 1,0837 0,8599 0,8667 -0,0068 1,0837 0,8599 0,8667 -0,0068 1,0837 0,8599 0,8667 -0,0068 1,2738 0,8980 0,9333 -0,0353 1,2738 0,8980 0,9333 -0,0353 1,8441 0,9671 0,9667 0,0004 2,0342 0,9788 1,0000 -0,0212
71
Lampiran 10 Tabel Tes Standing Broad Jump Sampel A NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
NAMA
HASIL TES 1 175 177 178 180 181 181 182 182 183 185 187 188 189 192 193 193 193 195 196 197 197 197 198 198 198 200 200 201 204 205 5725
RC RG MC AB RZ AM HE YO JJ AM RO AD WW PI AD EK M.I FB AG DI BB AJ FJ ZK TM ED DJ RZ FJ RH JUMLAH
72
HASIL TES 2 187 178 181 178 186 178 179 178 189 179 183 183 187 198 189 198 187 201 202 195 187 188 204 201 192 195 203 197 198 201 5702
Lampiran 11 Tabel Tes Standing Broad Jump Sampel B NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
NAMA
HASIL TES 172 180 175 182 190 178 174 180 179 183 188 193 187 182 189 195 189 192 201 191 192 193 194 195 196 198 199 193 205 199 5664
Tm Pn Pz Zr Ty Rn Tf M. H Fk Dv RS An Td Dy At Ib Ag Dd Yr Nv Yy Jy Dr Pd In Id Kk Lt Ry Mt JUMLAH
73
Lampiran 12 Tabel tes flexiometer sampel A NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
NAMA
HASIL TES 1 8,6 16,7 10,3 12,4 11,9 14,6 8,4 13,6 19,4 10,3 7,8 5,8 14,3 11,2 10,7 9,5 16,7 8,8 13 18,5 16,2 8,1 10,7 9,7 12,4 9,8 15,8 6,4 12,7 13,6 357,9
RC RG MC AB RZ AM HE YO JJ AM RO AD WW PI AD EK M.I FB AG DI BB AJ FJ ZK TM ED DJ RZ FJ RH JUMLAH
74
HASIL TES 2 8,9 10,3 9,7 12,9 12,4 9,3 9,5 12,8 20,1 11,8 7,2 6,2 13,5 11,8 10,8 10,7 17,2 9,8 13,8 20,1 18,7 8,3 11 10,2 11,8 10,7 17,1 5,4 11,3 12,5 355,8
Lampiran 13 Tabel tes flexiometer sampel B NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
NAMA Tm Pn Pz Zr Ty Rn Tf M. H Fk Dv RS An Td Dy At Ib Ag Dd Yr Nv Yy Jy Dr Pd In Id Kk Lt Ry Mt JUMLAH
HASIL TES 9,3 19,5 11,4 14,3 19,7 16,3 10,7 8,6 20,1 17,4 9,9 10,6 16,3 15,7 13,6 10,7 18,3 11,9 17,6 20,6 19,5 15,8 11,6 15,9 17,3 9,5 19,3 11,4 16,3 18,4 447,5
75
Lampiran 14Tabel Data Tes-Re Tes kelentukanRealibilitas Test NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Nama Anak Tm Pn Pz Zr Ty Rn Tf M. H Fk Dv RS An Td Dy At Ib Ag Dd Yr Nv Yy Jy Dr Pd In Id Kk Lt Ry Mt JUMLAH Rata-rata Nilai median
(X) 8,6 16,7 10,3 12,4 11,9 14,6 8,4 13,6 19,4 10,3 7,8 5,8 14,3 11,2 10,7 9,5 16,7 8,8 13 18,5 16,2 8,1 10,7 9,7 12,4 9,8 15,8 6,4 12,7 13,6 357,9 133,17 118
(Y) XΒ² 8,9 73,96 10,3 278,89 9,7 106,09 12,9 153,76 12,4 141,61 9,3 213,16 9,5 70,56 12,8 184,96 20,1 376,36 11,8 106,09 7,2 60,84 6,2 33,64 13,5 204,49 11,8 125,44 10,8 114,49 10,7 90,25 17,2 278,89 9,8 77,44 13,8 169 20,1 342,25 18,7 262,44 8,3 65,61 11 114,49 10,2 94,09 11,8 153,76 10,7 96,04 17,1 249,64 5,4 40,96 11,3 161,29 12,5 184,96 355,8 4625,45 111.89 16970.34 190 18930
76
