Prosiding dapat diakses: http://eprints.uny.ac.id/view/subjects/snmpm2013.html
ISBN : 978 – 979 – 16353 – 9 – 4
PROSIDING SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA
”Penguatan Peran Matematika dan Pendidikan Matematika Untuk Indonesia yang Lebih Baik “
Yogyakarta, 9 November 2013
Penyelenggara : Jurusan Pendidikan Matematika FMIPA UNY
Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta 2013
PROSIDING SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA 9 November 2013 FMIPA Universitas Negeri Yogyakarta
Artikel‐artikel dalam prosiding ini telah dipresentasikan pada Seminar Nasional Matematika dan Pendidikan Matematika pada tanggal 9 November 2013 di Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta
Tim Penyunting Artikel Seminar : 1. 2. 3. 4. 5. 6. 7. 8. 9.
Prof. Dr. Rusgianto Prof. Dr. Marsigit Dr. Hartono Dr. Jailani Dr. Djamilah BW Dr. Ali Mahmudi Dr. Sugiman Dr. Agus Maman Abadi Dr. Dhoriva UW
Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta 2013
PROSIDING SEMINAR NASIONAL MATEMATIKA DAN PENDIDIKAN MATEMATIKA 2011 ”P Penguatan Peran Matematika dan Pendidikan Matematika Untuk Indonesia yang Lebih Baik “ 9 November 2013
Diselenggarakan oleh: Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta
Diterbitkan oleh Jurusan Pendidikan Matematika Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Negeri Yogyakarta Kampus Karangmalang, Sleman, Yogyakarta
Fakultas Matematika dan Ilmu Pengetahuan Alam UNY, 2013
Cetakan ke – 1 Terbitan Tahun 2013 Katalog dalam Terbitan (KDT) Seminar Nasional (2013 November 9: Yogyakarta) Prosiding/ Penyunting: Rusgianto [et.al] – Yogyakarta: FMIPA Editor : Nur Hadi W [et.al] – Yogyakarta: FMIPA Universitas Negeri Yogyakarta, 2013 ISBN : 978-979-16353-9-4
978-979-16353-9-4 Penyuntingan semua tulisan dalam prosiding ini dilakukan oleh Tim Penyunting Seminar Nasional MATEMATIKA DAN PENDIDIKAN MATEMATIKA 2013 dari Jurusan Pendidikan Matematika FMIPA UNY Prosiding dapat diakses: http://eprints.uny.ac.id/view/subjects/snmpm2013.html
KATA PENGANTAR Puji Syukur ke Hadirat Tuhan Yang Maha Esa atas segala Karunia dan Rahmat-Nya sehingga prosiding ini dapat diselesaikan. Prosiding ini merupakan kumpulan makalah dari peneliti, pemerhati dan dosen bidang Matematika dan Pendidikan
Matematika
berbagai
daerah
di
Indonesia.
Makalah
yang
dipresentasikan meliputi makalah utama dan makalah pendamping, terdiri dari makalah bidang Matematika (Statistika, Geometri, Aljabar, Analisis, Matematika Terapan, Komputer) dan Pendidikan Matematika. Seminar Nasional ini diikuti 168 makalah pendamping, dari berbagai Instansi di Indonesia, seperti UGM, UAD, Univ. Terbuka, UNS, IKIP PGRI Semarang, Univ.Tanjungpura, ITS, Univ. Sanata Dharma, UNS, UKSW, UPH, UNSOED, UNW Mataram, STKP Siliwangi Bandung, STKIP PGRI Pacitan, Univ. Muhammadiyah Surakarta, Univet Sukoharjo, UNAIR, STAIN Purwokerto, UNPATTI Ambon, Univ. Negeri Padang, Universitas Cendrawasih, UNESA, dan beberapa sekolah seperti SMA Negeri 3 Bantul, SMPN 4 Yogyakarta, SMPN 2 Wonosobo, SMPN 3 Salahutu, SMPN Monta, dan berbagai instansi lain Sesuai dengan tema seminar, semua makalah menyajikan berbagai ragam kajian teoritis maupun hasil penelitian matematika dan pembelajaran matematika yang diharapkan dapat memberikan kontribusi terhadap pembentukan karakter bangsa. Makalah yang dimuat dalam prosiding ini telah melalui tahap seleksi abstrak, yakni melalui proses review oleh tim yang nama anggotanya tercantum pada halaman lain di prosiding ini. Makalah dalam prosiding ini juga dipresentasikan dalam sidang paralel dalam seminar tanggal 9 November 2013
Pada kesempatan ini panitia mengucapkan terimakasih kepada semua pihak yang telah membantu dan mendukung penyelenggaraan seminar ini. Khususnya, kepada seluruh peserta seminar diucapkan terima kasih atas partisipasinya dan selamat berseminar, semoga bermanfaat.
Yogyakarta, 9 November 2013 Panitia
SAMBUTAN DEKAN FMIPAUNY Assalamu’alaikum Wr. Wb. Pertama- tama marilah kita panjatkan puji syukur ke hadirat Allah SWT yang telah melimpahkan berbagai kenikmatan kepada kita sekalian. Salah satu nikmat yang sekarang kita rasakan adalah nikmat kesehatan sehingga kita dapat menyelenggarakan seminar nasional ini. Selanjutnya perkenankan saya menyampaikan penghargaan dan ucapan terima kasih kepada Ketua Panitia beserta seluruh jajaran kepanitiaan Seminar Nasional Matematika dan Pendidikan Matematika Tahun 2013 yang telah mempersiapkan terselenggaranya seminar nasional ini. Secara khusus perkenankan pula saya sampaikan terima kasih kepada Bapak Prof. Ahmad Fauzy, Ph.D. dan Bapak Sukirman, M.Pd., yang telah berkenan menjadi pembicara utama pada seminar nasional ini. Kami juga mengucapkan banyak terima kasih kepada pengurus IndoMS Jateng dan DIY atas kerjasamanya untuk mensukseskan acara seminar ini. Tema pada seminar nasional kali ini adalah “Penguatan Peran Matematika dan Pendidikan Matematika untuk Indonesia yang Lebih Baik ”. Tema ini sangat sejalan dengan visi dan misi Universitas Negeri Yogyakarta, khususnya FMIPA UNY yang telah berkomitmen untuk menghasilkan tenaga kependidikan dan non kependidikan MIPA yang berkualitas unggul di dunia global. Harapan kami dengan adanya seminar ini adalah terjalinnya kerjasama yang baik antar dosen, peneliti, maupun guru di seluruh Indonesia untuk mewujudkan masyarakat Indonesia yang maju, sejahtera dan memiliki karakkter yang unggul. Seminar nasional ini harus mampu mendorong para dosen, guru dan praktisi bidang matematika dan pendidikan matematika untuk senantiasa melakukan inovasi demi kemajuan bangsa Indonesia. Akhirnya saya mengucapkan terima kasih atas partisipasinya dalam seminar yang diselenggarakan oleh Jurusan Pendidikan Matematika FMIPA UNY ini dengan harapan semoga seminar ini memberikan motivasi bagi para peserta untuk terus berkarya. Terimakasih. Selamat mengikuti seminar. Wassalamu’alaikum Wr. Wb.
SAMBUTAN KETUA PANITIA Assalaamu’alaikum wr. wb. 1. 2. 3. 4. 5.
Yth. Rektor Universitas Negeri Yogyakarta, Yth. Dekan dan Wakil Dekan FMIPA UNY, Yth. Para Pembicara Utama, Yth.Bapak/Ibu Tamu Undangan, Yth. Para pemakalah dan peserta seminar sekalian,
Pertama-tama marilah kita panjatkan puji syukur ke hadirat Tuhan Yang Maha Esa, atas segala karunia dan rahmatNya yang telah dilimpahkan kepada kita semua. Atas ijin-Nya pula, kita pada hari ini dapat berkumpul di sini, dalam keadaan sehat jasmani dan rohani, untuk mengikuti Seminar Nasional Matematika dan Pendidikan Matematika yang bertemakan penguatan peran Matematika dan Pendidikan Matematika untuk Indonesia yang lebih baik. Pada seminar ini, kami mengundang 2 pembicara utama yang akan menyampaikan makalah utama pada sidang pleno, yaitu Prof. Ahmad Fauzy, M.Si, Ph.D (Jurusan Statistika FMIPA Universitas Islam Indonesia) dan Drs. Sukirman, M.Pd ( Jurusan Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta. Atas nama panitia, kami mengucapkan terimakasih yang sebesar-besarnya atas kesediaan beliau semua hadir dalam acara ini. Kedua pembicara akan menyampaikan makalah terkait penerapan matematika dalam meyelesaikan masalah nyata yang dapat dijumpai dalam bidang industri, pendidikan dan pembelajaran matematika. Selain itu panitia juga telah menerima sekitar 168 makalah pendamping, dari berbagai instansi di Indonesia, seperti UGM, UAD, Universitas Terbuka, UNS, IKIP PGRI Semarang, Universitas Tanjungpura, ITS, Universitas Sanata Dharma, UNS, UKSW, UPH, UNSOED, UNW Mataram, STKP Siliwangi Bandung, STKIP PGRI Pacitan, Universitas Muhammadiyah Surakarta, Univet Sukoharjo, UNAIR, STAIN Purwokerto, UNPATTI Ambon, Universitas Negeri Padang, Universitas Cendrawasih, UNESA, dan beberapa sekolah seperti SMA Negeri 3 Bantul, SMPN 4 Yogyakarta, SMPN 2 Wonosobo, SMPN 3 Salahutu, SMPN Monta, dan berbagai instansi lain. Kegiatan Seminar Nasional Matematika dan Pendidikan Matematika tahun 2013 ini tidak dapat diselengggarakan dengan baik tanpa bantuan dari berbagai pihak. Oleh karena itu, kami mengucapkan terimakasih yang tak terkira kepada Bapak Rektor dan jajarannya selaku Pimpinan di Universitas Negeri Yogyakarta, Dekan FMIPA UNY atas dorongan, dukungan dan fasilitas yang disediakan. Terimakasih kepada para sponsor dan semua pihak yang tidak dapat kami sebutkan satu per satu. Ucapan terimakasih juga kami sampaikan kepada teman-teman panitia yang telah bekerja keras demi suksesnya penyelenggaraan seminar ini. Kami juga mengucapkan terimakasih kepada Bapak, Ibu dan Saudara peserta yang telah berkenan mengikuti seminar ini hingga selesai nantinya. Atas nama panitia, kami mohon maaf yang sebesar-besarnya jika dalam kegiatan ini terdapat kesalahan, kekurangan maupun hal-hal yang tidak/kurang berkenan di hati Bapak, Ibu dan Saudara sekalian. Semoga seminar ini dapat memberikan sumbangan dalam memajukan matematika dan pendidikan matematika untuk mewujudkan Indonesia yang lebih baik. SELAMAT BERSEMINAR!! Wassalamuallaikum wr. wb ,
