PROCEEDING PENINGKATAN PERAN ILMU TEKNIK MESIN UNTUK KESEJAHTERAAN DAN KEMANDIRIAN BANGSA
DEWAN REDAKSI Penanggung Jawab: Ir. Muhammad Waziz Wildan, M.Sc., Ph.D.(Ketua Jurusan Teknik Mesin dan Industri, Fakultas Teknik UGM) Ir. Subagyo, Ph.D.(Sekretaris Jurusan Teknik Mesin dan Industri, Fakultas Teknik UGM) Panitia Pengarah: Prof. Mulyadi Bur (Sekjend BKS-TM) Ketua Jurusan/Departemen/Program Studi Teknik Mesin dalam BKSTM se-Indonesia Ketua: Prof. Harwin Saptoadi Sekretaris: Dr. Gesang Nugroho Bendahara: Dr. Kusmono Dewan Redaksi: Dr. Deendarlianto Dr. Suyitno Dr. Khasani Dr. Made Miasa Reviewers: Prof. Harwin Saptoadi Dr. Deendarlianto Dr. Suyitno Dr. Khasani Dr. Made Miasa Dr. Gesang Nugroho Dr. Kusmono Dr. Adhika W. The statements and opinion expressed in the papers are those of the authors themselves and not necessarily reflect the opinion of the editors and organizers. Any mention of company or trade name does not imply endorsement by organizers. Copyright © 2012, Departement Mechanical of Engineering Faculty, Gadjah Mada University Not to be commercially reproduced by any means without written permission Printed in Yogyakarta, Indonesia, October November 2012
ISSN: 2302 – 4542
SUSUNAN PANITIA Ketua
:
Prof. Harwin Saptoadi
Sekretaris
:
Dr. Gesang Nugroho
Bendahara
:
Dr. Kusmono
Acara
:
Dr. Joko Waluyo Dr. Sugiyono Dr. Herianto Ryan Anugrah Putra, M.Sc
Publikasi
:
Dr. Deendarlianto Dr. Khasani Dr. Suyitno Dr. Arif Wibisono Dr. Budi Dharma
Akomodasi
:
Dr. Hari Agung Yuniarto Dr. Rini Dharmastiti Dr. Made Miasa Dr. Muslim Mahardika
Kegiatan Umum
:
Dr. M. A. Bramantya Janu Pardadi, M.T Urip Agus Salim, M.Eng. Budi Arifvianto, M.Biotech
Workshop Mobil Listrik
:
Nasional
Dr. Jayan Sentanuhady Christin Budiono, S.T Diyah Pudak Wangi
Koordinator Pelaksana
:
Freddy Frinly Rizki
Wakil Koord. Pelaksana
:
Benjamin Bima
Sekretaris Pelaksana
:
Stefani Bertania Motto
Bendahara Pelaksana
:
Francisca Dwi Listyaningsih Raeshifa Diani A
Sie Kesekretariatan
:
Sugiyanto
(Koor)
Stenly Fransiscus Isnan Fajar Muaddin
ii
Tiko Rizky S Dyah Yunita S Sie Publikasi
:
Ariyanto Hernowo
(Koor)
Sarra Nanda Pradana RR Prameswari Kiranaratri Fariz Zul Hilmi Sie Disain&Dekorasi
:
Bayu Semiawan
(Koor)
Akhsanto Anandito Tedy Setya Nugraha Sie Sponsorship
:
(Koor)
Ahmad Zihni Aldrin Gutama Aziz Rizky Ujianto Fuad Arffan
Sie Perlengkapan
:
Robert Parlindungan Pasaribu
(Koor)
Rizki Nufta Anugrah Dhimas Fajar Anugrah Faris Mahendra Ridho Rahman Rifqi Bustanul F Augusto Dwifa Mohammad Aufar Rafi M Sie Akomodasi&Konsumsi
:
Yusuf Qaradhawi
(Koor)
Satyawhana Putra Utama Sie Acara
:
Jihad M Machmud Afian Azmi Rio Aji Nugroho Luqman Muhardian iii
(Koor)
Arfan Nur Fadilah Teddy Maulana Hendy Indrajaya Stefanus Eko Dwi Budianto Nurcahyo Dwi Faris Fadil Utomo Damai Firdaus Fadhel Muhammad Andri Firdaus Arfi Diko Anutup Michael Budi Utomo Yusuf Abdilah Akbar Kusuma Imam Ahfas Gema Achmad F Bima Prakoso K Aqli Haq Anandya Reza P
Sie Lomba Rancang Bangun Mesin
:
Gibransyah Putra Mohammad Vicky Ramdhani Wily Rohmat Hidayat Wanda Andreas Abshar Parama Putra P
iv
(Koor)
Abdul Muiz Yordyan Sistriyantoro Rendy Muhammad G Moch. Ryan Ardiansyah M. Roy Haqiqi
Wendi Wicaksono Muh. Reza Arifin Fadhil Ahmad Qamar
v
KATA PENGANTAR
Pembaca budiman, Proceedings Seminar Nasional Tahunan Teknik Mesin (SNTTM) XI dan Thermofluid IV 2012 menjumpai para pembaca pada penghujung tahun 2012 ini. Proceedings SNTTM 2012 dan Thermofluid IV 2012 merupakan kumpulan makalah penelitian peserta SNTTM XI dan Thermofluid IV 2012. Makalah penelitian para peserta seminar meliputi lima bidang, di antaranya: konversi energi, manufaktur, material, mekanika terapan, dan pendidikan teknik mesin. Selain perkembangan yang begitu pesat, bidang-bidang tersebut menjadi aspek penting yang juga mempengaruhi kehidupan manusia di era modern ini. Proceedings kali ini mempublikasikan 360 makalah di antaranya 164 makalah pada bidang konversi energi, 47 makalah pada bidang manufaktur, 82 makalah pada bidang material, 58 makalah pada bidang mekanika terapan dan 9 makalah pada bidang pendidikan teknik mesin. Walaupun dikelompokkan dalam lima bidang, makalah-makalah tersebut kadang tetap saling terkait dengan fokus yang mirip misalnya energi, bahan dan lingkungan. Hal ini memang sesuai dengan tujuan SNTTM sendiri yang memberikan wawasan komprehensif pada pesertanya tentang fokus tertentu dari sudut pandang berbagai bidang. Kiranya proceedings kali ini dapat memberikan gambaran dan wacana, memperluas cakrawala dan mengurangi rasa haus ilmu pengetahuan pembaca. SNTTM akan tetap berkomitmen untuk merangkum dan menjaring karya-karya ilmiah di tahun-tahun berikutnya dalam bentuk kajian teknologi yang dikuasai oleh para penulisnya. Oleh karena itu, SNTTM akan tetap mengundang para peneliti dan masyarakat umum untuk meneliti dan mengirim naskahnya. Kritik dan saran anda akan selalu kami nantikan. Akhirnya diucapkan selamat membaca.