YΒ² 79,21 106,09 94,09 166,41 153,76 86,49 90,25 163,84 404,01 139,24 51,84 38,44 182,25 139,24 116,64 114,49 295,84 96,04 190,44 404,01 349,69 68,89 121 104,04 139,24 114,49 292,41 29,16 127,69 156,25 4615,48 12107.70 18809
XY 76,54 172,01 99,91 159,96 147,56 135,78 79,8 174,08 389,94 121,54 56,16 35,96 193,05 132,16 115,56 101,65 287,24 86,24 179,4 371,85 302,94 67,23 117,7 98,94 146,32 104,86 270,18 34,56 143,51 170 4572,63 170799.67 15980
Lampiran 15 Tabel Data Tes-Re Tes kelentukanValidiitas Test Kelentukan NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Nama Anak Rc Ra Mc Ab Ro Am He Yo Jj Am Ro Ad Ww Pi Ad Ek M. I Fe An Di Bb Aj Fj Zk Tm Ed Dj Rz Fj Ra JUMLAH Rata-rata Nilai median
(X) 8,6 16,7 10,3 12,4 11,9 14,6 8,4 13,6 19,4 10,3 7,8 5,8 14,3 11,2 10,7 9,5 16,7 8,8 13 18,5 16,2 8,1 10,7 9,7 12,4 9,8 15,8 6,4 12,7 13,6 357,9 122,9 128
(Y) 9,3 19,5 11,4 14,3 19,7 16,3 10,7 8,6 20,1 17,4 9,9 10,6 16,3 15,7 13,6 10,7 18,3 11,9 17,6 20,6 19,5 15,8 11,6 15,9 17,3 9,5 19,3 11,4 16,3 18,4 447,5 131.1 129
77
XΒ² 73,96 278,89 106,09 153,76 141,61 213,16 70,56 184,96 376,36 106,09 60,84 33,64 204,49 125,44 114,49 90,25 278,89 77,44 169 342,25 262,44 65,61 114,49 94,09 153,76 96,04 249,64 40,96 161,29 184,96 4625,45 18926.3 16453
YΒ² 86,49 380,25 129,96 204,49 388,09 265,69 114,49 73,96 404,01 302,76 98,01 112,36 265,69 246,49 184,96 114,49 334,89 141,61 309,76 424,36 380,25 249,64 134,56 252,81 299,29 90,25 372,49 129,96 265,69 338,56 7096,31 21892 167711
XY 79,98 325,65 117,42 177,32 234,43 237,98 89,88 116,96 389,94 179,22 77,22 61,48 233,09 175,84 145,52 101,65 305,61 104,72 228,8 381,1 315,9 127,98 124,12 154,23 214,52 93,1 304,94 72,96 207,01 250,24 5628,81 197289 182537
Lampiran 16 Tabel Data Tes-Re Tes Standing Broad JumpReabilitas Test Standing Broad Jump NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Nama Anak Tm Pn Pz Zr Ty Rn Tf M. H Fk Dv RS An Td Dy At Ib Ag Dd Yr Nv Yy Jy Dr Pd In Id Kk Lt Ry Mt JUMLAH Rata-rata Nilai median
(X) 175 177 178 180 181 181 182 182 183 185 187 188 189 192 193 193 193 195 196 197 197 197 198 198 198 200 200 201 204 205 5725 191.0 175
(Y) 187 178 181 178 186 178 179 178 189 179 183 183 187 198 189 198 187 201 202 195 187 188 204 201 192 195 203 197 198 201 5702 189.32 178
78
XΒ² 30625 31329 31684 32400 32761 32761 33124 33124 33489 34225 34969 35344 35721 36864 37249 37249 37249 38025 38416 38809 38809 38809 39204 39204 39204 40000 40000 40401 41616 42025 1094689 37291.1 28930
YΒ² 34969 31684 32761 31684 34596 31684 32041 31684 35721 32041 33489 33489 34969 39204 35721 39204 34969 40401 40804 38025 34969 35344 41616 40401 36864 38025 41209 38809 39204 40401 1085982 23485.5 27425