DAFTAR ISI Cover Halaman Judul Halaman Penyunting Halaman Penerbitan Kata Pengantar Sambutan Dekan FMIPA Sambutan Ketua Panitia Daftar Isi Makalah Utama Penguatan Peran Matematika Dan Pendidikan Matematika Untuk Indonesia Yang Lebih Baik ( Akhmad Fauzy, Program Studi Statistika, FMIPA Universitas Islam Indonesia) Makalah Bidang Pendidikan Matematika Kode Nama Instansi 1 1,2 P–1 Abdul Mujib , Erik Universitas 2 Suparingga Muslim Nusantara Al-Washliyah P–2 Ade Kumalasari, Pendidikan Rizky Oktora Pascasarjana Prihadini Eka Putri Universitas Negeri Yogyakarta P–3 Adhetia Martyanti Prodi Pendidikan Matematika, PPS UNY P–4 Adi ASMAra Prodi Pendidikan Matematika FKIP UMB P–5 Agisna Anindya Pendidikan Putri Matematika, Program Pascasarjana Universitas Negeri Yogyakarta P–6 Agustinus Sroyer FKIP Universitas Cenderawasih Jayapura P–7 Ahmad Dzulfikar Sekolah Pascasarjana Universitas Pendidikan Indonesia P–8 Neneng Tita Rosita STKIP Sebelas April Sumedang
P– 9
P – 10
Ali Mahmudi, Sahid, Himmawati P.L., Kuswari Hernawati Andri Suryana
P - 11
Anton Jaelani. ,
1
MU – 1
Judul Upaya Mengatasi Kesulitan Siswa Dalam Operasi Perkalian Dengan Metode Latis
Hal MP - 1
Kesulitan Belajar Matematika Siswa Ditinjau Dari Segi Kemampuan Koneksi Matematika
MP – 7
Membangun Self-Cofidence Siswa Dalam Pembelajaran Matematika Dengan Pendekatan Problem Solving Kecakapan Matematis Siswa Melalui Model Pembelajaran Problem Posing
MP – 17
Meningkatkan Aktivitas Dan Hasil Belajar Matematika Siswa Kelas VII C SMP Anggrek Banjarmasin Melalui Model Pembelajaran Kooperatif Tipe Student Teams Achievement Divisions (Stad) Dan Scramble Penalaran Kuantitatif (Quantitative Reasoning) Dalam Pemecahan Masalah Matematika Studi Literatur: Pembelajaran Kooperatif Dalam Mengatasi Kecemasan Matematika Dan Mengembangkan Self Efficacy Matematis Siswa
MP - 29
MP – 55
Jurusan Pendidikan Matematika FMIPA UNY
Pendekatan Pembelajaran Matematika Realistik Untuk Meningkatkan Kemampuan Pemecahan Masalah Matematis Siswa SD Interactive Student’s Book Berbasis ICT Untuk Mendukung Aktivitas Eksplorasi Konsep-Konsep Geometri
Universitas Indraprasta PGRI Jakarta 1,2, 3 Universitas
Penerapan Model Pembelajaran Pace Dalam Meningkatkan Kemampuan Membuktikan Matematis Aktivitas Kerjasama Mahasiswa Dalam
MP – 71
MP - 23
MP – 39
MP – 45
MP – 63
MP – 79
2
Kusno , Fitrianto 3 Eko Subekti
Muhammadiyah Purwokerto
P – 12
Arief Budi 1 Wicaksono 2 M. Saufi
2
P – 13
Arjudin
P – 14
Asep Ikin Sugandi
P – 15
Astri Wahyuni, Ayu Aji Wedaring Tias, Budiman Sani
P – 16
Budi Manfaat Zara Zahra Anasha
P – 17
Carolin Olivia , 2 Pinta Deniyanti , 3 Meiliasari Christina Sri Purwanti
Program Pascasarjana Universitas Negeri Yogyakarta Jurusan Tadris Matematika Fakultas Tarbiyah IAIN Syekh Nurjati Cirebon 1,2,3 Jurusan Matematika FMIPA UNJ SMA Negeri 3 Bantul
P – 19
Christina Sri Purwanti
SMA Negeri 3 Bantul
P – 20
Darmadi , Agung 2) Lukito , Ketut 3) Budayasa
P – 21
Demitra
P – 22
Dian Andarwati , 2) Kuswari Hernawati
P – 18
1
1
1)
1)
Pendidikan Matematika, Program Pascasarjana Universitas Negeri Yogyakarta Mahasiswa S3 Pendidikan Matematika Universitas Negeri Malang STKIP Siliwangi Bandung
1)
Mahasiswa Program Pascasarjana 2) UNESA; Staf Pengajar Program Pascasarjana 3) UNESA; Staf Pengajar Program Pascasarjana UNESA Program Studi Pendidikan Matematika FKIP Universitas Palangkaraya 1), 2) Jurusan Pendidikan Matematika,
Pembelajaran Kooperatif Mata Kuliah Dasar Proses Pembelajaran Matematika Melalui Lesson Study Mengelola Kecemasan Siswa Dalam Pembelajaran Matematika
MP – 89
Kajian Buku Siswa Mata Pelajaran Matematika Kelas VII Bab 2 Dalam Kurikulum 2013
MP – 95
Pendekatan Kontektual Sebagai Pendekatan Dalam Pembelajaran Matematik Yang Humanis Dalam Meningkatkan Kemandirian Belajar Peran Etnomatematika Dalam Membangun Karakter Bangsa
MP - 103
Analisis Kemampuan Berpikir Kritis Matematik Siswa Dengan Menggunakan Graded Response Models (GRM)
MP - 119
Mengembangkan Pemahaman Relasional Siswa Mengenai Luas Bangun Datar Segiempat Dengan Pendekatan PMRI Meningkatkan Hasil Belajar Matematika Materi Fungsi Komposisi Dan Fungsi Invers Menggunakan Pembelajaran Model Jigsaw Pada Siswa Kelas XI IPS SMA Negeri 3 Bantul Penggunaan Media Modul Pembelajaran Untuk Meningkatkan Efektivitas Pembelajaran Persamaan Lingkaran Bagi Siswa Kelas XI/IPA SMA Negeri 3 Bantul Analisis Kesulitan Berpikir Visual Dalam Memahami Definisi Formal Pada Barisan Bilangan Real
MP – 125
Pengembangan Modul Statistika Dasar Untuk Mahasiswa PG-MIPA-BI
MP - 155
Pengembangan Lembar Kegiatan Siswa (LKS) Berbasis Pendekatan Penemuan Terbimbing Berbantuangeogebra Untuk
MP – 165
MP - 113
MP - 133
MP – 139
MP - 145
FMIPA UNY P – 23
Doni Setiyo Ardiyanto
SMP Negeri 2 Ngablak Kabupaten Magelang
P – 24
FPMIPA IKIP PGRI Semarang
Rasiman
P – 25
Edy Tandililing
Jurusan PMIPA FKIP UNTAN
P – 26
Edy Tandililing
PMIPA FKIP UNTAN Pontianak
P – 27
Dwi Astuti, Trisnawati
P – 28
Edi Irawan
P – 29
Eka Kasah Gordah , 2 Reni Astuti
Pendidikan Matematika PPS UNY Program Studi Pendidikan Matematika STKIP PGRI Pacitan 1,2 STKIP PGRI Pontianak
P – 30
Ekasatya Aldila 1 Afriansyah Elly Arliani dan Kana Hidayati
P – 31
1
1
STKIP Garut
Jurusan Pendidikan Matematika FMIPA UNY
P – 32
Ema Butsi Prihastari
P - 33
Endro Wibowo
SMP Negeri 2 Wonosobo
P – 34
Ernawati
Program Studi Pendidikan Matematika Pascasarjana UNY
P – 35
Faaso Ndraha
SMAN 3 Gunungsitoli, Kota Gunungsitoli,
Membelajarkan Topik Trigonometri Pada Siswa Kelas X SMA Pembelajaran Matematika Dengan Pendekatan Kontekstual Berbantuan Hands On Problem Solving Untuk Meningkatkan Rasa Ingin Tahu Dan Prestasi Belajar Siswa Proses Berpikir Kritis Siswa SMA Dalam Menyelesaikan Masalah Matematika Bagi Siswa Dengan Kemampuan Matematika Rendah Pengembangan Pembelajaran Matematika Sekolah Dengan Pendekatan Etnomatematika Berbasis Budaya Lokal Sebagai Upaya Untuk Meningkatkan Kualitas Pembelajaran Matematika Di Sekolah Pengembangan Kemampuan Koneksi Matematissiswa Melalui Pendekatan Advokasi Dengan Penyajian Masalah Open-Ended Pada Pembelajaran Matematika Pengembangan Bahan Ajar Matematika Untuk SMPIN/B Kelas IX Berdasarkan Standar Isi Analisis Kecenderungan Penelitian Skripsi Mahasiswa Program Studi Pendidikan Matematika STKIP PGRI Pacitan Tahun Akademik 2012/2013 Meningkatkan Kemampuan Komunikasi Matematis Mahasiswa Melalui Pengembangan Bahan Ajar Geometri Dasar Berbasis Model Reciprocal Teaching Di STKIPPGRI Pontianak Penjumlahan Bilangan Desimal Melalui Permainan Roda Desimal Penerapan Item Mapping Berdasarkan Teori Respons Butir Dalam Pengukuran Pendidikan Matematika Analisis Pembentukan Karakter Cinta Lingkungan Pada Materi Geometri Di Laboratorium Alam Implementasi Contextual Teaching And Learning Approach Dan Model Cooperative Learning Number Group Presentation untuk Meningkatkan Sikap Dan Prestasi Belajar Matematika Di Kelas IX-H SMP Negeri 2 Wonosobo Pada Semester I Tahun Pelajaran 2013/2014 Implementasi Model Pembelajaran Kooperatif Tipe Make A Match Pada Pembelajaran Matematika Di Kelas X Administrasi Perkantoran SMKN 1 Banjarmasin Tahun Pelajaran 2011/2012 Proses Berpikir Siswa SMP Mengonstruksi Bukti Informal Geometri Sebagai Prosep
MP – 175
MP - 185
MP - 193
MP - 203
MP – 211
MP - 219
MP -227
MP -233 MP - 241
MP – 249
MP - 255
MP – 267
MP – 275
P – 36
Gadis Arniyati Athar
P – 37
Gregorius Sebo 1 2 Bito , Sugiman
P – 38
Hongki Julie , St. 2 Suwarsono , and 3 Dwi Juniati
P - 39
Ida Nurmila Isandespha