REDAKSI
vi
DAFTAR ISI Susunan Panitia .................................................................................................................................
ii
Kata Pengantar ..................................................................................................................................
v
Daftar Isi ............................................................................................................................................
vi
A. Keynote Speech GEOTHERMAL ENERGY AND ITS FUTURE Ryuichi ITOI ......................................................................................................................................
1
A STUDY ON PULSE DETONATION ENGINE IN JAPAN Shigeharu Ohyagi ............................................................................................................................... 40 INNOVATIVE JAPANESE WASTE-TO-GREEN PRODUCT TECHNOLOGIES FOR ESTABLISHMENT OF SUSTAINABLE WASTE MANAGEMENT SYSTEM IN DEVELOPING COUNTRIES Kunio Yoshikawa ............................................................................................................................... 47 B. Konversi Energi
Split Turbin Sebagai Pembangkit Listrik Tenaga Air Mikro Darwin Rio Budi Syaka, Edward Leonard Dan Dyah AruWulandari (KE - 002) ...........
82
Pengaruh Jarak Antara Katup Dan Tangki Pengelak Terhadap Efek Water Hammer Jenny Delly, Welly Liku Padang (KE - 003) ...................................................................... 87 Perbandingan Performansi Pompa Hydram Dengan Katup Tekan Model Plat, Membran Dan Bola Made Suarda (KE - 004) ..................................................................................................... 93 Studi Numerik Penambahan Momentum Aliran Melalui Penggunaan Bluff Rectangular Turbulator (Brt) Di Depan Leading Edge Herman Sasongko, Heru Mirmanto, Sutrisno (KE - 005) ................................................. 100 Numerical Investigation Of Dynamic Stall For Non-Stationary Two-Dimensional Blade Airfoils G.S.T.A. Bangga, H. Sasongko (KE - 006) ................................................................ 106 Visualisasi Dan Signal Processing Dari Data Liquid Hold-Up Aliran Plug Air-Udara Pada Pipa Horizontal Okto Dinaryanto, Naufadhil Widarmiko Indarto, Deendarlianto (KE - 007) ................... 113 Pengukuran Liquid Hold-Up Dan Kecepatan Gelombang Aliran Stratified Air-Udara Pada Pipa Horisontal Akhmad Zidni Hudaya, Indarto, Deendarlianto ( KE 008) ........................................... 120 Analisis Nilai Kalor Bahan Bakar Limbah Padat Fibre Dan Shell Pada Pabrik Kelapa Sawit Di Pt. Buana Karya Bhakti Kalimantan Selatan Rachmat Subagyo, I Wayan Wawan Mariki, Rudi Siswanto (KE - 009) ........................ 126
vii
Variasi Laju Aliran Biogas Pada Sistem Pembilasan Menggunakan Campuran Naoh Dan H2o Untuk Pemurnian Biogas Dari Pengotor Co2 I Nyoman Suprapta Winaya, Pande Made Kerta Wibawa, IGN Putu Tenaya (KE - 010)... 133 Pengaruh Air Fuel Ratio Terhadap Kecepatan Rambat Api Dan Emisi Gas Buang Berbahan Bakar Lpg Pada Ruang Bakar Model Helle-Shaw Cell I Gusti Ngurah Putu Tenaya, I Made Eka Astina , Made Hardiana (KE - 011) ................. 138 Karakteristik Semprotan Bahan Bakar Biodiesel Pada Sistem Injeksi Common-Rail Ainul Ghurri (KE - 012) ................................................................................................... 146 Analisis Perfomansi Pemanas Air Kolektor Surya Terkonsentrasi Berbentuk Trapezoidal Dengan Minyak Nabati Sebagai Media Penyimpan Panas Ketut Astawa,ST., MT, I G N Putu Tenaya, ST. MT, I Md. Eka Dharma Setiawan (KE - 015) ............................................................................................................................................ 150 Implementation Of Humid Air Turbine For Combined Cycle Power Plant Arka Krisnamurti And I Made Astina (KE - 016) ............................................................ 155 Pemodelan Dan Analisa Energi Yang Dihasilkan Mekanisme Multilayer Piezoelectric Vibration Energy Harvesting Akibat Pengaruh Variasi Susunannya Dengan Sistem Suspensi Pada Kendaraan Wiwiek Hendrowati, Yulia Y. Latumeten, Harus Laksana Guntur, J. Lubi, I Nyoman Sutantra ( KE - 017) ........................................................................................................................ 161 Kajian Teoritik Pembakaran Arang Kayu Pinus Danang Dwi Saputro, Harwin Saptoadi (KE - 018) ......................................................... 169 Kaji Eksperimental Pemanfaatan Serbuk Gergaji Kayu Dan Bubur Kertas Koran Sebagai Bahan Isolator Pada Dinding Boiler Mini Ismail Thamrin, Pure Mandela ( KE - 019) ...................................................................... 177 Perbandingan Efisiensi Dan Ongkos Energi Antara Pembangkit Listrik Dengan Syngas Gasifikasi Sekam Padi Dan Dengan Bensin Suyitno, Muhammad Nizam, Dharmanto, Khamdan Mujadi (KE - 020) ......................... 183 Efek Konsentrasi Larutan Pada Kualitas Transparant Conductive Oxide Sel Surya Zainal Arifin, Suyitno, Ahmad Arif Santoso, Mirza Yusuf (KE - 021) ........................... 188 Analisa Teknis Dan Ekonomis Penggunaan Dc To Ac Inverter Sebagai Emergency Energi Rumah Tangga Witono Hardi, Said Hi Abbas (KE - 022) ......................................................................... 193 Pengaruh Isolator Keramik Dan Pengujian Pegas Terhadap Kinerja Desain Tungku Briket Arang Biomassa System Kontinyu Berpengapian Semi Otomatis I Wayan Joniarta Dan Made Wijana (KE - 024) ............................................................... 198 Study On Paddy Drying Using Husk Stove As A Heater Drying Air Syukri Himran (KE - 025) ................................................................................................ 204
viii