XY 32725 31506 32218 32040 33666 32218 32578 32396 34587 33115 34221 34404 35343 38016 36477 38214 36091 39195 39592 38415 36839 37036 40392 39798 38016 39000 40600 39597 40392 41205 1089892 35748.8 27839.0
Lampiran 17
Tabel Data Tes-Re Tes Standing Broad Jump Vaiditas Test Standing Broad Jump
NO 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30
Nama Anak Rc Ra Mc Ab Ro Am He Yo Jj Am Ro Ad Ww Pi Ad Ek M. I Fe An Di Bb Aj Fj Zk Tm Ed Dj Rz Fj Rd JUMLAH Rata-rata Nilai median
(X) 175 177 178 180 181 181 182 182 183 185 187 188 189 192 193 193 193 195 196 197 197 197 198 198 198 200 200 201 204 205 5725 186.4 175
79
(Y) 172 180 175 182 190 178 174 180 179 183 188 193 187 182 189 195 189 192 201 191 192 193 194 195 196 198 199 193 205 199 5664 189.5 172
XΒ² 30625 31329 31684 32400 32761 32761 33124 33124 33489 34225 34969 35344 35721 36864 37249 37249 37249 38025 38416 38809 38809 38809 39204 39204 39204 40000 40000 40401 41616 42025 1094689 35791.2 36191
YΒ² 29584 32400 30625 33124 36100 31684 30276 32400 32041 33489 35344 37249 34969 33124 35721 38025 35721 36864 40401 36481 36864 37249 37636 38025 38416 39204 39601 37249 42025 39601 1071492 37811.72 37213
XY 30100 31860 31150 32760 34390 32218 31668 32760 32757 33855 35156 36284 35343 34944 36477 37635 36477 37440 39396 37627 37824 38021 38412 38610 38808 39600 39800 38793 41820 40795 1082780 37456.12 367192
-TABEL I LUAS DI BAWAH LET{GKUNGAN KURVE htORIvrAL DARI O SID Z ilr0 $r1
00,s0 s3,gg
0,
S'3 S'3 sr4
07,93 I I,?g
04,39 09,32 I2, I?
15,54
I5,9I
0$
19,15 I 9,50 2?,57 72,9t 25,90 26,1 I ?g,g I 29,10 31,59 31,96
0'6 0,?
0'8 0nP
I'S
Inl
lr2 1J 114
34,13 36,43 3 8,49
40_32
4l,t!z,
04,?g 09,? I 12,55 16,?g
0l ,20
I,
05,1 7
s5,57
09, l0 12,93 16,64
09,49 I
3,31
I?,s0
g,g5 2S, l g 2A,54 73,24 ?3,5? 23,gg 2{i,4? 2$,73 zi,e: 29,39 ?9,67 zg,gs 32, l2 32,3g 3?"{}4 34,61 34,85 35,0g 36,96 3?,tlB 37"2r) 3g,g8 39,0? u,zs 40,66 40,9? +o,gg 42,2? 42,36 +:,: '43,57 43,?0 43,g2 4{t,?4 44,84 ++,gS 45,73 45,92 +s,g 46,56 46,64 +a,r 47 ,26 47,32 41,:g 47,83 47,99 4?,g3 48,30 48,3,1 qg,:S 4 g,6g ' 49,? t **,rs 4f ,gg 49,0 t +*,a+ 4t),?7 4t),?5 1g'r27 49,4 I 40,43 4g,45 49,56 49,57 -+q,6g rg,sl l
34,39 36,65
39,69 40,49 42,0?
r
1$
I'6 1r7 1rB
1'9 ?rs
7rl 2r2 3"3
2r4 215
216
2r7
2'8 ?rg 3r0
3'l 3"?
3J
43,3? 44,5? 45,54 46,41 47,13 ,
43,45
.
44,63
45,64 46,49 47,19
47,72 47,79 I 49,?6 48,61 49,64 4 8,gg 4 g,96 49,I g 4t,20 48,?
4S,3 g 49,4CI 49,53 49,55 49,65 49,66 40,?4 49,75 49,91 49,92
49,97 49,90 49,93 "19,95
4t),97 49,91
49,93 49,95
314
49,97
3"5
49,99 4g"gg 49,98 4g,t8 49,99 4t),t)g 49,99 4g,gg 50,00 50,00
3r6 317
3rg 3rg
49,97
r
r
49,67 49,69
4$,?6 49,77 19,77 4g,g? 40,g3 +g,g,r 4g,g? 4g,gg 4g,&& 49,91 4g,g l ,f g,qe 49,94 49,94 +g,g4 49,95 49,96 Eg,la 4r),91 49,97 +*,qi 4g.gB 4g,gg 4g,gg 4g,gg 4g,gg +g,g,; 4e,ee +t,9s 1?,?e 49,*g 4g,g? +g,gg 5{},s0 50,{}s 50,Oil