P – 40 P – 41
Ifada Novikasari Ika Kurniasari
P – 42
Ilham Rizkianto
P – 43
Jackson Pasini Mairing
P – 44
Januar Budi 1 Asmari , Erika Laras 2 Astutiningtyas , 3 Agus Efendi Joko Bekti 1 Haryono , Herry 2 Agus Susanto Karim
1
Sumatera Utara STAI Ar-Ridho Bagansiapiapi Rokan Hilir 1
FKIP Universitas 2 Flores Ende-NTT, FMIPA UNY 1 ,2
Sanata Dharma University, 3 Surabaya State University PGSD Universitas Ahmad Dahlan Yogyakarta
P – 47
Kasman Samin Kamsurya
STAIN Purwokerto Prodi Pendidikan Matematika Jurusan Matematika Unesa FMIPA Universitas Negeri Yogyakarta Prodi Pendidikan Matematika FKIP Universitas Palangka Raya 1,2,3 Universitas Veteran Bangun Nusantara Sukoharjo Universitas Veteran Bangun Nusantara Sukoharjo FKIP Universitas Lambung Mangkurat Banjarmasin Mahasiswa S3 Pendidikan Matematika Universitas Negeri Surabaya SMP Negeri 3 Salahutu
P – 48
La Misu dan Rosdiana
JURUSAN PMIPA UHO KENDARI
P – 49
La Moma
FKIP UNPATTI Ambon
P – 45
P – 46
Penerapan Pendekatan Pembelajaran Pendidikan Matematika Realistik (PMR) Dikelas 7 SMP Islamar-Ridha Bagansiapiapi Rokan Hilir Riau Investigasi Perkembangan Belajar Siswa Kelas IV Sekolah Dasar Di Kabupaten Ngada, NTT Dalam Operasi Penjumlahan Dan Pengurangan Pecahan Bahan Belajar Siswa Untuk Siklus Kedua Pengembangan Pembelajaran Pecahan Di Kelas V Sekolah Dasar Dengan Pendekatan Matematika Realistik Penggunaan Asesmen Portofolio Dalam Pembelajaran Matematika Sekolah Dasar Untuk Meningkatkan Prestasi Belajar Dan Sikap Siswa Terhadap Matematika Semiotic Logical Approach Identifikasi Kesalahan Siswa Dalam Menyelesaikan Soal Geometri Materi Dimensi Tiga Kelas XI IPA SMA
MP – 285
Norma Sosiomatematik Dalam Kelas Matematika Pembelajaran Dengan Komputer: Dua Sisi Mata Uang
MP – 331
Pembelajaran Direct Instruction Dengan Media Lagu Terhadap Prestasi Belajar Matematika Di SD Se-Kecamatan Laweyan Meningkatkan Aktifitas Mahasiswa Melalui Pembelajaran Berbasis Masalah Mata Kuliah Struktur Aljabar Berpikir Kreatif Siswa Membuat Koneksi Matematis Dalam Pemecahan Masalah
MP – 349
Peningkatan Hasil Belajar Siswa Pada Materi Operasi Bilangan Bulat Melalui Pendekatan Pembelajaran Matematika Realistik Di Kelas VII-1 SMP Negeri 3 Salahutu Pengembangan Teori Pembelajaran Perilaku Dalam Kaitannya Dengan Kemampuan Pemecahan Masalah Matematik Siswa Di SMA Menumbuhkan Soft Skills Siswa Dalam Pembelajaran Matematika Melalui Pembelajaran Generatif
MP – 371
MP – 293
MP – 305
MP - 313
MP - 321 MP - 327
MP – 341
MP – 355
MP - 363
MP – 379
MP – 387
P – 50
Laila Hayati
P – 51
Lia Ardian Sari
P – 52
Lilik Hidayati , 2 Ripai
P – 53
Masduki , Marlina 2) Ratna Subandriah , Dhiki Yudha 3) Irawan , Agus 4) Prihantoro 1 M.F. Atsnan , Rahmita Yuliana 2 Gazali
P – 54
P – 55
P – 56
Program Studi Pendidikan Matematika Universitas Mataram Universitas Pendidikan Indonesia
1
Diagnosis Kesalahan Siswa Sekolah Menengah Pertama Dalam Menyelesaikan Masalah Faktorisasi Bentuk Aljabar Sistem Komputasi Blackbox Untuk Optimasi Pengkoreksian Multi Tipe Dan Teknik Skorsing Soal Obyektif
MP – 407
Prodi Pendidikan Matematika FKIP UMS
Level Kognitif Soal-Soal Buku Pelajaran Matematika Smp
MP – 421
Mahasiswa Pendidikan Matematika Pasca Sarjana UNY
Penerapan Pendekatan Scientific Dalam Pembelajaran Matematika SMP Kelas VII Materi Bilangan (Pecahan)
MP – 429
-
Menumbuhkan Kemampuan Berpikir Kreatif Dan Minat Belajar Matematika Melalui Pendekatan Problem Posing Karakteristik Berpikir Intuitif Siswa Dalam Menyelesaikan Masalah Matematika
MP - 437
Strategi-Strategi Yang Berbeda Dalam Menyelesaikan Masalah Pengurangan Menggunakan Garis Bilangan Pengembangan Website Berorientasi Brain-Based Learning Sebagai Upaya Peningkatan Kemampuan Pemecahan Masalah Matematis Mahasiswa Mengembangkan Kemampuan Penalaran Spasial Siswa Smp Pada Konsep Volume Dan Luas Permukaan Dengan Pendekatan Pendidikan Matematika Realistik Indonesia
MP – 453
Asesmen Formatif Informal Dalam Pembelajaran Matematika
MP - 473
Mengembangkan Karakter Siswa Dalam Pembelajaran Matematika Dengan Pendekatan Kontekstual
MP – 479
Pengembangan Pembelajaran Matematika Model Eliciting Activities Untuk Meningkatkan Penguasaan Konsep Matematika Siswa Pada Materi Segitiga Kelas VII
MP – 487
FMIPA UNW Mataram
1
Mukti Sintawati , Ginanjar 2 Abdurrahman Muniri
P – 57
Nila Mareta Murdiyani
P – 58
Nuriana Rachmani Dewi (Nino Adhi)
P – 59
Nurlatifah , Aris Hadiyan 2 Wijaksana , 3 Wardani Rahayu
P – 60
R. Rosnawati
P – 61
Rahmatya Nurmeidina
P – 62
Ririn Widiyasari
1
MP – 397
1,2
1)
1
Pembelajaran Pendidikan Matematika Realistik Untuk Mengembangkan Kemampuan Berpikir Aljabar Siswa
Program Doktor Pendidikan Matematika Universitas Negeri Surabaya Universitas Negeri Yogyakarta Jurusan Matematika FMIPA Universitas Negeri Semarang 1 Universitas Negeri Jakarta, 2 Universitas Negeri Jakarta, 3 Universitas Negeri Jakarta 1 Jurusan Pendidikan Matematika FMIPA UNY Mahasiswa Pendidikan Matematika, Pascasarjana UNY Fakultas Ilmu Pendidikan, Jurusan Matematika Universitas
MP – 413
MP – 443
MP – 457
MP - 465
Muhammadiyah Jakarta Program Studi Pendidikan Matematika FKIP UMB Prodi Pendidikan Matematika FKIP UMB
P – 63
Risnanosanti
P – 64
Ristontowi
P – 65
Rondha , Ratna 2 Christianingrum
1,2
P – 66
Rosalia Hera Rahayuningrum
SMP Negeri 2 Imogiri Bantul Yogyakarta
P – 67
Saifan Sidiq 1 Abdullah , 2 Supandi , 3 Nizaruddin Siska Candra Ningsih
1,2,3
P – 68
1
Pendidikan Matematika IKIP PGRI Semarang
1
P – 69
Sri Eka Wahyuni , 2 Pinta Deniyanti , 3 Meiliasari
P -70
Sri Subarinah
P – 71
Sri Sudarini S.pd
P – 72
Sri Supiyati , 2 Muhammad Halqi
P – 73
Sudi Prayitno , ST. 2 Suwarsono , Tatag 3 Yuli Eko Siswono
P – 74
Supandi , Widya 2 Kusumaningsih , Lilik 3 Ariyanto
1
1
1
Universitas Pelita Harapan
Program Studi Pendidikan Matematika FKIP Universitas PGRI Yogyakarta 1,2,3 Jurusan Matematika FMIPA UNJ Dosen Prodi Pendidikan Matematika, FKIP Universitas Mataram Mahasiswa S3 Pendidikan Matematika Universitas Negeri Surabaya SMP Negeri 4 Yogyakarta 1,2 STKIP Hamzanwadi Selong
1
FKIP Univesitas 2 Mataram, FKIP Univesitas Sanata 3 Dharma, FMIPA Universitas Negeri Surabaya 1,2,3 Pendidikan Matematika Fpmipa IKIP PGRI Semarang
Kemandirian Belajar Dan Kemampuan Pemecahan Masalah Matematis Mahasiswa Program Studi Pendidikan Matematika Kemampuan Spasial Siswa Melalui Pendekatan Pendidikan Matematika Realistik Indonesia Dengan Media Geogebra Faktor-Faktor Yang Mempengaruhi Rasa Takut Akan Kegagalan Dalam Diri Mahasiswa Meningkatkan Kemampuan Pemecahan Masalah Matematika Pada Materi Bangun Ruang Sisi Lengkung Dengan Metode Penemuan Terbimbing Siswa Kelas Ixf Smp Negeri 2 Imogiri Bantul Yogyakarta Pengembangan Perangkat Pembelajaran Berbasis Konstruktivisme Menggunakan CD Interaktif Terhadap Karakter Siswa SMP Upaya Meningkatkan Pemahaman Konsep Mahasiswa Pada Mata Kuliah Metode Numerik Dengan Pendekatan Creative Problem Solving
MP – 493
Mengembangkan Kemampuan Berpikir Geometris Pada Pokok Bahasan Segiempat Dengan Teori Van Hiele Dan Pendekatan PMRIi Profil Berpikir Kreatif Siswa Dalam Memecahkan Masalah Tipe Investigasi Matematik Ditinjau Dari Perbedaan Gender
MP - 533
Pendidikan Moral Matematika
MP – 549
Pengembangan Perangkat Pembelajaran Matematika SMP Dengan Model Pembelajaran Matematika Realistik Di Kabupaten Lombok Timur Komunikasi Matematis Siswa SMP Dalam Menyelesaikan Soal Matematika Berjenjang Ditinjau Dari Perbedaan Gender
MP – 557
Pengembangan Perangkat Pembelajaran Matematika Dengan Strategi Think Talk Write Berbasis Blended Learning Untuk Meningkatkan Kemampuan Menulis
MP – 573
MP – 499
MP – 505
MP – 509
MP – 517
MP – 525
MP - 541
MP – 565
Matematik Siswa SMP P – 75
Suparni
Fakultas Sains dan Teknologi Uin Sunan Kalijaga Yogyakarta
P – 76
Suryo Widodo
Universitas Nusantara PGRIi Kediri
P – 77
Sutrisno , Supandi , Widya 3 Kusumaningsih , Lilik 4 Ariyanto Syukrul Hamdi
P – 78
1
2
1
Pengembangan Kemampuan Berpikir Kritis Mahasiswa Program Studi Pendidikan Matematika Melalui Pendekatan Integrasi Interkoneksi Variabel-Variabel TersembUNYi Dalam Guru Matematika Kreatif
MP – 579
Pendidikan Matematika Fpmipa Ikip Pgri Semarang
Pengembangan Perangkat Pembelajaran Berkarakter Pada Matakuliah Operasi Riset Berbasis ICT