Potensi Sumber Energi Angin Di Wilayah Perairan Indonesia Dengan Data Satellite Quikscat Denny Widhiyanuriyawan, Mega Nur Sasongko, Sudjito (KE– 026) .............................. 208 Kaji Konservasi Energi Pemanfaatan Panas Limbah Proses Dyeing, Drying Dan Stentering Pabrik Tekstil Fachri Koeshardono, Indradjodi Kusumo Dan Hendi Riyanto (KE-027) ........................ 212 Studi Lapisan Batas Aliran Fluida Melalui Selinder Persegi Nasaruddin Salam. (KE - 030) .......................................................................................... 218 Penggaruh Jumlah Sudu Terhadap Karakteristik Putaran Turbin Angin Horisontal Dengan Menggunakan Metode Simulasi Blade Element Momentum Ridway Balaka, Jenny Delly, Aditya Rachman, Yuspian Gunawan ( KE - 031) ............. 225 Pengaruh Variasi Sudut Kemiringan Segitiga Penghalang Terhadap Koefisien Drag Pada Silinder Si Putu Gede Gunawan Tista, Made Ricki Murti, I Wayan Sugiharta.G (KE - 033) ....... 230 Studi Numerik Aliran Udara Dalam Plenum Sistem Distribusi Aliran Udara Toto Supriyono, Bambang Ariantara. (KE - 034) ............................................................ 235 Kondisi-Kondisi Batas Untuk Model Numerik Beda Hingga Semi Implisit 3D Arus Bawah lAut di Selat Bangka, Minahasa Utara, Sulawesi Utara Parabelem T.D. Rompas. (KE - 035) ............................................................................... 240 Studi Eksperimen Mengenai Pengaruh Parameter Fundamental Terhadap Pola Aliran Microbubble Ahmad Tohani, Anggita Gigih, Deendarlianto. (KE - 036) ............................................. 246 Deteksi Kebocoran Pipa Aliran Dua Fase Plug Menggunakan Jaringan Syaraf Tiruan (JST) Budi Santoso , Indarto, Deendarlianto dan Thomas S. Widodo. (KE - 037) ................... 252 Desain Turbin Goprak Novandri Tri Setioputro(KE - 038) ................................................................................... 258 Studi Eksperimental Optimasi Posisi Aksial Bola Pejal pada Microbubble Generator Gigih, A. Tohani, Deendarlianto, Wiratni , Alva Edi Tontowi ,Adhika W. ( KE - 039). ..266 Performance Water Wheels Plate Under Flow with Variation Number of Blade Luther Sule. (KE - 040) ................................................................................................... 272
Karakterisasi Aliran Plug Searah Ke Atas Dari Campuran Udara dan Cairan Kental (Air – CMC) 0,1 wt % dan 0,2 wt % B. A. Pramudita , E. J.Wibowo Dan Indarto. (KE - 041) ............................................... 2268
ix
Karakteristik Bilangan Reynold pada Celah Sempit Rektangular Berdasarkan Variasi Temperatur Air Pendinginan. Saepudin, Mulya Juarsa, Yogi Sirodz Gaos, Bambang Heru, Joko Prasetio, Hadi Kusuma, Edi Marzuki (KE - 042) ........................................................................................................... 279 Pemanfaatan Panas Ruang Bakar Untuk Menurunkan Viskositas Minyak Nabati Murni Pengganti Bahan Bakar Fosil Motor Diesel Iman Kartolaksono Reksowardojo, Nana Surjana, Doan Khac Dinh, Athol James Kilgour, Wiranto Arismunandar. (KE - 043) .................................................................................. 285 Konsep Pengembangan Mekanisme Single Rail Untuk Perubahan Bukaan Katup Pada Single Camshaft Julius Antoni dan Danardono AS. (KE - 044) .................................................................. 291 Karakteristik Pembakaran Campuran Etanol – n-Heptan dalam Meso-scale Combustor Dr. Eng. Lilis Yuliati, ST, MT. (KE - 045) ...................................................................... 295 Pengaruh Volume Ruang Bakar Terhadap Kinerja Mesin Pulse Jet Lambertus Dwi Setiawan, ST. (KE - 046) ........................................................................ 301 Efek Perubahan Aliran Gas Buang Dalam Knalpot Mesin Kapal 10 HP Yanuar dan Martinus Putra. (KE - 048) ............................................................................ 306 Pengujian Campuran Bahan Bakar Minyak Plastik Pada Motor Bensin Zulfiati, Ahmad Kholil, Eko Arif Syaefuddin. (KE - 053) ............................................... 312 Pengujian Campuran Bahan Bakar Minyak Plastik Pada Motor Diesel Zulfiati, Ahmad Kholil, Eko Arif Syaefuddin. (KE - 054) ............................................... 319 Pengaruh Variasi Sudut Lubang Baffle Dan Jarak Tembak Nosel Terhadap Gaya Impak Untuk Akselerasi Partikel Dna Pada Gene Gun Danardono A1, M. Satrio Utomo, Sonia Tzarina GS, Fera Ibrahim, Budiman Bela, Silvi (KE - 056) ................................................................................................................................. 325 Kajian Pengaruh Kondisi Operasi Wet Gas Cleaner Terhadap Jumlah Kandungan Tar Dan Temperatur Producer Gas Hasil Gasifikasi Biomassa Adi Surjosatyo dan Hary Daniel Sianipar. (KE - 060) ..................................................... 333 A Design Optimization of Vortex Generator for Mixing Quality Improvement of a Gas Mixer for Syngas Engine Using Three-Dimensional CFD Modeling. D. Danardono (KE - 062) .................................................................................................. 338 Kajian Eksperimental Flashback Flame Pada Bunsen Burner Dengan Bahan Bakar Lpg I Made Kartika Dhiputra, Imanuel. (KE - 063) ................................................................ 343 Kajian Eksperimental Safety Ball (Bola Gotri) Dalam Regulator Gas Tekanan Rendah Pada Sistem Catu Bahan Bakar Kompor Gas LPG I Made Kartika Dhiputra, Dea Adreanni. (KE - 064) ....................................................... 348
x