0t, 05,q6 09,97 13,69 17,36
02,39 06,36
1 -,
06,75
10,26
10,64
I4,0$
I4,43
17,72
I g,0g
3,tr
97,14 n
tr,03
I4,90 I9,44
03, 07,53 I I,4l 15,17 I g,?g
20,88 I l.3l 21,:1 2 r,eO 22,?4 24,27 2:1,11 15,17 2s,4s 77,34 ?7,r! z+,10 77:2! ie:;; 28,s2 30,?3 3?,:1 so,;g il ,G 3 I ,33 32,s9 33, r 5 :j,+o ii,A 33,8e
r 3:,:1 3s,1J 3s,ee 36,21 37,4e 37,79 3?;?? is,to 38,30 3e,44 3?,9? lt,eq i9"fi 40, s 4r,ts 4l,li +r,q 3s,3
r
a\.,e; 4!,77 42,65 42,79 42"92 43,il 43, l g 43,94 41,?g 44,t2 44,?g 44,41 4s,05 4:,ll 4s',2, 45;t; 4s,45 45,ee 4f ,g? a6,lo 4e:i; 46,33 46,?8 4f ,l! 46,s3 46;il 47,44 4?,50 47"56 4i,e; 47,06 47,67 ,l?,98 4S,ql 4 g,0g 48, I Z 4g, I ? 48,42 43,19 +s,so qs,sa 4g,5? 49,79 4g,l t +t,g+ +g,ffi 4g,g0 49,06 4g,gg aq, r r +g, ir 49, l6 49,29 49,3 I 49"32 4g,i; 49,36 49,46 49,19 4g,4g 4g,5 1 4g,52 49,60 4g,gt eg,oz ag,a: 49,70 49,J1 4g',,i; 49,73 49,64 4?,79 49,79_ 4g"7g 4g,g0 49,74 4g,g l 49,94 49,95 +g,sl 49,g6 49,g6 4g,gg 4g,gg 4g,gg 4t,90 4g,g0 49,92 4g,gz 49,92 49,93 ag,g: 49,94 4g,gr4 49,95 49,95 4t,p6 49,96 49,97 +g,is 1?,?6 4g"g7 49,97 49,:97 49,97 49,97 ag,gg 49,99 4g,?q 4g,gg 4g,gg 4g,gg 1?,?? 49,?? 4e"ss 4e,ee 4g,gg 4e,?s 4s,ss 4s rse 4g,gg 1:,?? 4,?,gg 49,99 4g',gg 4g,gg 4g,gg 50,00 50,00 50,G0 50,00 50,00
-
.'lE :
f,Lf {iJ
TABf;L
IX
ruXLAI.NII$* DALAM *I$TffiIffiU$I t
1
I
s,ss dk
I
$,25 I
3
1,0*s s,816 s,765
4
0,741
2
I
{t unt$k uji dua fihak {two tail fest} s,20 0,*5 e *ntuk uji satu fihak {*ne tail test}
s,tfi I
0,tS
s,$5 1
*,s25
&sI
0,s*5
12,7GS
63,S57
1,886 1,638 1,533
2,92fi 2,353
4,3S3 3,182
7,r32
2,776
r,#6 l,M*
2,*15 r,943
31,8?1 6,955 4,541 3,747 3,365
2,447
3, tr43
1,415 1,397
1,895
2,365
1,960
?,3*6
I,383
1,933
,21262
?,9'*8 2,896. ?,821
*,727
a?rs
7
I
s,?11 0,?06 0,7s3 s,7s$. &,697
1,3:72
l,s l2
1I
1,363
,,7*6
?,2*l
t2'r
*
I,356
1,782
2,179
13
695 0,692
1,350
1,37
I
14
s,6gl
tr,?61
15
0,690 0,699
I,345 I,341
2,1S0 2,145 2,131
1,33? 1,333
11746
1,33fi
16 17
r8 19
2& 21
22 23
24' 25 26 27 28 29 3S
40 60
':o
s,688 s,688 0,687 0,687 0,686 0,686 0,685
s,685 0,684
s,o1
6,314
5
ts
s,t)?
3,0?8
6
I
I
2,57
7
9,9?5 5,841
46S4 4,$32 3,7*7 3,499 3,355
3,250
2,764 2,7T8 2,681 ?,s5s 2,624 2,{}*2
3,012 2,977 2,947
2,5S3
2,92r
1,74*
2,tafr 2,TL*
21567
7,734
2,
2,898 ?,878
1,328
1,329
,1325
1,775
1,3?3
1,72t
2,S93 2,*SS 2,S80
3,55? 2,539 2,538 2,518 2,5*B
l,?53
2,7:28
I*l
3,169
3,I*6 3,S55
2,8$1
2,845 '2,831
1,32r
1,7 17
2,*?4
1,319 1,318 1,316
1,714 1,7 r1
2,SS9 2,SS4
2,492
2,819 2,9*? 2,797
1,?S8
?,*s*
2,485
2,7&7
1,3I5
1,7s6
2,S56
2,,479
2,779
1,314 1,313
I,703
2,473 2,4*7 2,462 2,457 2,423 2,3gil
2,77
s,684 0,6s4 s,683 0;683 o,$83 s,581 0,6?il 0,677
1,303 1,?96 1,289
*,674
1,2&2
1,31 1 1,3 {s
1,70X
1,699
l,#97
#
1,684
2,*42 2,A2!