MP – 595
STKIP Hamzanwadi Selong
Menguatkan Keyakinan Diri Siswa Dalam Pembelajaran Matematika Melalui Pendekatan Multi-Modal Strategy (MMS) Upaya Meningkatkan Kemampuan Komunikasi Matematis Siswa Kelas Vii Dalam Pembelajaran Matematika Dengan Pendekatan Realistic Mathematics Education (RME) Di SMP Negeri 1 Muntilan Pembelajaran Matematika Berbasis Multimedia Interaktif Mata Kuliah Teori Bilangan Dengan Model Reog Untuk Meningkatkan Konsep Dan Efikasi Diri Mahasiswa
MP – 601
1,2,3,4
1,2
P – 79
Trisnawati, S.pd. , 2 Dwi Astuti, S.pd.si
P – 80
Urip Tisngati , 2 Khoirul Qudsiyah
1,2
P – 81
Usep Kosasih
Prodi Pendidikan Matematika, Universitas Islam Nusantara, Bandung
Karakteristik Bahan Ajar Matematika Untuk Membangun Karakter
MP – 625
P – 82
Wanda Nugroho Yanuarto
Prodi Pendidikan Matematika Program PPS UNY
MP – 629
P – 83
Yandri Soeyono
Universitas Negeri Yogyakarta
Perbedaan Konsep Matematika Dan Pengetahuan Ditinjau Dari Ras Dan Gender Manusia Mengasah Kemampuan Berpikir Kritis Dan Kreatif Siswa Melalui Bahan Ajar Matematika Dengan Pendekatan OpenEnded
P – 84
Yoppy Wahyu Purnomo
FKIP Universitas Muhammadiyah Prof. Dr. Hamka
MP – 649
P – 85
Yoppy Wahyu Purnomo
FKIP Universitas Muhammadiyah Prof. Dr. Hamka
P – 86
Yuli Sulistyowati
Prodi Pendidikan Matematika Program PPS UNY
Keefektifan Penilaian Formatif Terhadap Hasil Belajar Matematika Mahasiswa Ditinjau Dari Motivasi Belajar Komputasi Mental Untuk Mendukung Lancar Berhitung Operasi Penjumlahan Dan Pengurangan Pada Siswa Sekolah Dasar Pengembangan Media Pembelajaran Interaktif Dengan Pendekatan Contextual Teaching And Learning (Ctl) Pada Materi Volume Bangun Ruang Kelas Viii
P – 87
Yulia Linguistika , 2 Endang Listyani , 3 Heri Retnawati
1, 2,3
Prodi Pendidikan Matematika Program PPS UNY
Peta Penguasaan Materi Matematika Guru Sma Dan Hubungannya Dengan Prestasi Belajar Siswa
MP – 671
P – 88
Zuli Nuraeni, S.pd
Prodi Pendidikan Matematika Program PPS UNY
Permainan Anak Untuk Matematika
MP – 683
1
1
Prodi Pendidikan Matematika Program PPS UNY
MP – 587
STKIP PGRI Pacitan
MP – 609
MP – 617
MP – 639
MP – 657
MP – 663
P – 89
Zuraidah , Salmah 2 Unaizatin
1
P – 90
Djamilah Bondan 1 Widjajanti , Fitriana 2 Yuli Saptaningtyas , 3 Dwi Lestari
1,2,3
P – 91
Kana Hidayati , Elly 2 Arliani
P – 92
Kuswari Hernawati , 2 Ali Mahmudi , Himmawati Puji 3 Lestari 1 Sugiyono , 2 Sugiman , Himmawati Puji 3 Lestari
P – 93
P – 94
1
2
Jurusan Pendidikan Matematika Fmipa UNY
1
1,2
1
Faaso Ndraha
STAIN Kediri, SMKN 6 Malang
Jurusan Pendidikan Matematika FMIPA UNY 1,2,3,4 Jurusan Pendidikan Matematika FMIPA UNY 1,2,3
Jurusan Pendidikan Matematika Fmipa UNY
Guru SMAN 3 Gunungsitoli, Kota Gunungsitoli, Sumatera Utara/ Mahasiswa S3 Pendidikan Matematika Pascasarjana Universitas Negeri Surabaya Makalah Bidang Analisis dan Aljabar A–1 Anita Nur Jurusan 1 Muslimah Matematika FMIPA 2 Siswanto UNS Purnami 3 Widyaningsih A–2 Evi Yuliza Jurusan Matematika FMIPA UNSRI A–3 Fitriana Yuli Jurusan Pendidikan Saptaningtyas Matematika FMIPA UNY 1 A–4 Harry Nugroho , Program Studi 2 Effa Marta R , Matematika 3 Ari Wardayani Universitas Jenderal Soedirman A–5 M. Andy Rudhito Program Studi Pendidikan Matematika FKIP Universitas Sanata Dharma Kampus III USD Paingan
Aplikasi Metode Pembelajaran Kooperatif Model Jigsaw Untuk Materi Sistem Bilangan Pada Siswa Kelas XII RPL 3 SMK Negeri 6 Malang Tahun Pelajaran 2012/2013
MP – 691
Efektivitas Bahan Ajar Matematika Diskret Berbasis Representasi Multipel Ditinjau Dari Kemampuan Komunikasi Dan Koneksi Matematis Mahasiswa Calon Guru Matematika Model-Model Aligment Antara Penilaian Dan Kurikulum Dalam Pembelajaran Matematika
MP – 699
Pengembangan Perangkat Pembelajaran Geometri Berbasis ICT Untuk Meningkatkan Komunikasi Matematis Mahasiswa Upaya Meningkatkan Kemampuan Mathematical Communication Mahasiswa Kelas Internasional Pada Perkuliahan Analytic Geometry Dengan Pendekatan Open Ended Nilai Strategis Memandang Bukti Geometri Sebagai Prosep Dalam Pembelajaran
MP – 713
Sistem Linear Dalam Aljabar Maks-Plus
MA – 1
Sifat-Sifat Similar Semu Atas Ring Reguler Stable Diperumum
MA – 9
Optimasi Pengelolaan Pariwisata Di Diy Dengan Menggunakan Metode Campbell Dudeck Smith (CDS) Polinomial atas aljabar max-plus Interval
MA – 17
Sistem Persamaan Linear Min-Plus Dan Penerapannya Pada Masalah Lintasan Terpendek
MA – 29
MP – 701
MP – 719
MP – 727
MA – 23
A-6
M.V.Any Herawati
A–7
Siswanto , 2 Aditya NR , 3 Supriyadi W 1 Solikhin 2 YD. Sumanto 3 Siti Khabibah
A–8
A–9
1
Yushaila Nur Sajida 1 W. , Dhoriva 2 Urwatul W. , Agus 3 Maman Abadi
Makalah Bidang Geometri G-1 Dwi Pungkas 1 Haruadi Idha 2 Sihwaningrum 3 Ari Wardayani
G-2
Husnul Khotimah
Makalah Bidang Statistika S-1 Adi Setiawan
S-2
Adi Setiawan
S-3
Agus Budhi 1 Santosa , Nur 2 3 iriawan , Seiawan , 4 Mohammad Dokhi 1 Astutik, S. , 2 3 Solimun , Widandi
S-4
Maguwoharjo Yogyakarta Program Studi Matematika Universitas Sanata Dharma Jurusan Matematika FMIPA UNS Jurusan Matematika, Fakultas Sains dan Matematika, Universitas Diponegoro 1 Program Studi Matematika FMIPA UNY 2,3 Jurusan Pendidikan Matematika FMIPA UNY
Jumlah Grup Bagian dalam Darab Langsung Grup Siklis Berhingga
MA – 35
Kebebasan Linear Dalam Aljabar MaxPlus Interval
MA – 45
Locally dan Globally Small Riemann Sums Fungsi Terintegral Henstock-Dunford pada [a,b]
MA – 55
Klasifikasi Fuzzy Untuk Diagnosa Kanker Serviks
MA – 65
Program Studi Matematika Universitas Jenderal Soedirman
Segitiga Siku-Siku pada Trigonometri Rasional di lapangan Himpunan Bilangan Riil dan Lapangan Himpunan Bilangan Bulat Modulo 17
MG - 1
Pendidikan Matematika, Universitas Negeri Yogyakarata
Meningkatkan Hasil Belajar Geometri Dengan Teori Van Hiele
MG - 9
Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana, Jl. Diponegoro 52-60 Salatiga 50711 Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana, Jl. Diponegoro 52-60 Salatiga 50711 1,2,3 Jurusan Statistika FMIPA4 ITS, STIS
Karakteristik Inflasi Bulanan Kota-Kota di Indonesia Tahun 2009 – 2013
MS – 1
Inferensi Parameter Simpangan Baku Populasi Normal dengan Metode Bayesian Obyektif
MS – 9
Pemodelan Seemingly Unrelated Regression dengan Pendekatan Bayesian pada Sektor Utama di Jawa Timur
MS – 17
1,2
Identifikasi Data Rata-Rata Curah Hujan per-jam di Beberapa Lokasi
MS – 23
Program Studi Statistika, Jurusan
1
S-5
Budi Pratikno , Yuliatri Wirawidya 2 Haryono
S-6
Dadan Kusnandar , Muhlasah 2 Novitasari Mara , 3 Yundari , Neva 4 Satyahadewi , Naomi Nessyana 5 Debataraja 1 Dadan Kusnandar , Naomi Nessyana 2 Debataraja
S-7
S-8
Matematika FMIPA, Universitas Brawijaya, Malang, 3 Jurusan Teknik Pengairan, Fakultas Teknik, Universitas Brawijaya, Malang Jurusan MIPA Matematika Unsoed Purwokerto
Pengujian Intercep untuk Tests Terkait Non-Sample Prior Information pada Hipotesis Satu Arah pada Regresi Linier Sederhana Ketika Variansi Diketahui Mengatasi Missing Data Hasil Pengukuran Satelit Altimetri Topex, Jason 1 dan Jason 2 dengan Metode Kalman Filter
MS – 29
Penerapan Analisis Komponen Utama dalam Menilai Model Pembelajaran di Sekolah
MS – 41
Dian Cahyawati S.,
Jurusan Matematika, FMIPA Universitas Tanjungpura Jurusan
Aplikasi Metode Chaid dalam
MS – 47
Susi Yohana, Putera
Matematika FMIPA
Menganalisis Keterkaitan Faktor Risiko
B.J. Bangun
Universitas
Lama Penyelesaian Skripsi Mahasiswa
Sriwijaya
(Studi Kasus di Jurusan Matematika
1
1,2,3,4,5
Jurusan , Matematika FMIPA Universitas Tanjungpura,
1,2
MS – 37
Fmipa Universitas Sriwijaya) S-9
1
Djoni Hatidja , Sri 2
H. Abdullah , dan 3
Deiby T. Salaki
1,2,3
Pergeseran Pangsa Pasar Kartu Seluler
Matematika FMIPA
Pra Bayar Gsm Menggunakan Analisis
Unsrat, Manado
Rantai Markov
Program Studi
MS – 55
(Studi Kasus: Mahasiswa Fmipa Unsrat Manado) S - 10
1
Eka Septiana ,
1,2
Aplikasi Metode Full Information
Retno Subekti,
Pendidikan
Maximum Likelihood (Fiml) pada
Matematika FMIPA
Penyelesaian Sistem Persamaan Simultan
UNY
(Studi Kasus : Data Stok Uang, PDRB, dan
M.Sc
2
Jurusan
MS – 63
Konsumsi Rumah Tangga di DIY) S - 11
1
Endang Pudji 1
Purwanti , Ferihan 2
Pilarian ,
Politeknik
Perkapan Negeri Surabaya,
2
PT.Alhas Jaya
Optimasi Parameter Proses Pemotongan
MS – 73
