Groundwater Modeling Irwan Iskandar, PhD KK Eksplorasi Sumberdaya Bumi Teknik Pertambangan Fakultas Teknik Pertambangan dan Perminyakan ITB
Apakah yang dikerjakan dalam pemodelan What hidrogeologi? Hydrogeologist do? • Kuantifikasi Distribusi (keterdapatan) • Kuantifikasi aliran (recharge-discharge) • Prediksi dan simulasi pengambilan airtanah • Interaksi air permukaan dan airtanah • Interaksi air dengan batuan (hidro-geo-kimia) • Perencanaan dewatering
• Perencanaan eksplorasi - produksi (geothermal, CBM, Migas)
[email protected]
Hidrogeologi dalam bidang pertambangan (tambang terbuka, tambang bawah tanah, geothermal, perminyakan ): Why do we need Hydrogeologist in our business?
[email protected]
Mine environment: Could we ask the hydrogeologist, “How”: could we control our mine water? so people can say our business is ‘green’ and eco-friendly Bagaimana pengelolaan air (drainase), desain pompa, dan kontrol kualitas air di tambang? Parameter apa saja yang perlu dipertimbangkan?
[email protected]
Tujuan (Pemodelan Hidrogeologi Tambang Terbuka) • Pola aliran airtanah dan air permukaan pra, selama, dan pasca tambang (kuantitatif) • Kuantifikasi jumlah air yang harus diatur dalam penyaliran
tambang • Environmental impact (prediksi, verifikasi lingkungan) • Desain sump, ditch, pump, pond
• Depressurization • “Water Management”
[email protected]
Air ke dalam Pit Tambang
[email protected]
Pola Aliran Air Permukaan Pra Tambang
Kursus Hidrogeologi IAGI Bandung, 25 – 26 April 2013
[email protected]
Pola Aliran Air Permukaan Pasca Tambang
[email protected]
Pola Aliran Air Airtanah dan Penurunan Air Tanah Akibat Tambang Head Equipotential Line
Perkiraan perimeter Pit
Groundwater Table Drawdown (max 50 in pit high wall
Drain Hole Desain • • • • • •
Metode drain Spasi Kedalaman lubang Time frame Evaluasi drain Efek ke kesetimbangan lingkungan airtanah di sekitarnya
[email protected]
Slope Remediation
Infiltration Control
Crest Drain
Well Control
Toe Drain
[email protected]
Pola Aliran Air Airtanah dan Penurunan Air Tanah Akibat Tambang
[email protected]
Pola Aliran Air Airtanah dan Penurunan Air Tanah Akibat Tambang
Kursus Hidrogeologi IAGI Bandung, 25 – 26 April 2013
[email protected]
Kuantifikasi Airtanah yang keluar dari dinding tambang Rate Dewatering Time [day] in m3/day
Rate Dewatering in liter/sec
Volume Cumulative [m3]
365
-196.73
-2.28
-71808
730
-392.42
-4.54
-286464
1095
-421.41
-4.88
-461440
1460
-403.90
-4.67
-589696
1825
-368.43
-4.26
-672384
2190
-340.22
-3.94
-745088
2555
-328.64
-3.80
-839680
2920
-312.28
-3.61
-911872
3285
-306.42
-3.55
-1006592
3650
-290.47
-3.36
-1060224
[email protected]
Kuantifikasi Airtanah dan Air Permukaan yang keluar dari dinding tambang
PIT
PIT (Kedalaman pit 150 m) PIT (Kedalaman pit 70 m)
Debit Air Limpasan
Debit Air Tanah
Total Debit Maksimum Air Masuk Pit
(m3/detik) 1.81
(m3/detik) 0.004
(m3/detik) 1.814
1.75
0.003
1.753
[email protected]
Desain Saluran Drainase Freeboard = 10-30 cm
X=lebar muka saluran
h = kedalaman saluran basah
Z = kemiringan saluran