1,67 r
2,**0
1,658 1,645
I.96*
I,980
2,5**
?,35S 21326
L
?,763 2,75# 2,75S
2,7*4 2,6S0
2,617
2,576
-
gtr
TABHL f$$ lnffLAI-NILAI r P**{JCT tuI*erIENT faraf Signi{lkan
Taraf $ignifikan
s,gg?
s,g*g
0r4s7
*,766
$,950
S'Sg$
$,4?g
s,?54
s,33S
&,979
s,gsg
&,367
*r47*
g,*4
q3I7
0,glI
0,9I?
$3361
s,463
s,235
s,3*6
s,s?4
I I
*'754 *,7W *,666
s,355
*,456
*,227
s,zs6
s,834
s,349
*,449
*,?2&
s,?s6,
s,79S
fr,344
0,442
t0
s,213
0,?7s
0,632
0,765
0,339
0,436
s,?il?
*,2?S
1tr
0,6q:
g,?35
3s
0,334
s,43S
95
s,576
s,?sg
36
s,329
*,424
1*S
I3
*,2*2 *,195
9,26,3
T2
s,25S
o,5SS
tl,ss4
37
0,325
0,419
1?5
0,
l?s
s,23S
T4
s,532
s,661
38
9,3?s
s,413
15*
t5
*,159
as14
$,21S
s,64I
39
0,316
0,409
1?5
*,14S
s,194
*,lg I s,l4g
s,345
\
t
I6
s"49?
T7
l8 t9
s-623
4S
&,312
s,4*3
2**
0,492
4t
0,309
0,399
3SS
a 138 s,l 13
0J68
42
s,3$4
s,393
400
s,sgg
s,129
s,456
43
0,301
0i389
5S0
s_*gs
?s
8,1 X5
0,444
44
*,297
0,384
60s
*,*g*
*,1s5
2t
s,433
22
s,423
?:3
s 4r3
24
s,4*4 q3e6
25
0,399
s,sg? s,sg1
$,sg6
0,0$l
:
i I
ss B *B ss's=s;'s ss ss ss s* *S *F FE : β¬ aiq trs FF B$ s* gs sfr $$ $.$ $s 5E
T
ct Irl
I
xss ai* Fo 3F
CI
e
{nt
f
,J.\ lir,
O
,
It I
d
I
I
ss Ss Ss sF SS $$ '$$ SF
nii''-
F* sg sp s* *s *5
g?gl
tE s)
aiFi{fi
*;
p (D
BS Sq sF ! v. HS r', t\ L'J rf} -' ;.: S= *
'$F
*"
$g $E
qB_
iE
C\t tf
Cr} tO CV t{,
6_s +E C\i A.t
ilr*F.-ffi
I H tt
li
II
lL
ir
C
=!R|lffi *iq S# sS bF
fia
ggero-6 qrt_ \d 66 bi$ HH trg gS prr'-r\-=; 6iff :Y- *ft --ni pE ,o,o -'cr c.r-;f ;i;-; #+ eS Sg
It N
&E f# Fa
95[tAraffi
tS
*S s*
*5 B; $$
_q
i $$
sf-Fs;* *$ .$$ ge
lPAsffi
tifi
sF Fffi *r 3s *F 5s S3 3$ $ti $. * IF l: dr+ sgs s.{ffi ss aff sg s* sF s* HF $g $$ fF r T sg = {rF I *F }* *F $s 3S 3$ SF 3; *5 *e
E
F-
g,
niq
F
FT H
v
lf i:
3 l-
I
| "B P* FS *t rs ss gs F*;F *$ $F I fi d'6- Ed ;# B$ *F *S ss * $ 3* *S .s$
z,
:' { Ti
zd
-t * z,
F# sff FS $# sS sff #s '$s $.$ sE
I
IIj
-Cr, 3 gl
a'S-
I
Ii
bq )e
ro
I
*ss*ffi I g y- "r. { { 6_ H p R S S n x x I i*iq H S: -"3t \ie.*e rf' "f X *F:= c.rN s.t.o ;;-;-;*i nA
F
fi f'
s
gE
II
UF
FH FS AF SF iS F5 FF 3F $$ $F
lxe *F ii#;s sF *F $5 *S S3 3g $F $e C llr
Ilo
ti
$F iEJI
F+
=di
L
ls
E:
*ff iilf
;ii FF F;'s# iF *F 5$ $* *s
fl ** ss ;i* F3 SE. $5 S$ 33
a3L arLrlj
6f$
ggg
s$l sFls ffi *E F# sff 33 *F FF gF s-* 3* gs $e H fit Fil"a3 $.$ 55 5* ** $i ."8.38 t' r\ F Fs
{
lf: I *q
rf l"'
TE
t
I
FF
F; *F *S;F
gH
-s f *.F*;i*
!F
s*
g,
*
FS rt.}
t*
S* 5$ $$
55 S$ 3F
S.F
*F 8$ *f F$ Sg $$ cri
t\
q
{?}
t,
g' .o i.fl rr- h +{\l r- gJ -C
$5*F r*l O
t
f-,1
t\l q_ C\I
F SI b tcr .lF rs 'q, $- rf $I {u. (l{ {\{ !F ttf) $t {,rt $t fr: nt t"t (\t
{o O cl rf r- {r) C\'
T ai
rf; CQ
Te
q
E β¬r)
(lt !t
rf|
ST
$t
(} ct ftc!