Studi Eksperimental Karakteristik Aliran Dua Fasa Gas Lpg Terkait Fenomena Vapor Lock Pada Sistem Catu Bahan Bakar Kompor Gas I Made Kartika Dhiputra, Karyadi Gunawan (KE - 065) ...................................................... 353 Pengaruh Kandungan Co2 Terhadap Karakteristik Pembakaran Stoikhiometri Biogas Nurkholis Hamidi, ING Wardana, Widya Wijayanti, Denny W, M Syaiful Anwar ( KE - 067) ............................................................................................................................................ 358 Pembuatan Kokas Batubara Peringkat Rendah Musi Banyuasin Sumatera Selatan Teguh Budi. SA. (KE - 068) ............................................................................................. 362 Engine Performance and Oil Analysis of Biodiesel from Virgin Coconut Oil in Different Catalyst Annisa Bhikuning. (KE - 069) .......................................................................................... 367 Simulasi Numerik Sistem Injeksi Bertingkat Pada Ruang Bakar Mesin Diesel Caterpillar 3406. Bambang Sudarmanta, Soeharto, Sampurno. (KE - 070) ................................................. 374 Penerapan Termoelektrik Modul Peltier Dengan Fin Sejajar Pada Exhaust Manifold Sepeda Motor. Dyah Arum Wulandari, MT., Sugeng Sutrisna, dan Wardoyo, MT. ( KE - 071) ............ 381 Pengembangan Sistem Pengukuran Densitas Optik Asap Kebakaran Tito Apriano dan Yulianto Sulistyo Nugroho. ( KE - 074) .............................................. 387 Analisa CFD Pada Pengaruh Geometri Nosel Terhadap Performa Steam Ejector Tony Suryo Utomo. (KE - 075) ........................................................................................ 393 Kaji Eksperimental Sistem Pemanas Air Surya Menggunakan Kolektor Yang Dilengkapi Material Penyimpan Panas Zaini, Hamdani dan Ahmad Syuhada. (KE - 078) ............................................................ 398 Peningkatan Efisiensi Photovoltaic Dengan Penggunaan Sistem Cpv (Concentrating Photovoltaic)-Mirror Widya Wijayanti, Bahrudin, Lilis Yuliati. (KE - 079) ..................................................... 403 Simulasi Pengaruh Chiralitas CNT pada Kapasitas Penyimpanan Hidrogen dengan Menggunakan Program LAMMPS Supriyadi, Nasruddin, Engkos A. Kosasih, Mardi Santoso. ( KE - 080) .......................... 407 Studi Eksperimental Performa Mesin Pendingin Pada LaboratoriumTeknik Mesin Universitas Khairun Ternate. Said Hi. Abbas, Lita A. Latif. (KE - 081) ......................................................................... 413 Simulasi Dinamika Molekular Adsorpsi Hidrogen pada Carbon Nanotubes (CNT) Dengan Variasi Panjang. Nasruddina, Engkos A. Kosasih, Ahmad Dzulfahmi, Supriyadi. (KE - 082) ................... 421
xi
Pengembangan Alat Cryosurgery Prototipe V Berbasis Termoelektrik Bertingkat. Nandy Putra, Wayan Nata Septiadi, Ridho Irwansyah, Bimo Sakti (KE-083) ................. 433
Pengaruh Penambahan Modul Termoelektrik Generator Pada Daya Keluaran Hybrid Solar Cell Nandy Putra, Wayan Nata Septiadi, Annisa Nurulianthy (KE-084) ................................ 440 Efek Perbedaan Diameter Pipa dan Beda Ketinggian Terhadap Rugi Tekanan di Sepanjang Pipa Selama Aliran Sirkulasi Alamiah Mochamad Farid, Yogi Sirodz Gaos, Edi Marzuki, Mulya Juarsa, Budi Gusnawan Juarsa, Rizqi Faisal Muttaqin (KE-085) ....................................................................................... 446 Studi Komparasi Unjuk Kerja Turbin Gas Centaur 40 Dengan Saturn 10 Khairul Muhajir (KE-086) ............................................................................................... 454 Pengaruh Geometri Evaporator Terhadap Tekanan Dan Temperatur Pada Siklus Refrigerasi Uap Standar Kennedy.M, Khairil Anwar, Ari Surianto (Ke-087) ......................................................... 461 Efek Tekanan Awal Driver Sectionterhadap Karakteristik Gelombang Detonasipada Kondisi Inisiasi Langsung Dengan Bahan Bakar Campuran Liquified Petroleum Gas Dan Oksigen Jayan Sentanuhady, Eswanto (KE-088) ............................................................................ 468 Simulasi Dan Perancangan Pendingin Adsorpsi Intermitten Skala Kecil Indra Gunawan dan I Made Astina (KE-089) ................................................................... 475 Pendingin Kabin Mobil Berbasis Termoelektrik Imansyah Ibnu Hakim, Sandya Priyambada, Rizki Rajab Priangan (KE-090) ................ 485 Unjuk Kerja Turbin Angin 10 KW Pada Unit Pengolahan Ikan Skala Kecil Desa Lancang Kabupaten Pidie Jaya Hamdani, Irwansyah, Ilyas, Rudi Kurniawan (KE-091) ................................................... 492 Emulsion Fuel for Diesel Engines Greg.Harjanto, A.Rianto S, Made Suardjaja (KE-092) .................................................... 497 Briket Daun Kering Sebagai Sumber Energi Alternatif Effendy Arif, Lydia Salam, Ariyanto, and Fredy.B (KE-093) ......................................... 507 Studi Eksperimental Dan Numerikal Tentang Pengaruh Sudut Putar Pada Tingkat Irisan Silinder Sirkuler Terhadap Gaya Drag Dan Gaya Lift. Astu Pudjanarsa, Muhamad Jamaaludin Ayub (KE-095) ................................................. 514 Analisa Numerik Model Turbulen Aliran Campuran Udara Dan Hot Egr Pada Intake Manifold Mesin Diesel Syaiful, Tommy Hendarto (KE-097) ................................................................................ 521
xii
Pengaruh Dimensi Pipa Kapiler dan Massa Refrigeran yang Digunakan Terhadap Unjuk Kerja Mesin Refrigerasi Evaporator Ganda untuk Pengawetan Ikan Matheus M. Dwinanto, Hari Rarindo dan Jonri Lomi Ga (KE-098) ................................ 528 Analisis Tentang Temperatur Pengeringan Untuk Mendapatkan Hasil Terbaik Dalam Prosescoal Upgrading Technoligy (Cut) Dr. Ir. Toto Hardianto, Prof. Dr. Ir. Aryadi Suwono, Dr. Willy Adriansyah ST, Dr. Ir. Nathanael P. Tandian, danWillem Lawrence ST. (KE-099) ............................................ 533 Karakterisasi Alat Penukar Kalor Berdasarkan Perubahan Laju Aliran Air dan Temperatur Air Pendingin di sisi Primer Untai Uji BETA Suhendra, Yogi Sirodz Gaos, Mulya Juarsa, Edi Marzuki, Hendro Cahyono TC, M. Hadi Kusuma, Joko Prasetyo Witoko, G Heru BK, Erwin Gunawan, Saefudin (KE-101) ....... 