5/3
1/ 2
A S Q 2/3 n.P
B = lebar dasar saluran
Debit MAX (liter/detik)
Kapasitas Debit Maks Saluran Air 9000 8000 7000 6000 5000 4000 3000 2000 1000 0 0
0,1
0,2
0,3
0,4
0,5
0,6
0,7
Tinggi Muka Air (m) Kursus Hidrogeologi IAGI Bandung, 25 – 26 April 2013
0,8
0,9
1
[email protected]
Desain Saluran Di Sekitar Dinding Tambang dan Inpit Sump
Kursus Hidrogeologi IAGI Bandung, 25 – 26 April 2013
[email protected]
Tabel Balance Hasil Simulasi
Arah Aliran Air Tanah dan Kontur Head
[email protected]
Simulasi Dewatering Kursus Hidrogeologi IAGI Bandung, 25 – 26 April 2013
[email protected]
Pongsesa Infiltration Pond
Harapan Infiltration Pond
Concentration Cr6+ ppm
Simulasi contaminant transport
[email protected]
3D-Permeability Modeling • 3D-spatial distribution of permeability in a block modeling • Combination K value (primary variable) and RQD value as (secondary) • Replace previous layer (stratigraphical modeling) to grid based model
Field work
Conceptual model
Groundwater modeling
SIMULASI NUMERIK dalam HIDROGEOLOGI
Governing Equation 2h 2h 2h 2 0 2 2 x y z
•Steady state
h h h h ( K x ) ( K y ) ( Kz ) S s x x y y z z t
•Transient
INTI SIMULASI NUMERIK • Teknik untuk mencari solusi persamaan differensial
• Merupakan pendekatan • Persamaan differensial didekati dengan persamaan linier simultan (persamaan matrix)
DUA JENIS UTAMA SIMULASI NUMERIK
1. Finite Difference (beda hingga)
2. Finite element (elemen hingga) Kelas kita: Finite Difference
FINITE DIFFERENCE • Introduced firstly by Richardson (1910) • The basic idea: to replace derivative at a point by ratio of change over a small but finite interval
LANGKAH-LANGKAH DALAM METODA FINITE DIFFERENCE
1. Pendekatan Terhadap Differensial h(x) B P
A
Deret Taylor:
x-h
x
x+h
x
dh 1 2 d 2 h 1 3 d 3h hx x h( x) x x x ... 2 3 dx 2 dx 6 dx
(1)
dh 1 2 d 2 h 1 3 d 3h hx x h( x) x x x ... 2 3 dx 2 dx 6 dx
(2)
hx x h( x x) 2h( x)x 2
2
d h 4 O ( x ) ... 2 dx
+ (3)
Abaikan orde O(x4): d 2h 14 Abaikan h( x x) 2h( x) h( x x) 2): dx 2 0(h x x x
(4)
Error orde h2
(1)-(2):
1 dh h( x x) h( x x) dx x x 2x
(5)
Error orde h2 Pendekatan slope pada P dengan menggunakan garis AB: CENTRAL DIFFERENCE
Dari Pers. (1): Abaikan orde h2:
1 dh h( x x) h( x) dx x x x
Forward Difference (CD)
1 dh h( x) h( x x) dx x x x
Backward Difference (BD)
2. Pembagian dalam sistem grid 1-D
2-D y
i-1
i+1
i h
i,j+1
i-1,j
i,j
i+1,j
h i,j-1
x
3. Penulisan pendekatan pers. differensial pada setiap titik dalam sistem grid 2-D
2h 1 2 2 hi 1, j 2hi , j hi 1, j x x x x
y
i,j+1
i-1,j
i,j
1 h hi1, j hi1, j CD : x x x 2x
i+1,j
h
1 h hi1, j hi, j FD : x x x x
y i,j-1
x
x
1 h hi, j hii, j BD : x x x x
Dalam arah y 2h 1 2 2 hi , j 1 2hi , j hi , j 1 y x x y
h 1 hi, j 1 hi, j 1 CD : y y y 2y h 1 hi, j 1 hi, j FD : y y y y h 1 hi, j hi, j i BD : y y y y
5. Penyelesaian Persamaan Linier Simultan (Persamaan Matrix) • • •
Eliminasi Gauss Algoritma Thomas Iterasi: 1. Jacobi 2. Gauss - Seidel 3. SOR
Exercise 1
x 8,04
15 menit 8,18
8,36
8,53
Tugas: Cari h2,2, h3,2, h2,3, dan h3,3
h1,4
h2,4
h3,4
h4,4
7,68
?