frl
'q
IF ta
ca
{\T
(3
$* c"t
iD
*
$t f\ s! t\l {o gl G} te ftt f? C'l o (>- Fq, (Il. q. q. (v {\i $.1 {rt o{ β¬: {\t {\J
6', q.
t\t f?
F
gl
C\t s$
F e_
sc_
RT
$I
lf
T 6 ;r q. F F o_ (\I
nt
\
&{31
t\j f\J
sq
(.j cl Cl cr 3q sq tq
*J
c1t
F q ftt
rg}
(\:
al q. sj
l\Gq
!f
Gr
s rfi
ta {n
.q.
s,
$J
tlJ gt
$I
.q| tst_
(\I
o?
()
cn
G g
$ *s -o g c'
o.
.t4
tt ft
s SB-_RE Fq il? Eq t.t ni # F;
c\t
c,J
(") (\t
ffin
Stfj
c\i r"t
C\t S'e
ft:
C-S Crt
$8 cfss
c\t {.t
q$- Bb-tr6 sR
(\t r'l ct of clt c"} c\t r'r
*5 *F SSEE
8S 88
t\i .lr m
ct:*
ES fift
$J 'qf $J q
xsspp*ppR&S*S*ffi
c-t
It
si
5 i$ f\t
f\t A \J r{
G $t .=
.D t-
β¬t
c.
g E
*t
Eq
ER
cu g\t f{
fi8
(\,! f,)
ffiR
C\i
CA
c\J
KEMENTERIAN PENDIDIKAN DAN KEtsUDAYAAN TINIVERSITAS BENGKULU FAKULTAS KEGURUAN DAN TLMU PENDIDIKAN Jalan wR.Supratman
Kandang Lirnun Bengkulu 3g3TlA t"y::f11l jlllg.Ty .zaz_zzi zlis6 Faksilii., itizre zn*6 v r {'tI rJW} &.
[email protected],id
hlomor Lamp Perihal
L = e /tlAI3,a.TlpLlzol4 : I (satu) Expl proposal :
j
,
2 April
2$14
: Izin Penelitian
Yth- Kepala Kantor pelayanan perizinan Terpadu propionsi Bengkuru Di Bengkulu
gy"
Untuk kelancaran Skripsi rnahasiswa bersama ini kami rnohon bantuati $audara untuk dapat rnernberikan {l.ldiug rzin relatJun peneritian / pengambilan data kepada:
Nama
NPM
Program Studi Tempat penelitian Waktu Penelitian dengan
judul
Andri Gunalyan * :: AlH0l0{}62
Pendidikan Kesehatan dan Jasmani PS. Anggrek Kota Bengkulu
3 s.d 3tl April Z0l4
"Hubungan Daya Ledak otot Tunkai Dan Kerentukan pinggang Terhadap Akurasi pasing Daram p*i*urou* sepak gdu es Anggrek Kota Bengkulu',. proporal t".lu*pi.. - -'
Atas bantuan dan kerias:&rrtl,yang baik kami ucapkan terima kasih.
Bidang Akademik
f7
o, M.Pd 016
Tembusan: Yth- rDekan FK|P sebagai raporan
PEMERINTAH PROVINSI BENGKULU
milI0* PHilmmil ffstdrffi ffnPl0il I Jt. Pernbangunan No" TeleponfFax: (0736) ?]35t2 Ksde pos: 3g225 website: www' kp2tprovben*gt? *2tlenskulu'blosspot'com
H
?"8'J#*
REFOmEfipASt HO|l,lOR
:5a3t7.at
9zs
txvzTn074
TE}TA}I⬠FEilELTTI,IH
Dasar:
t
"
?"