538 Adsorpsi Isosterik Metana Bertekanan Tinggi Pada Karbon Aktif dengan Persamaan Model Tóth Awaludin Martin, Bambang Suryawan, Muhammad Idrus Alhamid, Nasruddin (KE-102) 545 Simulasi Perpindahan Panas Konveksi Alamiah Dalam Kotak Dengan Pemanasan Lokal Dari Bawah Menggunakan Skema Kompak E.P. BUDIANA, P.J. WIDODO and S.A. SAPUTRO (KE-103) ..................................... 551 Analisis Perpindahan Kalor pada Pre-Heater di Untai Uji Beta Berdasarkan Perbedaan Variasi Laju Aliran Air di Sisi Primer Erwin Gunawan , Yogi Sirodz Gaos, Mulya Juarsa, Hendro Tjahjono, M. Hadi Kusuma, Joko Prasetyo Witoko, G. Heru, Suhendra (KE-104) ............................................................... 556 Pengaruh Konveksi Paksa Terhadap Uujuk Kerja Ruang Pengering Pada Alat Pengering Kakao Tenaga Surya Pelat Bersirip Longitudinal Harmen, A. Muhilal (KE-105) .......................................................................................... 563 Perpindahan Panas-Massa, Judul : Studi Eksperimental Perpindahan Panas Konveksi Paksa Diantara Fin Muh. Setiawan Sukardin (KE-108) ................................................................................... 569 Pengembangan Metode untuk Implementasi CFD pada Analisis Penukar Panas Pipa Bersirip Skala Industri dengan Menggunakan Komputer Berkapasitas Terbatas Nathanael P. Tandian, Agung Dwi Susanto, dan Eksa Bagas Prasasti (KE - 109) ........... 574 Studi Eksperimen Kotak Dingin pada Sepeda Motor sebagai Pembawa Vaksin Nugroho Yoga, Aam Amaningsih, Ayub Nugroho (KE - 110) ............................................ 580 Pengembangan Sistem Pengering Hibrida Energi Surya-Biomassa Untuk Pengering Ikan Syamsul Bahri Widodo Dan Muhammad Zulfri (KE - 112) ................................................ 585 Analisis Distribusi Tekanan Dalam Celah Sempit Rektangular Berdasarkan Variasi Temperatur Air Masukan Menggunakan Fluent 6.3 xiii
Ade Amruloh, Yogi Sirodz Gaos, Muhamad Subekti, M. Hadi Kusuma, Edi Marzuki, Mulya Juarsa, M. Agus Purwanto (KE - 113) ................................................................................ 590 Visualization, Mapping Flow Patterns, Plug Length And Plug Velocity Measurement For Air-Water Downward Two Phase Flow In Vertical Pipe F.S. Kusuma, B. Pukuh, And Indarto (KE - 114) .............................................................. 597 Unjuk Kerja Model Turbin Angin Bersudu Loopwing Dengan Variasi Sudut Tekuk Hermawan (KE - 115) ....................................................................................................... 601 Rugi Tekanan Pada Celah Sempit Rektangular Berdasarkan Variasi Temperatur Air Masukan Jhon Fredi Sianturi, Mulya Juarsa, Bambang Heru, Joko Prasetio, Hadi Kusuma, Yogi Sirodz Gaos, Edi Marzuki (KE - 116) ............................................................................................. 606 Analisis Distribusi Kecepatan Aliran Air Masukan Pada Celah Sempit Rektangular Berdasarkan Variasi Laju Alir Menggunakan Fluent 6.3 Muhamad Agus Puwanto, Yogi Sirodz Gaos, Muhamad Subekti, M. Hadi Kusuma, Mulya Juarsa, Ade Amruloh (KE - 117) .......................................................................................................................... 614
Rancang Bangun Generator Magnet Permanen Tipe Fluksi Aksial Untuk Turbin Angin Sumbu Vertikal Trihono Sewoyo, Ali Saifullah, Mulyono, Mw Aksan, Dimas S (KE - 119) ......................... 622 Komparasi Karakteristik Model Turbulen Pada Aliran Blower Pada Turbin Gas Mikro Bioenergi Proto X-2 Ahmad Indra Siswantara , Steven Darmawan, Budiarso (KE - 220) ................................. 628 Modelling Thermal Conductivity Enhancement Of Metallic Oxide-Based Nanofluids Using Dimensional Analysis B. Kristiawan, S. Kamal, Suhanan, Yanuar (KE - 122) ........................................................ 634 Studi Ekperimental Pengaruh Posisi Nozzle-Throat Terhadap Kinerja Liquid Jet Gas Ejector Daru Sugati, Indarto, Purnomo, Sutrisno (KE - 124) ......................................................... 641 Analisis Performansi Pompa Sentrifugal Terhadap Kapasitas Crude Oil-Water Flow Eflita Yohana, Khaerul Amri Ardhelas, Fatih Khamdani (KE - 125) ............................... 645 Studi Eksperimental Kinerja Turbin Ulir Archimedes Herman Budi Harja, Halim Abdurrachim, Sigit Yoewono, Hendi Riyanto (KE - 126) ..... 653 Analisis Flutter Bilah Rotor Helikopter Dengan Pendekatan Aerodinamika QuasiSteady Dan Unsteady Pada Kondisi Terbang Maju Ismoyo Haryanto1, Achmad Widodo, Rusnaldy, Toni Prahasto (KE - 127) ..................... 659 xiv
Pengaruh Jumlah Sudu Pengarah Jenis Airfoil Terhadap Kerugian Head Pada Belokan Pipa Slamet Wahyudi, Fikrul Akbar A, Djoko Sutikno, Yunus Hadi Kusuma (KE - 130) ....... 667 Interfacial Behavior Of Steam-Condensate Two Phase Flow In A Horizontal Pipe (Perilaku Antar-Muka Aliran Dua-Fasa Uap-Kondensat Di Dalam Pipa Horisontal) Sukamta, Indarto, Purnomo, Tri Agung Rohmat (KE - 131) .............................................. 673 Opimalisasi Pemanfaatan Bioetanol Pada Motor Bakar Bensin Melalui Modifikasi Compression Ratio (Cr) Dan Air Fuel Ratio (Afr)[Optimal Utilization Bio Ethanol On Petrol Engine Through Modification Of Compression Ratio (Cr) And Air Fuel Ratio (Afr)] Agus Sujono (KE - 133) ...................................................................................................... 679 Studi Eksperimental Pengaruh Rasio Sumbatan Terhadap Keefektifan Dan Koefisien Penurunan Tekanan Berkas Pipa Eliptik Susunan Berseling Budi Utomo Kukuh Widodo, Samsul Kamal, Suhanan, I Made Suardjaja (KE - 134) .... 684 Perhitungan Cooling Degree Days (Cdd) Untuk Wilayah Bandara Soekarno Hatta Cengkareng (Calculation Of Cooling Degree Days (Cdd) For The Soekarno Hatta Cengkareng) Budihardjo, Rusdy Malin, M. Idrus Alhamid (KE - 135) ..................................................... 689 Fluks Termal Pada Kondensasi Dalam Porous Media Dengan Mempertimbangkan Temperatur Sekitar Eko Siswanto (KE - 136) .................................................................................................. 