?
8,41
h1,3
h2,3
h3,3
h4,3 2h 1 2 2 hi 1, j 2hi , j hi 1, j x x x x
y = x
7,19
2h 2h 2 0 2 x x
?
?
h1,2
h2,2
h3,2
h4,2 2 h 1 2 2 hi , j 1 2hi , j hi , j 1 y x x y
6,82
7,56
7,99
8,29
h1,1
h2,1
h3,1
8,33
h4,1 Steady state: hi,j sama pada tiap waktu n
Transient Condition h h h h K zz K xx K yy W Ss x x y y z z t
Metode Beda Hingga Salah satu solusi pemecahan masalah persamaan dalam kondisi transient
hi,j
= (1/4) (hi-1,j + hi+1,j + hi,j-1 + hi,j+1)
Steady state: hi,j sama pada tiap waktu n
hin1,1j hin1,1j hin, j 11 hin, j 11 4hin, j 1 1/ T Sa 2 1/ t hin, j 1 hin, j Transient: pencarian hi,j pada tiap waktu n
Pemodelan Lapisan (Pemodelan Parameter Hidraulik) 1. Layer Based LPF (Later Package File)
2. Grid Cell Base
Physical Model (Layer Based) • Pembagian Unit Hidrostratigrafi
• Setiap unit lapisan hidrostratigrafi diterjemahkan sebagai “layer” • Setiap layer relatif homogen (K, S, θ dan parameter lainnya)
• Lapisan bisa datar, miring ataupun membentuk antiklinorium • Korelasi bisa manual oleh hydrogeologist atau dengan software pembentukkan kontur struktur “layer”
Physical Model (Layer Based) • Easy when hydrostratigraphical unit has been defined
• Limited number of aquifer parameter e.g. 1 value in each unit. • Suitable in layered / sedimentary rock • Number of cells relatively low
• Time of simulation relatively short
Topo: [ID, x, y, z] Unit : akuitard, impermeabel, K<10-9 m/detik Unit : akuitard, impermeabel, K<10-7 m/detik
Unit : akuifer, permeabel, K> 10-5 m/detik
Unit : akuitard, impermeabel, K<10-9 m/detik
Unit : akuitard, impermeabel, K<10-7 m/detik
Bottom Layer 1: [ID, x, y, z, K, S, θ]
Bottom Layer 2: [ID, x, y, z, K, S, θ] Bottom Layer 3: [ID, x, y, z, K, S, θ] Bottom Layer 3: [ID, x, y, z, K, S, θ] Bottom Layer 4: [ID, x, y, z, K, S, θ]
Bottom Layer 5: [ID, x, y, z, K, S, θ]
Bottom Layer 5: [ID, x, y, z, K, S, θ]
Physical Model (Database) Hole ID
ID
X
Y
Z
Bottom 1 Bottom 2 Bottom 3 Bottom 4 Bottom 5 Bottom n
Data (Physical Model) • Topografi X, Y, Z (ASCII file) atau (.DXF) 3D polyline
• Log Bor ID, X, Y, Z (ASCII) atau (.DXF) 3D polyline
• Hydrologic Features (River, Lake, Sea, Pond, Stream) in dxf
• Hydrogeological Parameter (K, S, θ,) dalam 3 D data (X, Y, Z, K, S, θ) atau (ID, Layer, K, S, θ)
Physical Model (Grid Cell Based) • stratigraphy unit is not a must
• Each cell unit is translated to valued grid • Each cell is has one value (K, S, θ and other parameter) • Block model of the grid would hydrostratigraphical pattern
depend on the structure • Adjustment and interpolation were made by Hydrogeologist • A lot of Number of cells
• Time of simulation is relatively long
Hydraulics Conductivity and RQD Higher RQD
Lower RQD
4,00E-06
Higher Hydraulic Conductivity
Hydraulic Conductivity (m/s)
3,50E-06
y = 8E-06x - 5E-06 3,00E-06 2,50E-06 2,00E-06 1,50E-06 1,00E-06 5,00E-07