Peraturan Gubemur Bengkulu Nsmor 18 Tahun 2013 tanggar oz ngtrJnrs 2013 tentrang perubahan kedua Atas Peratrran Gubernur Nomor 07 Tahun zaiz renang ftndralegasiari s*agaian K*enangan Penarddangar*an Pe*sin8fi dan irlon {Bulan} peitzinan FJnerintah provinsi Bengkufu fGpada Kepala Kantor Pelayanan Perfzinan Telpadu provinsl'Sengftu1,r. $urat Bekan Fakuttas Kgguruan dan llmu Pendidikan universltas Bengrkulu lrlomor: 163?JUN3S.Z Pl'rzw4- Tanggal wufta$ Perihal Tent*ng Penelilian . Fennohonan oiterlma di Kp2T Tanggal 03 AF il2014
L*nrb*gx tr*ny*$*nffisrffi Nerna Peneliti Maksud
Gu*asa* / A1Hsl*ssz I fvlah*siswa Melak*kar: F***!itian Hubungan Data Lefak tltst Tunghai dan Kelentuharr Pingsang Terfuadap Ak$r*si Passing *alam Feryft*in*ru SgIp*lc g*Ia FS. Anggrak *{+A *+r*g*ulx Ar*d#
-
Judul Penetitian
Daenah Peneffffan
&kt*
Fe*elitian/Kegistan
Penanggung Jawab
; : :
FS, Anggrek Kota Bengkufu 03 April 2*14 sJd S3 tday ?*X4
Dekan Fakultas Keguruan dan iimu Fe*didilqan Unlversitas Ber:gkul*
oengan inf meret{omendasfftan penelilian ya*g akan dradakan dengan ketenftran: Sebelurn melakukan penelfian harus melapor kepada Gubemur/Bupati/lAfalikota Cq. Kepala Esdanll&pala t{antorKebang Pcl dan Linmasatau sebuian lain sehmpat.
a.
'
' b. Harus mentaati $emua ketentuan perundang-undangen yang berlakuc- Selesai rnelakukan penelitian agar melaporkan/menyarnpqikan hasil pene&tian kepada Kepata d-
e-
Kantor Pdayanan Ferizinan Terqdu prgyinsi Sengrkutu. Apabila nrasa berlaku Rekcmendasi ini sudah berakhir, sedangkan pebksanaan penelitian beluryr selesai, 'perpanjangan Rekomendasi Penelitian harus {ti{ulβ¬n ,ternUati kepada ingiansi pgrrohon.
Rekoxendasi iniakan dicabut kernbali dan dinyatakan tidak berlaku, apabila temyata pemegang
surat rekomendasi ini tidak mentaatllmengindahkan ketentusn-ketentuan seperti tersenut di atas. Demikian Rekomendasi ini dikeluarkan untrk dapat dipergunakan seb4aimana mesfiinya. Bengkulu, 03 April 4014 KEIPALA KANTOR PELAYA ftlA N PH RIel i*A
f*t
TERFA
PROVt$,$tIIEHslβ¬uLu
PFMB|NA TK. ]embq$an di+pnftffiikn keffids
t. Kepala sa*an Kmb**g p*f
yk
prur+*mi sw6k***,: di Be*wfu*l:
F##
2- Kepata Sadan Fd*y*nex Fwta**asl T*rpdx dry: P*r:*ltarrla* K*ta ***g$r*** 3- *eks$? Fafu.sFffie Kry*,rux* fu:ss Fsse#$@t i"H*$ws* *#rue#s# 4. Yang B*ne*rlgkut*n
#r
I
NrR XgS2*S21 lSSS*3 1 S03
S l-j
uPS, Alamat
:
jln
Anggrek''
Rinjani kelurahan padang Hsrysn t{p 0g53?944s494
saya kepala pelxih PS. Anggrek Kota Bengkulu meirerangkan bahwa : Nama
:
NPM
:AIHO1(}{}62
Fragram Studi
: Penjaskes
Fftkultss
: Ke'gun:an dan
Malrasiswa
ini telal
Andri .';: i,.:i
llruu Pendidikan
melaksffrekan pnelitian
SlxiFl di ps3nggrek Kota Benghulu de.ngan
J{'dUI, HTIBUNGAN KEKUATAN OTOT TUNGKAI DAN KELENTUKAN PINGCANG SECAR.A BERSA.MA-SAI\{A TERHADAP KEMAb{PUAN AKUR*SI PI,5Sfl,TG SEFAKBOLA PADA PEMAIN ps, ANGGREK KorA BENGKULU2S@a ranggal 27 AFril z}l4.