Stainless Steel Sus 304 untuk Kekasaran Permukaan dengan Metode Response Surface
Group S - 12
1
1
Pengelompokkan Stasiun Pos Hujan
2
Program Studi
Kabupaten Pati Berbasis Metode Ward
Statistika, FMIPA
dalam Peta Analisis Kerawanan Banjir
Eni Nurhayati , Jaka Nugraha
Mahasiswa
MS – 89
UII Yogyakarta 2
Pengajar
Program Studi Statistika, FMIPA UII Yogyakarta S - 13
1
Helida 1
Nurcahayani ,
Mahasiswa
Magister Statistika,
Pemodelan Spasial Kemiskinan dengan Mixed Geographically Weighted Poisson
MS – 97
2
Purhadi
Institut Teknologi
Regression dan Flexibly Shaped Spatial
Sepuluh
Scan Statistic
Nopember
(Studi Kasus: Jumlah Rumah Tangga
2
Sangat Miskin di Kabupaten Kulonprogo)
Dosen Jurusan
Statistika, Institut Teknologi Sepuluh Nopember S - 14
1
1,2
Irwan , Devni 2
Prima Sari
S - 15
Pemodelan Regresi Poisson, Binomial Negatif dan pada Kasus Kecelakaan
Univ. Negeri
Kendaraan Bermotor
Padang
di Lalu Lintas Sumatera Barat
Jurusan
Efektifitas Metode Jackknife dalam
Matematika,
Mengatasi Multikolinearitas dan
FMIPA, Universitas
Penyimpangan Asumsi Normalitas pada
Tanjungpura
Analisis Regresi Berganda
Neva Satyahadewi ,
1,2
Kajian Penataan PKL Berdasarkan
Naomi Nessyana
Matematika,
Preferensi PKL dan Persepsi Masyarakat
FMIPA, Universitas
di Kawasan Pasar Sudirman Pontianak
Muhlasah 1
Novitasari Mara , 2
Neva Satyahadewi , 3
Ryan Iskandar S - 16
Jurusan
Matematika FMIPA
1
2
Debataraja
Jurusan
MS – 107
MS – 123
MS – 127
Tanjungpura S - 17
1
Indriya Rukmana 1
Sari , Dewi Retno
Mahasiswa
Model Geographically Weighted
Jurusan
Regression Penderita Diare di Provinsi
Sari Saputro ,
Matematika FMIPA
Jawa Tengah dengan Fungsi Pembobot
Purnami
UNS
Kernel Bisquare
2
Widyaningsih
3
2,3
MS – 135
Staf Pengajar
Jurusan Matematika FMIPA UNS S - 18
1
Irma Nur Afifah ,
1
Analisis Structural Equation Modelling
Jurusan Statistika-
(Sem) dengan Finite Mixture Partial Least
FMIPA ITS,
Suare (Fimix-Pls)
Surabaya
(Studi Kasus : Struktur Model Kemiskinan
2
di Provinsi Jawa Tengah Tahun 2011)
Mahasiswa S2
2
Sony Sunaryo
Dosen Jurusan
MS – 143
Statistika-FMIPA ITS, Surabaya S - 19
1,2,3
Janse Oktaviana 1
Fallo , Adi 2
Setiawan , 3
Bambang Susanto
Program Studi
Uji Normalitas Berdasarkan Metode
Matematika
Anderson-Darling, Cramer-Von Mises
Fakultas Sains dan
dan Lilliefors Menggunakan Metode
Matematika
Bootstrap
MS – 151
Universitas Kristen Satya Wacana, Jl. Diponegoro No. 52-60, Salatiga S - 20
Komang
Jurusan
Estimasi Nilai Var Menggunakan Simulasi
Dharmawan
Matematika,
Proses Lévy
MS – 159
FMIPA Universitas Udayana S - 21
1
Marisa Rifada , 2
Nur Chamidah , Toha Saifudin
3
1,2,3
Pemodelan Kejadian Gizi Buruk pada
Matematika,
Balita di Surabaya Berdasarkan
Fakultas Sains dan
Pendekatan Regresi Spasial
Teknologi,
Semiparametrik
Departemen
MS – 169
Universitas Airlangga Kampus C, Unair Jln. Mulyorejo, Surabaya S - 22
Nila Widhianti ,
1
1,2
Dhoriva Urwatul
Program Studi
Peramalan Banyak Penumpang Kereta
Matematika FMIPA
Daerah Operasi di Yogyakarta
Wutsqa
UNY
Menggunakan Model Time Series dengan
Nuraini
1,2
Aplikasi Pembentukan Portofolio Saham
Kusumawati dan
Pendidikan
Lq-45 Menggunakan Model Black
Retno Subekti,
Matematika FMIPA
Litterman dengan Estimasi Theil Mixed
2
MS – 181
Variasi Kalender Islam Regarima S - 23
Jurusan
1
M.Sc S - 24
2
MS – 191
UNY
Oki Dwipurwani
Jurusan
Aplikasi Model Persamaan Struktural
Matematika FMIPA
(MPS) dalam Menganalisis Faktor-Faktor
Universitas
yang Berpengaruh terhadap Loyalitas
Sriwijaya
Penghuni Rumah Susun Mahasiswa
MS – 199
Universitas Sriwijaya S - 25
1
Preatin ,
1,2,3
Pemodelan Data Migrasi
Statistika, Fakultas
Menggunakan Model Poisson Bayesian
Jurusan
2
Iriawan N. , 3
Zain I.
MS – 207
MIPA, ITS
Hartanto W.
4
4
Surabaya, BKKBN Jakarta
S - 26
Ratna
Universitas Pelita
Keluarga dan Ketaatan Beribadah
Christianingrum
Harapan
Terhadap Sikap Remaja dalam
MS – 213
Menghindari Seks Bebas dengan Analisis Jalur pada Data Kategori S - 27
1
Rukini ,
1,2
Model Arimax dan Deteksi Garch
Fakultas
untuk Peramalan Inflasi Kota Denpasar
Jurusan Statistika
2
Suhartono
MS – 219
Matematika dan Ilmu Pengetahuan Alam Institut Teknologi Sepuluh Nopember (ITS) Surabaya S - 28
1)
Stevvileny Angu 1
Bima ,
Mahasiswa
Pembentukan Sampel Baru yang
Program Studi 2
2), 3)
MS - 229
Memenuhi Syarat Valid dan Reliabel
Adi Setiawan ,
Matematika ,
dengan Teknik Resampling pada Data
Tundjung Mahatma
Dosen Program
Kuisioner Tipe Yes/No Questions
3
Studi Matematika Fakultas Sains dan Matematika, Universitas Kristen Satya Wacana, Jl. Diponegoro 52-60 Salatiga 50711
S - 29
1
1,2,3
Suyono , Bambang Irawan
Jurusan
2
Matematika FMIPA
3
UNJ
Widyanti Rahayu ,
Model Stokastik untuk Perawatan Sistem Seri
MS – 237
S - 30
Tanti Nawangsari
Prodi Pendidikan
Perbandingan Berganda
Matematika FKIP
Sesudah Uji Kruskal-Wallis
MS – 247
UNIROW Tuban Jl. Manunggal 61 Tuban S - 31
1
Yuliana Susanti ,
1,2,3
Optimasi Model Regresi Robust untuk
Matematika
Memprediksi Produksi Kedelai di
FMIPA, Universitas
Indonesia
Jurusan
2
Hasih Pratiwi , 3
Sri Sulistijowati H.
MS – 253
Sebelas Maret, Surakarta Makalah Bidang Komputer Dan Terapan T-1
Abraham
1
1
Pemodelan Matematika untuk
2
Matematika FMIPA
Mensimulasikan Efek Populasi Karantina
Universitas
Terhadap Penyebaran Penyakit Hiv/Aids
Cenderawasih
di Papua
Program Studi
Mahmudi
MT – 1
2
Program Studi
Matematika Fak. Sain dan Teknologi UIN Jakarta T-2
Andini Putri 1
Ariyani
Kus Prihantoso Krisnawan T-3
Jurusan Pendidikan
Bifurkasi Pitchfork Superkritikal
Matematika FMIPA
pada Sistem Flutter
MT – 7
UNY
2
Bambang Sumarno
Jurusan Pendidikan
Penyesuaian Bagan Pada Flowchart
HM
Matematika FMIPA
Sebagai Upaya Menjaga Konsistensi Dan
UNY
MT – 13
Kejelasan Algoritma Pemrograman Komputer
T-4
1
Beni Utomo ,
STITEK Bontang
2
Turahyo ,
Pembelajaran Anak Berkebutuhan Khusus
MT – 25
Berdasarkan Model Pengenalan Suara 3
Bagus Priyo Tomo
Menggunakan Matlab Dan Mikrokontroler Atmega16
T-5
Debby Agustine
Jurusan
Model Matematika Penyakit Diabetes
Matematika,
dengan Pengaruh Transmisi Vertikal
MT – 33
Universitas Negeri Jakarta, Indonesia T-6
1
Devy Lestari
Indikator User Satisfaction dalam
Nur Hadi
Layanan E-learning
MT – 39
2
Waryanto
T-7
Dr. Nanang, M. Pd.
Program Studi
Wolfram-Alpha pada Teori Bilangan
MT – 51
Jurusan Pendidikan
Model Matematika Terapi Gen Untuk
MT – 59
Matematika FMIPA
Perawatan Penyakit Kanker
Pendidikan Matematika STKIP Garut T-8
Dwi Lestari
UNY T-9
Dyah Wardiyani
Jurusan
Probabilitas Waktu Delay Model Epidemi
MT – 65
Matematika,
Routing
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta T - 10
Endang Sri
Jurusan
Premi Tunggal Bersih Asuransi Jiwa
Kresnawati
Matematika FMIPA
Berjangka dengan Faktor Penebusan
MT – 73
Universitas Sriwijaya T - 11
1
Felin Yunita ,
1,2,3
Model Stokastik Susceptible Infected
Purnami
Matematika
Recovered (SIR)
Jurusan
2
Fakultas
3
Matematika dan
Widyaningsih , Respatiwulan
MT – 79
Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta T - 12
Fika Hanna
1,2
Penentuan Harga Opsi Tie Eropa
Negeri Yogyakarta
Menggunakan Constant Elasticity of
Universitas
1
Mayasari , Kus Prihantoso K,
MT – 87
Variance (CEV)
2
M. Si. T - 13
Hanna Arini
Program Studi
Algoritma Particle Swarm (APS) untuk
Parhusip
Matematika, FSM-
Optimasi dengan Domain Fungsi
UKSW
Parametrik
MT – 93
untuk Beberapa Fungsi Tujuan T - 14
Imam
1,2,3
Ekowicaksono,
Matematika,
1
Departemen
S.Si. ,
Fakultas FMIPA
Dra. Farida Hanum,
Institut Pertanian
2
M.Si. , Dr. Ir. Amril
Masalah Penentuan Koridor Bus dalam
MT – 101
Meminimumkan Biaya Operasional
Bogor, Indonesia
3
Aman, M.Sc. T - 15
Maftuhah Qurrotul
Jurusan
Model Epidemi Routing
MT – 107
Aini
Matematika
1,2
Analisis Sensitivitas Dampak Skrining dan
MT – 113
Matematika FMIPA
Terapi HIV pada Penyebaran HIV dalam
Universitas
Populasi
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta T - 16
1
2
Marsudi , Marjono
Jurusan
Brawijaya T - 17
1
1
Meidina Fitrianti ,
Alumnus dari
2
Amril Aman ,
Program Studi 3
Prapto Tri Supriyo
Sarjana Matematika, Fakultas
Optimasi Biaya Antisipasi Bencana Alam
MT – 125
Matematika dan IPA Institut Pertanian Bogor, 2,3
Dosen Program
Studi Sarjana, Institut Pertanian Bogor, T - 18
Muhamad Galang
Mahasiswa S-2
Bilangan Prima: Bukti Kesempurnaan Al-
Isnawan, S.Pd.