695 Eksperimen Pengering Semprot Untuk Air Dan Air Garam 2% Engkos Achmad Kosasih (KE - 137) ................................................................................ 701 Studi Analisa Performansi Heat Exchanger Tipe 2 Pass - Shell And Tube Dengan Metode Analisis Energi Firmansyah Burlian, Hamdani (KE - 140) .......................................................................... 705 The Hazard & Operability Of Ac Harjanto G, Prajitno, Viktor Malau (KE - 142) ................................................................... 713 Uji Karakteristik Dan Efisiensi Generator Gas H 2 o 2 Jenis Wet Cell 6 Ruang Harus Laksana Guntur, Iqbal Wahyudin Dan Fariz Hidayat (KE - 144) .......................... 725 Distribusi Temperatur Dua-Dimensi Pada Pelat Rektangular Selama Pemanasan Radiasi Menggunakan Bagian Uji Heating-02 Iwan Kurniawan, Mulya Juarsa, Susyadi, Yogi Sirodz G, Edi Marzuki (KE - 146) ............... 730
xv
KE - 122
Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, 16-17 Oktober 2012
Modelling Thermal Conductivity Enhancement of Metallic Oxide-based Nanofluids Using Dimensional Analysis B. Kristiawan1,2,*, S. Kamal3, Suhanan3, Yanuar4 1
Doctoral candidate of Mechanical Engineering Mechanical and Industrial Engineering Department Universitas Gadjah Mada, Jl. Grafika No. 2 Yogyakarta 55281, Indonesia 2 Mechanical Engineering Department of Engineering Faculty Universitas Sebelas Maret, Jl. Ir. Sutami 36A Kentingan, Surakarta 57126, Indonesia 3 Mechanical and Industrial Engineering Department of Engineering Faculty Universitas Gadjah Mada, Jl. Grafika No. 2 Yogyakarta 55281, Indonesia 4 Mechanical Engineering Department of Engineering Faculty Universitas Indonesia, Kampus Baru UI Depok 16424, Indonesia * Corresponding author: budi_k@mail.ugm.ac.id
Abstract The objective of the present work is to investigate nanofluids thermal conductivity enhancement using available dimensional analysis modeling for thermal conductivity enhancement of metallic oxide-based nanofluids. Nanofluids are engineered by dispersing nanoparticles into ethylene glycol as base fluid with two-step method. Nanofluid samples were prepared with different percentage ratio of nanoparticle mass to 100 mL suspension of 0.2, 0.5, 1.0, 1.5, 2.0, and 2.5 (%w/v). The TEM and XRD characterization are used to verify specification data of the observed nanofluid. From this characterization, it is found that metallic oxide nanoparticles used in the present study consist of spherical particles with nominal diameter of 21 nm and 13 nm for TiO 2 and Al 2 O 3 , respectively. In this present work, available semi correlation of nanofluid thermal conductivity enhancement derived using the Buckingham-pi theorem in which Brownian motion of nanoparticle is considered. The predicted effective thermal conductivity enhancement of nanofluid in this model is compared with the experimental data. The experimental results show that thermal conductivity increases remarkably with increasing volume fraction of nanoparticles. The results show that the predicted thermal conductivity enhancement using dimensional analysis model demonstrates fairly good agreement for TiO 2 /EG and Al 2 O 3 /EG with nanoparticle concentration of 1.0 to 2.5 % w/v. Keywords: nanofluids, metallic oxide, thermal conductivity, enhancement, dimensional analysis
thermophysical properties different from those of base fluid. The thermophysical properties of nanofluids, such as thermal conductivity, viscosity, density, and specific heat are essential parameters to evaluate the thermal performance of heat transfer equipment. Enhancing thermal conductivity of HTFs and minimizing pressure drop in heat exchanger are an innovative way to increase energy-efficient thermal system. The ratio of the pumping power to heat transfer rate is an important parameter to determine performance of heat exchanger equipment. Therefore, rheology properties of nanofluids also constitute a vital effect in determining flow behaviors related directly to pumping power. Both viscosity and thermal conductivity of nanofluids are known to undergo anomalous enhancements, but more thorough investigations should be carried out on these properties because a good deal of controversy and remarkable inconsistencies have been reported in
Intorduction In recent years, nanofluids have attracted more attention concerning energy-efficient heat transfer equipment and the problem with energy conservation which is closely related to the prevention of global warming. Nanofluids, first coined by Choi (1995), can be engineered by stably suspending nanosized particles, fibers, sheets, or tube with average sizes below 100 nm in traditional heat transfer fluids (HTFs) such as water, ethylene glycol, or engine oil in low concentrations (d 1 vol.%). Nanofluids have been proposed as a promising candidate for advanced HTFs in a variety of important engineering applications ranging from energy storage and electronics cooling to thermal processing of materials. Nanofluids have attracted great interest due to reports of greatly enhanced thermal properties at low volume concentration (dilute suspension). Adding nano-sized solid particle into traditional base fluid exhibits
634
KE - 122
Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, 16-17 Oktober 2012