Demikian surat ke$erangaa
ini
dibuat dengnn sebenarnya dan untuk
dapt
dipergunakan
sebagaimara rnestinya-
""*-*β¬_L_
Hasil Perhitungan Uji Coba Instrumen Tes Reabilitas dan Validitas Tes Standing Broad Jump a) Data Reabilitas β π = ππππ,
β π = ππππ , β πΏΒ² =1094685,
β πΒ² = πππππππ,
β πΏπ =
πππππππ, Langkah selanjutnya di hitung menggunakan Rumus r sebagai berikut:
πππ =
πππ =
πππ =
πππ =
πππ =
πππ =
π΅ β πΏπ β (β πΏ)(β π) β{π΅ β πΏπ β (β πΏ)π }{π΅ β ππ β (β π) π } ππ. πππππππ β (ππππ). (ππππ) β{ππ. πππππππ β (ππππ)π }{ππ. πππππππ β (ππππ)π ππππππππ β ππππππππ β{ππππππππ β ππππππππ}{ππππππππ β ππππππππ} πππππ β{πππππ}{πππππ} πππππ βππππππππππ πππππ = π, ππ πππππ, ππ
Hasil Reabilitasnya sebesar 0,80
b) Data Validitas
80
β π = ππππ,
β π = ππππ , β πΏΒ² =1094685,
β πΒ² = πππππππ β πΏπ =
πππππππ Langkah selanjutnya di hitung menggunakan Rumus r sebagai berikut:
πππ =
πππ =
πππ =
πππ =
πππ = πππ =
π΅ β πΏπ β (β πΏ)(β π) β{π΅ β πΏπ β (β πΏ)π }{π΅ β ππ β (β π) π } ππ. πππππππ β (ππππ). (ππππ) β{ππ. πππππππ β (ππππ)π }{ππ. πππππππ β (ππππ)π ππππππππ β ππππππππ β{ππππππππ β ππππππππ}{ππππππππ β πππππππππ} πππππ β{πππππ}{πππππ} πππππ βππππππππππ πππππ = π, ππ πππππ, π
Hasil Validitasnya sebesar 0,88
81
Hasil Perhitungan Uji Coba Instrumen Tes Reabilitas dan Validitas Tes Flexiometer. a) Data Reabilitas β π = πππ, π, β π = πππ, π , β πΏΒ² =4625,45, β πΒ² = ππππ, ππ, β πΏπ = ππππ, ππ Langkah selanjutnya di hitung menggunakan Rumus r sebagai berikut:
πππ =
πππ =
πππ =
πππ =
πππ = πππ =
π΅ β πΏπ β (β πΏ)(β π) β{π΅ β πΏπ β (β πΏ)π }{π΅ β ππ β (β π) π } ππ. ππππ, ππ β (πππ, π). (πππ, π) β{ππ. ππππ, ππ β (πππ, π)π }{ππ. ππππ, ππ β (πππ, π)π ππππππ, π β ππππππ, ππ β{ππππππ, π β ππππππ, ππ}{ππππππ, π β ππππππ, ππ} ππππ, ππ β{πππππ, ππ}{πππππ, ππ} ππππ, ππ βπππππππππ ππππ, ππ = π, ππ πππππ, ππ
Reabilitasnya sebesar 0,87
82
b) Data Validitas β π = πππ, π, β π = πππ, π , β πΏΒ² =4625,45, β πΒ² = ππππ, ππ β πΏπ =5628,81 Langkah selanjutnya di hitung menggunakan Rumus r sebagai berikut:
πππ =
πππ =
πππ =
πππ =
πππ =
πππ =
π΅ β πΏπ β (β πΏ)(β π) β{π΅ β πΏπ β (β πΏ)π }{π΅ β ππ β (β π) π } ππ. ππππ, ππ β (πππ, π). (πππ, π) β{ππ. ππππ, ππ β (πππ, π)π }{ππ. ππππ, ππ β (πππ, π)π ππππππ, π β ππππππ, ππ β{ππππππ, π β ππππππ, ππ}{ππππππ, π β ππππππ, ππ} ππππ, ππ β{πππππ, ππ}{πππππ, ππ} ππππ, ππ βπππππππππ, π ππππ, ππ = π, ππ πππππ, ππ
Hasil Validitasnya sebesar 0,74
83
Lampiran 19 Dokumentasi Penelitian di PS, Anggrek Gambar tim PS. Anggrek
84
Gambar Tes Flexiometer
85
Gambar Tes Short Tes
86
Gambar Tes Standing Broad Jump
87