Lower Hydraulic Conductivity
0,00E+00 0,5
0,6 Linear (RQD vs K)
0,7
0,8
0,9
RQD Factor = (1-RQD/100)
Poly. (RQD vs K)
1
Contoh Grid Cell Based Model Dimension Easting (column) Northing (row)
Min Max Min Max Min Elevation Max
403500 405500 306000 308000 400 1200
Distance
Grid Size
Grid Sum
2000
10
200
2000
10
200
800
10
80
10 x 10 x 10 meter
Total Block Grid
3,200,000
Contoh Grid Cell Based Data Bor ID GW-01
GW-02 GW-03
GW-04
GW-05
GW-06
CGW-07
CGW-08
X (m)
Y (m)
24300 24300 24300 24300 24300 24300
-1200 -1200 -1200 -1200 -1200 -1200
23000 23000 23000 23800 23800 23800 23800 23800 25000 25000 25000 25000 25000 25000 22500 22500 22500 22500 22500 22500 22500 23200 23200 23200 23200 22700
1000 1000 1000 0 0 0 0 0 -1100 -1100 -1100 -1100 -1100 -1100 -2300 -2300 -2300 -2300 -2300 -2300 -2300 -2000 -2000 -2000 -2000 -1300
Depth (m) 6.4 12.5 20.6 28.0 33.1 35.6 37.2 3.3 6.5 7.7 12.4 18.1 24.4 36.4 39.4 6 11.1 21.2 23.2 29.1 47.1 6.5 16.7 21.5 26 30.5 35.9 39.5 3.5 12.5 32.9 40.3 6.2
k (m/s)
log k
1.14× 10-5 5.08× 10-6 2.77× 10-4 1.81× 10-5 5.47× 10-4 1.82× 10-5 2.89× 10-4 1.50× 10-5 1.85× 10-5 8.22× 10-5 2.89× 10-5 3.39× 10-4 7.29× 10-5 1.25× 10-4 4.78× 10-4 2.08× 10-5 3.24× 10-5 7.41× 10-5 1.85× 10-5 1.50× 10-6 2.08× 10-5 1.10× 10-4 2.55× 10-5 3.88× 10-5 6.74× 10-5 2.35× 10-5 1.04× 10-4 5.65× 10-6 3.44× 10-5 7.13× 10-4 1.27× 10-4 2.69× 10-4 3.89× 10-5 -6
-4.943 -5.294 -3.557 -4.742 -3.262 -4.739 -3.539 -4.822 -4.732 -4.085 -4.538 -3.469 -4.137 -3.903 -3.320 -4.681 -4.489 -4.130 -4.732 -5.822 -4.681 -3.957 -4.593 -4.411 -4.171 -4.628 -3.981 -5.247 -4.464 -3.147 -3.895 -3.570 -4.409
Data (Physical Model) Grid Cell Based
Statistical summary of log transformed k value Number of data
95
Minimum value
-5.57
Mean
-4.40
First quartile
-4.74
Standard deviation
0.68
Median
-4.46
Coefficient of variation
-0.15
Third quartile
-3.40
Skewness
-0.20
Maximum value
-3.15
Data (Physical Model) Grid Cell Based
• Estimasi parameter Hidraulik di daerah yang tidak ada data • 3D/4D space-time distribution modeling
Geostatistic-ordinary kriging
m
Zˆ ( xk ) i Z ( xi ) i 1
Zˆ ( xk )
The spatial correlation dianalisis menggunakan semivariogram γ(h) n
ˆ(h ) ˆ(h j 1
ij
ik
1 n 2 ˆ (h) Z ( X ) Z ( X h) 2n i 1
Sill
Nugget (may be zero)
i
g
= Data Points = variogram model
Range
Lag or Separation Distance/data
)
3D Spatial Distribution
North
Co Located Co Kriging (CK) Grid kecil adalah RQD di batuan point/grid (size = 10 x 10) n1
n2
i 1
j 1
zˆ1 (x 0 ) λ1i z1 (x 1i ) λ2i z 2 (x 2 j ) Grid besar(merah) adalah data parameter hidraulik Size = 125 x 125
n1
i 1
1i
1,
n2
i 1
2i
0,
1 1 N (h) γ12 (h) z( z 2(x i )) (z( 1 xi h ) 1 x i )) (z 2(x i h ) 2 N (h) i 1
(|h|) 450 400 350 300 250 200
γˆ(h ) sph
150 100 50 0 0
1000
2000 |h|
3000
4000
3h h 3 C 0 C1 3 2a 2a C 0 C1 for h a
for 0 h a
3D Spatial Distribution Konduktivitas hidraulik (K)