concentrations of solid nanoparticles in traditional HTFs is able to dramatically change their properties particularly thermal conductivity enhancement. Thermal conductivity property plays important role in the development of energy efficient heat transfer equipment. Based upon the published experimental data in the literature, Yu et al. (2008) proposed eight parametric that effect on nanofluid thermal conductivity enhancement i.e., particle volume concentration, particle material, particle size, particle shape, base fluid material, temperature, additive, and acidity. Many experimental and theoretical studies are investigated for thermal conductivity enhancement of nanofluids but the physical mechanism accounting for the thermal conductivity enhancement of nanofluids is not well understood (Yu et al., 2008). Several mechanisms and models have been offered to predict nanofluids thermal conductivity behavior using various assumptions. Nevertheless, the study of nanofluids behavior still remains both theoretically and experimentally challenging. Keblinksi et al. (2002) presented four possible mechanisms, such as Brownian motion of particles, interfacial liquid layer, ballistic nature of heat transport in nanoparticles, and nanoparticle clustering. Many research groups pointed out that Brownian motion may be one possible reason and have made enormous efforts to model it (Nie et al., 2008). Jang and Choi (2004) suggested that the Brownian motion of nanoparticles at the molecular and nanoscale levels is a key nanoscale mechanism governing their thermal behavior. Their study assumes that the Brownian motion nanoparticles in nanofluid produces convection-like effects on the nanoscale and is able to predict the size-dependent, concentration-dependent and temperature-dependent thermal conductivity. However, none of the existing theories is capable of explaining the anomalous thermal conductivity enhancement of nanofluids. In this present study, ethylene glycol-based nanofluids containing metallic oxide nanoparticles (TiO 2 and Al 2 O 3 ) are used to as the observed HTFs. Ethylene glycol is chemically more stable, non-toxic and ensure stability to nanofluids when compared to water. A published dimensional analysis model is used to estimate the effective thermal conductivity of nanofluids and compared to data experimental in this experimental investigation. The objective of the present work is to investigate nanofluids thermal conductivity enhancement using available dimensional analysis modeling for thermal conductivity enhancement of metallic oxide-based nanofluids.
this emerging subject [Keblinski et al. (2008), Pastoriza-Gallego et al. (2011)]. Although the investigation of thermal conductivity has focused most efforts, it is believed that viscosity is also as critical as thermal conductivity in engineering systems [Keblinski et al. (2005), and Murshed et al. (2008)]. Pumping power is proportional to the pressure drop, which in turn is related to fluid viscosity. In laminar flow regime, the pressure drop of fluid is directly proportional to the viscosity. Yanuar et al. (2010) studied experimentally to investigate curve flow characteristics of water-based nanofluids containing metallic oxide nanoparticles (TiO 2 and Al 2 O 3 ) using power law fluid model. It was demonstrated that the higher volume concentration of nanoparticles exhibited shear thinning fluid behavior (pseduoplastics fluid). Since nanofluids tend to have non-Newtonian behavior, the viscosity is not constant at a given temperature and pressure but depends on other factors such as the shear rate of nanofluids at pipe wall. Research and development activities have been carried out to improve thermal conductivity property of thermofluid since more than a century ago. Adding more thermally solid particles into fluid is an initial idea of Maxwell to enhance thermal conductivity of HTFs. Maxwell as given in Lee et al. (1999) have proposed effective theory medium to predict thermal conductivity of particle suspensions in liquid. Therefore, thermal conductivity of nanoparticle dispersions is called effective thermal conductivity. Since solid materials have much higher thermal conductivities than fluids, it is a straightforward logic to increase the thermal conductivity of fluids by adding solids. Although such suspensions exhibit higher thermal conductivity, they suffer from stability problems. Adding micro- or millimeter-sized solid particles into base fluid will result slurries in which their thermal conductivity enhancement are insignificant at high solid particle loading. In particular, micro- or millimeter-sized solid particles tend to settle down very quickly and thereby causing severe clogging. In addition to this major problems, erosion and high pressure drop will also affect development of this suspension to be used as HTFs. Unlike milli- and microparticles suspended in conventional base fluid, dispersion of nanoparticles provides an effective technique of enhancing heat transfer characteristics of HTFs. It was demonstrated that nanofluids were extremely stable dispersion and exhibit no significant settling under static conditions (Choi, 1995). Nanoparticles have a greater surface due to ultrafine-sized particles and can yield a stable suspension because of thermoelectric effect. The thermophysical, rheological, and thermoelectric properties of nanofluids are different from their traditional base fluid. A dispersion with low volume
Experimental Method and Facility Sample preparation and characterization 635
KE - 122
Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, 16-17 Oktober 2012
oxide nanoparticles was carefully weighed using an electronic balance and the volume concentration was calculated as listed in Table 2. Techniques for suspending nanoparticles in base fluid are a crucial step of this present work to make stable and uniformly dispersed nanofluids. A known amount of metallic oxide nanoparticles is mixed with base fluids (ethylene glycol) using magnetic stirrer for 1 hr. To reduce the size of agglomerates, this dispersion is then blended in wet milling process for 15 min and homogenized by using ultrasonic bath for 1 hr. In this experimental work, stable nanofluids are prepare without addition of surfactants or dispersants. The nanofluids prepared as above depicted excellent stability without any visible sedimentation for several weeks.