Pendidikan
Qur’an
MT – 133
Matematika, Pascasarjana UNY T - 19
1
Penyelesaian Vehicle Routing Problem
Manaqib ,
Matematika UGM,
dengan Pendekatan Goal Programming
Eminugroho Ratna
2
Muhammad
Mahasiswa S2
1
2
T - 20
MT – 141
Program Studi
Sari
Matematika UNY
Nur Hadi Waryanto
Jurusan Pendidikan
Prosedur Forensik dalam Digital Forensics
MT – 149
Pengembangan Sistem Pendukung
MT – 157
Matematika FMIPA UNY T - 21
1
1,2
Nurul Hidayat , 2
Ranida Pradita
Jurusan
Matematika,
Keputusan Pemilihan Guru Berprestasi
FMIPA, Institut
dengan Menggunakan Metode
Teknologi Sepuluh
Promethee
Nopember (ITS) T - 22
1
1,2
Nurul Hidayat , Ricky Kurniadi
2
Jurusan
Aplikasi Metode Filter Bank Gabor pada
Matematika,
Pengembangan Sistem Identifikasi
FMIPA, Institut
Telapak Tangan
MT – 165
Teknologi Sepuluh Nopember (ITS) T - 23
1
Ratna Widayati ,
1
Analisa Kestabilan Model Seirs untuk
Eminugroho Ratna
Program Studi
Penyebaran Penyakit Flu Singapura
Sari
Mahasiswa
2
MT – 175
Matematika, FMIPA Universitas Negeri Yogyakarta 2
Jurusan
Pendidikan Matematika, FMIPA Universitas Negeri Yogyakarta T - 24
Retno Budiarti ,
1
1,2
Manajemen Risiko dengan Menggunakan
I Gusti Putu
Matematika,
Levy Copula
Departemen
2
Purnaba
MT – 185
Fakultas Matematika dan Imu Pengetahuan Alam, Institut Pertanian Bogor
T - 25
1
1,2,4
Jurusan
Penerapan Algoritma Klasifikasi Berbasis
M. Iqbal ,
Matematika,
Association Rule pada Data Meteorologi
Hanim Maria
FMIPA, Institut
Rizky Kartika Putri , 2
3
Astuti ,
Teknologi Sepuluh
MT – 195
Imam Mukhlash
4
Nopember (ITS) 3
Jurusan Sistem
Informasi, FTIF, Institut Teknologi Sepuluh Nopember (ITS) T - 26
Ruth Kristianingsih
1
Penggunaan Algoritma Genetik dalam
1
Program Studi
Mengoptimalkan Kandungan Karbohidrat
Parhusip ,
Matematika FSM
dan Protein Pada Mocorin
Tundjung Mahatma
UKSW
3
2,3
, Hanna Arini 2
Mahasiswa
MT – 207
Dosen Program
Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana, Jl. Diponegoro No. 52-60, Salatiga T - 27
1
Sielvy Evtiana ,
1
Prediksi Harga Emas dengan
Agus Maman
Matematika
Menggunakan
Jurusan Pendidikan
Model Neuro-Fuzzy
Program Studi
2
Abadi
MT – 215
Matematika FMIPA Universitas Negeri Yogyakarta 2
Jurusan
Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta T - 28
1
Silvia Kristanti , Sri 2
Kuntari , Respatiwulan
3
1,2,3
Model Epidemi Stokastik Susceptible
Matematika
Infected Susceptible (SIS)
Jurusan
MT – 225
Fakultas Matematika dan Ilmu Pengetahuan Alam Universitas Sebelas Maret Surakarta
T - 29
1
Sri Ayu Subekti , 2
Lilik Linawati , Adi Setiawan
3
1
Penggunaan Metode Fuzzy Mamdani
Program Studi
untuk Membuat Keputusan dalam
Matematika FSM
Analisis Kredit
Mahasiswa
MT – 231
UKSW 2,3
Dosen Program
Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana, Jl. Diponegoro No. 52-60, Salatiga T - 30
1
Tiara Anggraeni ,
1
Program Studi
Aplikasi Model Neuro-Fuzzy untuk
MT – 239
Agus Maman 2
Abadi
Matematika
Memprediksi
Jurusan Pendidikan
Suhu Udara di Yogyakarta
Matematika FMIPA Universitas Negeri Yogyakarta 2
Jurusan
Pendidikan Matematika FMIPA Universitas Negeri Yogyakarta T - 31
1
Veronica 1
Mahasiswa
Suryaningsih ,
Program Studi
Hanna Arini
Matematika FSM
2
Parhusip ,
UKSW
Tundjung
2, 3
3
Mahatma
Kurva Parametrik dan Transformasinya
MT – 249
untuk Pembentukan Motif Dekoratif
Dosen Program
Studi Matematika FSM UKSW Fakultas Sains dan Matematika, Universitas Kristen Satya Wacana
T – 32
Nikenasih Binatari
Jurusan Pendidikan
Gelombang Yang Dibangkitkan Oleh
Matematika FMIPA
Pergerakan Bawah Laut
UNY
MT – 259
PROSIDING
ISBN : 978 – 979 – 16353 – 9 – 4
S-1 KARAKTERISTIK INFLASI BULANAN KOTA-KOTA DI INDONESIA TAHUN 2009 – 2013 Adi Setiawan Program Studi Matematika Fakultas Sains dan Matematika Universitas Kristen Satya Wacana, Jl. Diponegoro 52-60 Salatiga 50711 Email :
[email protected] Abstrak Karakteristik inflasi bulanan kota-kota di Indonesia mempresentasikan sifat-sifat inflasi bulanan meliputi rata-rata besaran inflasi bulanan, stabilitas inflasi bulanan, skewness dan kurtosis distribusi inflasi bulanan serta pengujian hipotesis apakah distribusi data inflasi bulanan normal atau tidak. Periode waktu yang diamati adalah bulan Januari 2009 sampai dengan bulan Mei 2013. Analisis koefisien korelasi dilakukan untuk menjawab pertanyaan apakah ada kota yang cenderung mempunyai sifat inflasi bulanan yang tidak bergantung dengan sebagian besar kota-kota di Indonesia. Di samping itu juga mempresentasikan sifat-sifat inflasi bulanan untuk setiap periode bulan Januari sampai dengan bulan Desember. Lebih lanjut, juga dilakukan pengujian hipotesis apakah rata-rata inflasi bulanan untuk masing-masing kota sama atau ada yang berbeda secara signifikan. Demikian juga, untuk kota-kota yang menjadi perhatian, apakah rata-rata inflasi bulanan untuk bulan Januari sampai bulan Desember sama atau ada yang berbeda secara signifikan. Kata kunci: inflasi bulanan, skewness, kurtosis, distribusi inflasi bulanan
A. PENDAHULUAN Setiap bulan Badan Pusat Statistik (BPS) mengumumkan besarnya inflasi bulanan 66 kota yang digunakan dalam perhitungan inflasi di Indonesia. Di samping itu, BPS kota kabupaten yang tidak digunakan dalam perhitungan inflasi juga turut mengeluarkan informasi tentang inflasi bulanan di kota-kota tersebut. Informasi tersebut sangat penting dalam pengambilan keputusan di bidang bisnis dan industri. Karakteristik inflasi bulanan kota-kota di Indonesia perlu diidentifikasi agar kita dapat melakukan antisipasi agar inflasi bulanan dapat dikendalikan. Skewness, kurtosis dan koefisien variasi telah digunakan dalam mendeskripsikan inflasi bulanan di kota-kota di Jawa Tengah (Setiawan, 2012a, Setiawan 2012b). Karakteristik inflasi kota-kota di Jawa Tengah telah dijelaskan dalam makalah Agustius dkk (2013). Di samping itu, karakteristik inflasi bulanan kota-kota di Indonesia bagian Timur telah dijelaskan dalam makalah Setiawan (2013). Dalam makalah ini akan dijelaskan tentang karakteristik inflasi bulanan kota-kota yang digunakan dalam perhitungan inflasi bulanan di Indonesia pada periode Januari 2009 dan Mei 2013. Pemilihan periode waktu tersebut adalah bahwa dalam periode waktu tersebut tidak terjadi kenaikan/perubahan harga BBM sehingga inflasi bulanan tidak banyak terpengaruh oleh kenaikan harga BBM. Perlu diketahui bahwa pada harga BBM yang berlaku sekarang adalah akibat kenaikan harga pada tanggal 22 Juni 2013. B. DASAR TEORI Dalam pasal ini dijelaskan tentang statistik rata-rata, median, skewness, kurtosis dan koefisien variasi. Statistik tersebut nantinya akan digunakan untuk mendeskripsikan karakteristik inflasi bulanan kota-kota yang digunakan dalam perhitungan inflasi di Indonesia. Untuk dasar Makalah dipresentasikan dalam Seminar Nasional Matematika dan Pendidikan Matematika dengan tema ” Penguatan Peran Matematika dan Pendidikan Matematika untuk Indonesia yang Lebih Baik" pada tanggal 9 November 2013 di Jurusan Pendidikan Matematika FMIPA UNY
PROSIDING
ISBN : 978 – 979 – 16353 – 9 – 4
teori yang berkaitan dengan uji korelasi, uji normalitas dan analisis variansi dapat dilihat dalam Harinaldi (2005). Misalkan dimiliki sampel X1, X2, ...., Xn yang berasal dari populasi yang mempunyai distribusi tertentu yang tergantung pada satu atau lebih parameter. Rata-rata didefinisikan sebagai
X
1 n Xi n i 1
sedangkan median didefinisikan sebagai ~
X X n 1 2
jika n ganjil dan jika n genap didefinisikan sebagai ~
X
1 Xn Xn . 1 2 2 2
Skewness dari suatu variable random X yang dinotasikan dengan Skew[X] didefinisikan sebagai
Skew[ X ]
E[ ( X ) 3 ]
E[ ( X ) ]
3/ 2
2
dengan µ = E[ X ]. Skewness ini juga dinamakan skewness populasi. Skewness merupakan ukuran dari kesimetrisan atau lebih tepatnya kekurang-simetrisan. Suatu distribusi dikatakan simetris jika distribusi tersebut nampak sama antara sebelah kanan dan sebelah kiri titik pusatnya. Distribusi yang simetris misalnya distribusi normal, distribusi t dan distribusi seragam. Distribusi yang mempunyai kemencengan positif misalnya distribusi eksponensial, distribusi chi-kuadrat, distribusi Poisson dan distribusi Binomial dengan p > 0.5 sedangkan distribusi yang mempunyai skewness negatif misalnya distribusi Binomial dengan p < 0.5 (lihat Tabel 1). Jika dimiliki sampel X1, X2, …, Xn yang diambil dari suatu populasi maka skewness distribusi populasinya dapat diestimasi dengan skewness sampel yaitu 1 n
^
1 n
n
X
i
3
X
.