Contoh Grid Cell Based Data dengan data struktur (RQD)
Conductivity Distribution (section view) A C
D
B
A
B
C
D
Conductivity Based on Lithology Distribution (section view) B
A
A
B
EXAMPLE • Case Study Underground Mine
Hydraulics Conductivity and RQD
Conductivity Distribution (section view) A C
D
B
A
B
C
D
Initial Head Condition (Based On 2011)
Mine Design N
N
N
Mining Drain Scenario (Assumption) • Mining Development assumption finished in two period, always open during mining activity. • Mine Production assumption finished in seven period. Closed every period with filling material, where filling material assumption is impermeable.
Drain Scenario (Assumption) File
Volume (m3)
Surface Area (m2)
Accumulatif Volume Opening (m3)
Dev1
243,342.00
190,504.00
243,342.00
Dev2
215,307.00
177,459.00
458,649.00
Mine1
244,681.00
92,227.00
703,330.00
Mine2
243,566.00
88,920.00
702,215.00
Mine3
246,932.00
109,066.00
705,581.00
Mine4
251,695.00
91,688.00
710,344.00
Mine5
241,731.00
98,695.00
700,380.00
Mine6
231,848.00
91,410.00
690,497.00
Mine7
234,107.00
120,843.00
692,756.00
Mining Drain Scenario (Assumption) Mining Development
Mine opening
Mine opening
Mine opening
Closed mining
Closed mining
Mine opening
Closed mining
Mine opening
Mine opening
Closed mining
Mine opening
Closed mining
Closed mining
Model Scenarios Model based on Conductivity Distribution (K values is not depend the lithology condition) 1. K values average 10-7 m/sec, rock condition is in low RQD mostly (worst scenario) 2. K values average 10-8 m/sec, rock condition is in moderate RQD mostly (moderate scenario) 3. K values average 10-9 m/sec, rock condition is in fair RQD mostly
MODEL TYPE- 1 K VALUES AVERAGE 10-7 M/SEC, ROCK CONDITION IS IN LOW RQD MOSTLY (WORST SCENARIO)
Model Calibration (Head Calibration on Steady State)
Observation Head (2011) vs Calculation Head (Model) – Steady State Condition
Model Calibration (Contour Head Calibration on Steady State)
Head contour Based On Observation Data (Env Field Measurements, 2011)
Head contour Based On Model Calculation (Steady State Condition)
Change of Groundwater Head and Flow (Plan View) Year: 1, 2, 3, 5,7 and 9
Change of Groundwater Head and Flow (Plan View) Year: 10, 20, 30, and 40
Head and Groundwater Flow (Section View) Year: 1, 2, 3, 5,7 and 9 N
N
N
N
N
N
Observation Well Location
2
4
1 3
Head vs Time (Observation Well) 880
Groundwater Head (m)
860
840
820
800
780
760 1
2
3
4
5
6
7
8
9
10
12
14
16
18
20
Year OBSERVATION 1/AInterpolated
OBSERVATION02/AInterpolated
OBSERVATION3/AInterpolated
OBSERVATION4/AInterpolated
22
24
26
28
30
Head Drawdown • Head Drawdown Radius Maximum: ± 139 m • Head Drawdown Depth Maximum: ± 127 m • Water table drawdown may not affected to unsaturated zone above the aquifer • All Drawdown will recover in ± 30 - 45 years after mine closure