i 1
n
X i
i
X
3/2
2
Kurtosis dari suatu variable random X didefinisikan sebagai
E[ ( X ) 4 ] . 2 E[ ( X )2 ]
Kurtosis merupakan ukuran apakah distribusi X lebih rata secara relatif dari distribusi normal atau sebaliknya. Distribusi yang mempunyai kurtosis lebih kecil dari 3 maka kurang rata (flat) dibandingkan dengan distribusi normal. Dengan kata lain, distribusi yang mempunyai distribusi yang mempunyai kurtosis lebih dari 3 misalnya distribusi eksponensial, chi-kuadrat, distribusi t, distribusi Binomial dan distribusi Poisson, sedangkan yang mempunyai kurang dari 3 misalnya distribusi seragam (lihat Tabel 1). Kurtosis dari sampel X1, X2, …, Xn yang didefinisikan sebagai
Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY Yogyakarta, 9 November 2013
MS - 2
PROSIDING
ISBN : 978 – 979 – 16353 – 9 – 4
1 n
^
1 n
n
X
X
i
4
i 1 n
X
i
X
i
2
2
dapat digunakan untuk mengestimasi kurtosis populasi. Pada Tabel 1 berikut ini diberikan skewness dan kurtosis populasi untuk berbagai macam distribusi yang biasa digunakan (de Gunst dan van der Vaart, 1993). Kurtosis dapat juga didefinisikan dengan mengurangi 3 yaitu kurtosis dari distribusi normal sehingga sampel yang mempunyai kurtosis positif berarti bahwa distribusi sampel tersebut lebih tebal ekornya dari pada distribusi normal dan sebaliknya untuk yang negatif. Hasil statistik deskriptif pada Tabel 2 menggunakan definisi yang terakhir ini. Koefisien variasi (coefficient of variation) atau koefisien dispersi adalah ukuran persebaran yang dinormalkan dari suatu distribusi probabilitas. Kadang-kadang nilai dari koefisien variasi dinyatakan dalam persen (Harinaldi, 2007). Harga mutlak dari koefisien variasi kadang-kadang dikenal dengan nama simpangan baku relatif (relative standard deviation – RSD). Koefisien variasi didefinisikan sebagai rasio dari standard deviasi dengan mean yaitu
cv
dan estimasi dari koefisien variasi digunakan ^
cv
1 n dengan x xi dan n i 1
n
x s
s
2
i
x
s x
2
i1
.
n 1
Tabel 1. Skewness dan Kurtosis Populasi untuk Beberapa Bistribusi. Distribusi Binomial Binom(n,p) Poisson Pois( µ )
Skewness 1 2p np (1 p )
Kurtosis 3
1 6 p (1 p ) np (1 p )
1 / 2
3 1
Normal N(µ , 2 )
0
3
Seragam U(a,b)
0
9/5
Distribusi t
t
Chi-kuadrat 2 Eksponensial Exp( )
0 ( > 3)
2(2 / v)1/ 2 2
3
6 ( 4) 4
3
12 9
C. METODE PENELITIAN Data yang digunakan adalah data inflasi bulanan untuk bulan Januari 2009 sampai dengan Mei 2013 yang diperoleh pada website resmi Badan Pusat Statistik (BPS). Dipilihnya kurun waktu tersebut karena dalam kurun waktu itu tidak terjadi kenaikan harga BBM sehingga data inflasi bulanan tidak banyak terpengaruh oleh perubahan harga BBM. Data inflasi bulanan dilakukan analisis statistik dengan dasar statistik rata-rata, median, skewness, kurtosis, koefisien variasi, analisis korelasi, uji normalitas dan analisis variansi.
Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY Yogyakarta, 9 November 2013
MS - 3
PROSIDING
ISBN : 978 – 979 – 16353 – 9 – 4
D. HASIL DAN PEMBAHASAN Inflasi bulanan di Indonesia dihitung berdasarkan inflasi bulanan 66 kota yang terdiri dari 33 ibu kota provinsi dan 33 kota/kabupaten penting di Indonesia. Untuk memberikan gambaran sekilas tentang 66 kota tersebut, pada Gambar 1 diberikan grafik garis data inflasi bulanan untuk kota Jakarta, kota Ambon, kota Banda Aceh dan kota Jayapura. Pemilihan kota Jakarta, kota Banda Aceh dan kota Jayapura didasarkan pada besarnya koefisien variasi. Kota Jakarta mempunyai koefisien variasi terkecil (yaitu sebesar 0,99) dibandingkan dengan kota-kota yang lain, sedangkan kota Jayapura dan kota Banda Aceh masing-masing mempunyai koefisien variasi terbesar (yaitu sebesar 3,55) dan koefisien variasi terbesar kedua (yaitu sebesar 3,18). Di samping itu pemilihan kota Ambon didasarkan pada koefisien korelasi Pearson kota Ambon dengan 47 kota yang lain yang tidak signifikan (lebih kecil dari 0,25 untuk ukuran sampel n = 53) sehingga karakteristik inflasi bulanan kota Ambon jauh berbeda dengan kota Jakarta, kota Banda Aceh dan kota Jayapura. Koefisien korelasi kota Ambon dengan kota Ternate misalnya, mempunyai karakteristik yang cenderung sama karena mempunyai koefisien korelasi yang signifikan yaitu sebesar 0,47. 5 4 3 2
JAKARTA
Apr-13
Jan-13
Okt-12
Jul-12
Apr-12
Jan-12
Okt-11
Jul-11
Apr-11
Jan-11
Okt-10
Jul-10
Apr-10
Jan-10
-1
Okt-09
BANDAACEH Jul-09
0 Apr-09
AMBON Jan-09
1
JAYAPURA
-2 -3 -4
Gambar 1. Grafik garis data inflasi bulanan kota Jakarta, kota Ambon, kota Banda Aceh dan kota Jayapura. Tabel 2 menyatakan statistik deskriptif numerik data inflasi bulanan di kota-kota tersebut di atas. Rata-rata inflasi bulanan di kota Banda Aceh lebih rendah dibandingkan dengan ketiga kota tersebut bahkan kota Banda Aceh mempunyai rata-rata terendah dibandingkan dengan kota-kota lain di Indonesia. Namun demikian, koefisien variasi kota Banda Aceh terbesar kedua dibandingkan dengan kota-kota lain di Indonesia sehingga data inflasi bulanannya sangat fluktuatif artinya cenderung tidak stabil atau kadang besar dan kadang kecil. Lebih jauh, jangkauan (range) kota Banda Aceh cukup besar yaitu sebesar 3,81 % (bandingkan dengan jangkauan kota Ambon yaitu sebesar 5,78 %). Hal yang sama juga berlaku pada kota Jayapura. Koefisien variasi yang relatif kecil menunjukkan bahwa data inflasi bulanan di kota tersebut relatif stabil. Karena kota Jakarta mempunyai koefisien korelasi yang kecil maka hal itu berarti inflasi bulanan di kota Jakarta cenderung stabil artinya tidak sangat berfluktuasi. Hal itu jelas sangat penting bagi Inflasi di Indonesia karena bobot kota Jakarta dalam perhitungan inflasi bulanan Indonesia adalah sebesar 27,66 % sehingga jika inflasi di kota Jakarta cenderung tidak stabil maka akan sangat berpengaruh terhadap stabilitas inflasi bulanan di Indonesia. Bandingkan dengan koefisien variasi Indonesia sebesar 1,11. Koefisien variasi data inflasi bulanan tersebut sangat terkait dengan jangkauannya, hal tersebut ditunjukkan dengan koefisien korelasi Pearson
Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY Yogyakarta, 9 November 2013
MS - 4
PROSIDING
ISBN : 978 – 979 – 16353 – 9 – 4
diantara keduanya yang signifikan yaitu sebesar 0,77. Hal itu berarti koefisien variasi yang besar cenderung terkait dengan jangkauan yang besar dan sebaliknya koefisien variasi yang kecil terkait dengan jangkauan yang kecil. Tabel 2. Statistik deskriptif numeris dari data inflasi bulanan meliputi kota Jarta, Ambon, Banda Aceh, Jayapura dan dibandingan dengan nasional/Indonesia.
mean median stdev min max Koef variasi skewness kurtosis range Koefisien variasi robust
BANDA JAKARTA AMBON ACEH JAYAPURA INDONESIA 0,35 0,52 0,24 0,29 0,37 0,33 0,50 0,18 0,37 0,29 0,34 1,35 0,78 1,04 0,41 -0,26 -2,70 -1,92 -2,63 -0,32 1,15 3,76 1,89 3,15 1,57 0,99 2,62 3,18 3,55 1,11 0,34 -0,02 0,03 -0,06 0,49 -0,21 0,62 0,53 1,01 -0,12 1,41 6,46 3,81 5,78 1,89
0,90
2,34
3,71
2,36
1,43
Kota Jakarta, kota Banda Aceh dan Indonesia mempunyai skewness positif yaitu berturut-turut sebesar 0,34, 0,03 dan 0,49 sedangkan kota Ambon dan kota Jayapura mempunyai skewness negatif namun keduanya hampir 0. Skewness kota Banda Aceh, kota Ambon dan kota Jayapura hampir 0 sehingga densitas data inflasi bulanannya hampir simetris. Gambar 2 memberikan perbandingan antara skewness yang terkecil (Singkawang yaitu sebesar -0,36) maupun terkecil kedua (kota Pontianak yaitu sebesar -0,34) dibandingkan dengan skewness terbesar kedua (kota Bogor yaitu sebesar 1,36) dan skewness terbesar (Probolinggo yaitu sebesar 1,46). Terlihat bahwa skewness negatif mempunyai ekor di sebelah kiri sedangkan skewness positif mempunyai ekor di sebelah kanan. Kurtosis kota Ambon, kota Banda Aceh dan kota Jayapura bernilai positif artinya lebih besar dari distribusi normal sedangkan kota Jakarta dan Indonesia bernilai negatif artinya lebih kecil dari distribusi normal. Gambar 3 memperlihatkan densitas data inflasi bulanan kota yang mempunyai kurtosis terkecil, terkecil kedua, kota Banda Aceh, kota Jayapura, kota terbesar kedua dan kota terbesar. Kurtosis yang kecil cenderung terkait dengan jangkauan yang kecil dan kurtosis besar cenderung terkait dengan jangkauan yang besar, hal itu diperkuat dengan kenyataan bahwa koefisien korelasi diantara keduanya signifikan yaitu sebesar 0,3. Karakteristik inflasi bulanan untuk kota-kota tersebut dibandingkan dengan data inflasi bulanan nasional (Indonesia) dinyatakan pada Gambar 4. Kota Ambon cenderung mempunyai inflasi bulanan tinggi pada bulan Desember yaitu sebesar 1,5 dibandingkan dengan inflasi bulanan Banda Aceh, Jakarta dan Indonesia pada bulan Desember yaitu sebesar 0,6 bahkan jauh lebih besar dari rata-rata inflasi bulanan Indonesia yaitu 0,37. Kemungkinan besar hal ini disebabkan oleh adanya hari raya Natal dan liburan menjelang perayaan Tahun Baru. Inflasi bulanan tinggi tersebut juga masih terjadi pada bulan Januari yaitu sekitar 1,4 persen sedangkan di kota-kota lain seperti Banda Aceh, Jayapura dan Jakarta hanya sekitar 0,5 persen. Inflasi cukup tinggi di kota Ambon juga terjadi pada bulan Agustus, kemungkinan hal itu disebabkan oleh adanya bulan puasa yang pada periode tersebut jatuh sekitar bulan Agustus. Deflasi cukup tinggi yaitu sekitar -0,5 persen terjadi pada bulan Oktober untuk kota Ambon, Banda Aceh dan Jayapura sedangkan untuk kota Jakarta tidak terjadi deflasi.
Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY Yogyakarta, 9 November 2013
MS - 5
PROSIDING
ISBN : 978 – 979 – 16353 – 9 – 4
0.6
Density
0.0
0.6 0.0
Density
1.2
Pontiana k, sk = -0,34
1.2
Singka wa ng, sk=-0,36
-3
-2
-1 N = 53
0
1
2
3
4
-3
-2
Bandw idth = 0.3978
1
2
3
4
3
4
3
4
0.6
D ensity
1.2
0,34
0.0
0.6 0.0
D ensity
0
Bandw idth = 0.2884
Ja ka rta , sk =
1.2
Ambon, sk = -0,02
-3
-2
-1 N = 53
0
1
2
3
4
-3
-2
Bandw idth = 0.4766
-1 N = 53
0
1
2
Bandw idth = 0.1214
0.6 0.0
0.0
0.6
Density
1.2
Probolinggo, sk = 1,46
1.2
Bogor, sk = 1,36 Density
-1 N = 53
-3
-2
-1 N = 53
0
1
2
3
4
-3
-2
Bandw idth = 0.167
-1 N = 53
0
1
2
Bandw idth = 0.1973
Gambar 2. Densitas data inflasi bulanan dari kota-kota dengan skewness terkecil (kota Singkawang), terkecil kedua (kota Pontianak), kota Ambon, kota Jakarta, skewness terbesar kedua (kota Bogor) dan terbesar (kota Probolinggo). Density
-3
-2
-1 N = 53
0
1
2
3
0.0 0.4 0.8
Density
Bima, kurt = -0,90
0.0 0.4 0.8
Tasik Malaya, kurt=-0,93
4
-3
-2
Bandw idth = 0.1742
-1 N = 53
0
1
2
3
4
-3
-2
Bandw idth = 0.2547
0
1
2
Bandw idth = 0.2763
3
4
0
1
2
3
4
3
4
Bandw idth = 0.2547
3
4
0.0 0.4 0.8
Density
Density
-1 N = 53
2
Probolinggo, kurt = 4,87
0.0 0.4 0.8
-2
-1 N = 53
Goronta lo, kurt = 3,60
-3
1
0.0 0.4 0.8
Density
Density
-2
0
Bandw idth = 0.2547
Ja ya pura, kurt = 1,01
0.0 0.4 0.8
Ba nda Aceh, kurt = 0,53
-3
-1 N = 53
-3
-2
-1 N = 53
0
1
2
Bandw idth = 0.1973
Gambar 3. Densitas data inflasi bulanan dari kota-kota dengan kurtosis terkecil, terkecil kedua, kota Ambon, kota Jakarta, kurtosis terbesar kedua dan terbesar. 2.00 1.50
JAKARTA
1.00
AMBON
0.50
BANDAACEH
0.00
JAYAPURA
-0.50
INDONESIA
-1.00
Gambar 4. Karakteristik rata-rata inflasi bulanan untuk tiap bulan untuk kota Jakarta, kota Ambon, kota Banda Aceh, kota Jayapura dibandingkan dengan Indonesia.
Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY Yogyakarta, 9 November 2013
MS - 6
PROSIDING
ISBN : 978 – 979 – 16353 – 9 – 4
Tabel 3. Tabel koefisien korelasi Pearson antara kota-kota : Jakarta, Banda Aceh, Ambon dan Jayapura, dan juga dibandingkan dengan nasional/Indonesia.
JAKARTA AMBON BANDAACEH JAYAPURA INDONESIA
JAKARTA AMBON BANDA ACEH JAYAPURA INDONESIA 1 0,17 1 0,59 0,07 1 0,41 0,01 0,39 1 0,88 0,23 0,66 0,38 1
Tabel 3 memperlihatkan koefisien korelasi antara kota-kota Jakarta, Banda Aceh, Ambon dan Jayapura, dan juga dibandingkan dengan Indonesia. Terlihat bahwa kota Ambon tidak berkorelasi dengan kota Jakarta, Banda Aceh dan Jayapura, bahkan apabila diteliti lebih lanjut kota Ambon juga tidak berkorelasi dengan 47 kota-kota lain di Indonesia. Hal itu berarti inflasi bulanan di kota Ambon, cenderung tidak bergantung (independent) dengan kota-kota yang tidak berkorelasi tersebut. Kota lain yang mempunyai sifat yang hampir sama adalah kota Sorong yaitu tidak bergantung dengan 43 kota lain di Indonesia. Hal itu berarti bahwa kota Ambon maupun kota Sorong cenderung mempunyai karakteristik inflasi bulanan yang berbeda dengan sebagian besar kota di Indonesia. Apabila digunakan uji normalitas Lilliefors untuk kota Jakarta, kota Banda Aceh, kota Ambon dan kota Jayapura maka berturut-turut mempunyai nilai-p 0,25, 0,45, 0,34 dan 0,27 sehingga tidak ada alasan untuk menolak asumsi normalitas data inflasi bulanan untuk kota-kota tersebut dalam periode penelitian. Demikian juga dengan menggunakan uji Anderson-Darling berturut-turut diperoleh nilai-p berikut : 0,39, 0,34, 0,19, 0,30 ; dan untuk uji Cramer-von Mises diperoleh nilai-p berikut : 0,35, 0,46, 0,22, 0,24. Hal itu berarti dengan ketiga uji, tidak ada alasan untuk menolak asumsi normalitasnya. Karena asumsi normalitas data inflasi tidak ditolak maka dapat dilakukan uji variansi satu arah (one way anova) untuk data tersebut dan diperoleh nilai-p sebesar 0,488 sehingga tidak ada alasan untuk menolak hipotesis yang menyatakan bahwa rata-rata inflasi bulanan untuk keempat kota tersebut sama. Demikian juga kita dapat menambahkan kota Tarakan (kota yang mempunyai rata-rata inflasi bulanan tertinggi di Indonesia yaitu sebesar 0,59 % yang telah diuji berdistribusi normal) dalam daftar kota-kota yang akan dilakukan analisis variansi satu arah dan diperoleh nilai-p sebesar 0,271. Akibatnya rata-rata inflasi bulanan untuk kelima kota tersebut cenderung sama. Selanjutnya untuk kota-kota yang memenuhi asumsi distribusi normal (dengan uji normalitas Lilliefors, misalnya) yaitu sebanyak 58 kota, dapat dilakukan analisis variansi satu arah dan akan diperoleh hasil yang sama. Di samping itu dapat ditarik kesimpulan bahwa inflasi bulanan sebagian besar kota-kota di Indonesia yang digunakan untuk perhitungan inflasi bulanan cenderung mempunyai distribusi normal. Hal itu berarti bahwa pergerakan inflasi bulanan cenderung dalam keadaan normal yaitu yang biasa ditemui dalam alam. Kota-kota lain di seluruh Indonesia yang tidak berdistribusi normal berdasarkan ketiga uji normalitas di atas dengan tingkat signifikansi α = 0,05 adalah kota Yogyakarta, kota Probolinggo, kota Sukabumi, kota Cirebon, Sibolga, kota Balikpapan dan kota Samarinda. Jika digunakan tingkat signifikansi α = 0,01 berdasarkan ketiga uji normalitas di atas hanyalah kota Balikpapan yang tidak berdistribusi normal. Karena untuk 58 kota yang memenuhi asumsi distribusi normal mempunyai rata-rata inflasi bulanan yang sama maka perlu dilakukan analisis variansi satu arah untuk masing-masing kota untuk menguji hipotesis yang menyatakan bahwa rata-rata inflasi bulanan untuk tiap bulan (Januari, Februari sampai dengan Desember) sama atau tidak. Pada kota Jakarta, nilai-p untuk analisis variansi ini adalah 0,001 sehingga ada rata-rata inflasi bulanan suatu bulan yang berbeda dengan bulan yang lain. Diantaranya rata-rata inflasi bulanan untuk bulan Agustus berbeda dengan rata-rata inflasi bulanan untuk bulan Februari, Maret, April, Mei dan Oktober. Pada sisi
Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY Yogyakarta, 9 November 2013
MS - 7
PROSIDING
ISBN : 978 – 979 – 16353 – 9 – 4
lain, jika prosedur tersebut dilakukan pada data inflasi bulanan kota Tarakan, rata-rata inflasi bulanan untuk bulan Desember berbeda dengan rata-rata inflasi bulanan untuk bulan April, bulan Mei dan bulan Oktober. Namun demikian hal tersebut tidak berlaku untuk kota Banda Aceh, Ambon dan Jayapura. Kota yang paling banyak mengalami deflasi (inflasi negatif) untuk periode di atas adalah Banda Aceh yaitu sebanyak 23 bulan dari 53 bulan yang diamati sedangkan kota yang paling sedikit mengalami deflasi adalah kota Jakarta yaitu 5 bulan. Banyaknya bulan deflasi itu kemungkinan disebabkan oleh fluktuasi harga-harga komoditas yang digunakan dalam perhitungan inflasi.
E. KESIMPULAN DAN SARAN Dalam makalah ini telah dipresentasikan karaketeristik kota-kota di Indonesia berdasarkan data inflasi bulanan periode Januari 2013 sampai dengan Mei 2013. Penelitian ini dapat juga diperluas untuk periode waktu yang lebih panjang berdasarkan data yang disediakan oleh Badan Pusat Statistik (BPS).
F. DAFTAR PUSTAKA Agustius, Yudi; Adi Setiawan; Bambang Susanto, 2013, Penerapan Metode Bootstrap Pada Uji Komparatif Non Parametrik 2 Sampel , Prosiding Seminar Nasional Penelitian, Pendidikan dan Penerapan MIPA FMIPA UNY Yogyakarta 18 Mei 2013. de Gunst & van der Vaart, 1993, Statistiche Data Analyse, Vrije Universiteit Amsterdam. Harinaldi, 2005, Prinsip-prinsip Statistik untuk Teknik dan Sains, Penerbit Erlangga, Jakarta. Setiawan, Adi, 2012a, Penentuan Distribusi Skewness dan Kurtosis dengan Metode Resampling berdasar Densitas Kernel (Studi Kasus Pada Analisis Inflasi Bulanan Komoditas bawang Merah, Daging Ayam ras dan Minyak Goreng di Kota Semarang), Prosiding Seminar Nasional Sains dan Pendidikan Sains, Vol 3 No 1. Setiawan, Adi, 2012b Perbandingan Koefisien Variasi antara 2 Sampel dengan Metode Bootstrap (Studi Kasus pada Analisis Inflasi Bulanan Komoditas Beras, Cabe Merah dan Bawang Putih di Kota Semarang) Jornal “De Cartesian” Universitas Sam Ratulangi Manado Volume 1 No 1. Setiawan, Adi, 2013, Statistika di Era Super Data Set, Prosiding Seminar Nasional Matematika, Sains dan Teknologi Informasi Universitas Sam Ratulangi 14 Juni 2013.
Seminar Nasional Matematika dan Pendidikan Matematika FMIPA UNY Yogyakarta, 9 November 2013
MS - 8