Nanofluids were engineered by dispersing two different metallic oxide nanoparticles (TiO 2 and Al 2 O 3 ) into ethylene glycol as base fluid. Nanofluid samples were prepared with percentage ratio of nanoparticle mass to 100 mL suspension of 0.2, 0.5, 1.0, 1.5, 2.0, and 2.5 (%w/v). The appropriate metallic oxide nanoparticles was carefully weighed using an electronic balance and the volume concentration was calculated. Ethylene glycol were supplied by Dow Chemicals. While, TiO 2 and Al 2 O 3 nanoparticles were procured from Sigma-Aldrich USA. The necessary themophysical properties in this experimental study are density, viscosity, specific heat and thermal conductivity. Some of thermophysical properties of nanoparticles and base fluid are listed in Table 1. The appropriate metallic
Table 1. Thermophysical properties of metallic oxide nanoparticles and base fluid. Property c p [J kg K ] U [kg m-3] k [W m-1K-1] μ [m Pa s] -1
-1
Ethylene glycol (EG) 2415 1114.4 0.252 15.7
TiO 2
Al 2 O 3
686.2 4250 8.9538 -
765 3970 40 -
Table 2. The volume concenration of the observed nanofluids (% v/v). Nanoparticle TiO 2 (~21 nm) Al 2 O 3 (13 nm)
Ratio of nanoparticle mass to 100 mL suspension (w/v%) 0.2 0.5 1.0 1.5 2.0 2.5 0.047 0.117 0.235 0.352 0.496 0.587 0.050 0.126 0.252 0.378 0.504 0.630
thermal conductivity of nanoparticle dispersions using thermal conductivity of liquids and gases unit (model H111H P.A. Hilton, Ltd.) in temperature range of 30-60 oC. The principle of effective thermal conductivity measurement is based on creating a temperature difference over a nanofluid sample existing in a radial clearance. The nanofluid sample whose effective thermal conductivity is to be determined fills the small clearance between a heated plug an a water-cooled jacket. The plug is heated using a cartridge heater supplied with power controlled by the standard panel mounted voltmeter and ammeter. The plug is machined from aluminium to reduce thermal inertia and temperature variation and contains a cylindrical heating element whose resistance at the working temperature is accurately measured. The clearance is small enough to prevent natural convection in the nanofluid sample. Due to considerable small of a radial clearance, the nanofluid sample existing in this space can be presented as a lamina of face area Sd m l and thickness 'r to the heat transfer of heat from the heated plug to the jacket. The required measurements for the calculation of the
The X-ray diffraction (XRD) patterns were detected using x-ray diffractometer (Lab X XRD-6000) to identify the crystal phase of the metallic oxide nanoparticle samples. The 2T values are taken from 3-90o using Cu X-ray tube (O=1.54060 Å) with step size of 0.02o. The voltage and current of diffraction are 40.0 kV and 30 mA, respectively. Acquisition and preliminary analysis of the data were performed by PCPDFWIN v. 2.2. software and the XRD patterns were verified by comparing with the JCPDS-International Centre for Diffraction Data. In addition to XRD analysis, this metallic oxide nanoparticles used in the present study also were characterized using transmission electron microscopy (TEM) photographs (JEOL JEM-1400) with an an acceleration voltage of 120 kVA. Transmission electron microscopy (TEM) is also a standardized method for imaging and measurements of dimension of nano and micro size structures due to their high imaging speed and high resolution. Thermal conductivity measurements of nanofluids In this experimental work, the cylindrical cell steady-state method is used to measure the effective
636
Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, 16-17 Oktober 2012
KE - 122
thermal conductivity are the t 1 and t 2 with adjusting the variable transformer. The amount of heat transferred due to the thermal conductivity of the nanofluid sample can be calculated using Fourier law of thermal conduction in cartesian co-ordinates as follows: 't Q c kA (1) 'r Where Q c is heat transferred (W), k is effective thermal conductivity of the nanofluid sample (W/m.oC) , 't is temperature difference of t 1 and t 2 (oC), 'r is radial clearance (m), A is effective area of conducting path through nanofluid sample (m2). Before using the unit to determine a thermal conductivity, it is necessary to determine the extent of the incidental heat transfer. It is the heat lost from the electrical element not by conduction but with other mechanism like radiation and convection which can be determined using the following relation: (2) Qi Qe Qc Where Q e is the electrical heat input calculated using following equation: (3) Qe V .I Where V and I are voltage (V) and current (A), respectively. Calibration of this equipment is carried out to ensure accuracy of thermal conductivity measurement. The results of the calibration test are illustrated in Fig. 1 and compared with tabular data in the literature for both ethylene glycol and DI water. As shown, this comparison indicates that the thermal conductivity measurement device is capable of achieving a level of accuracy in the measured effective thermal conductivity that is well within +20%.
Pi theorem procedure was adopted to determine the dimensionless parameters 3: 1) identify a complete set of independent variables, 2) apply the MLT4 system, 3) list the dimension of all the independent variables, 4) determine the repeating variables, and 4) evaluate the constant of power product correlation. By assuming the effective conductivity of nanofluid (k eff ) is a function of volume concentration (I v ), particle diameter (d np ), thermal conductivity of nanoparticle (k np ), thermal conductivity of base fluid (k bf ), kinematic viscosity of base fluid (Q bf ), density of nanopartcicle (U np ), temperature of suspension (T nf ), and Boltzmann constant (N B ), it can be written as: (4) k eff f Iv , d np , k np , k bf ,Q bf , U np , Tnf .N B The physical factors need to be identified to apply dimensional analysis to the thermal conductivity of nanofluids. In this present work, the main physical factors chosen are temperature, nanoparticle size, and volume fraction while k bf , T nf , d np , and v bf are considering as the repeating variables. From the Buckingham Pi theorem, 3 Pi groups can be formed by power products because there are seven independent variables and four dimensions. Since volume concentration I v is a dimensionless independent variable then Buckingham Pi theorem is not apllied for it. Therefore, the Pi groups can be expressed as: (5) g 31 , 3 2 , 3 3 0 Dimensionless parameter groups 3 1 -3 3 can be obtained by applying Buckingham Pi theorem procedure. Therefore, the dimensionless correlation of thermal conductivity enhancement of nanofluids can be expressed as: § k nf k np · ¸ (6) f ¨ Re B , Iv , ¨ ¸ kbf k bf ¹ © Or,
Thermal conductivity (W/mK)
0.9 DI water (measured) Ethylene glycol (measured) Water (tabular data) Ethylene glycol (tabular data)
0.8 0.7 0.6 0.4 0.3 0.2 0.1 0.0 28
30
32
34
36
38
40
42
d
§ k np · ¸ I (7) ¸ kbf © kbf ¹ Where, Re B is Brownian-Reynolds number and defined as follows: 1 18N BTnf (8) Re B vbf SU np d np k nf
0.5
44
a Re bm
c¨ v¨
Temperature (oC)
The value of constant a and the exponent b-d of Eq. (7) are obtained by substituting the experimental data of thermal conductivity measurement into this correlation using nonlinear regression analysis.
Figure 1. Test facility callibration. Dimensional analysis and data reduction Dimensional analysis is used to interpolate the experimental laboratory results to full scale system. A set of dimensionless correlations were established to investigate the thermal conductivity enhancement of metallic oxide-based nanofluids using the Buckingham Pi theorem. The following Buckingham
Results and Discussion TEM and XRD Characterization The XRD patterns of metallic oxide nanoparticles 637
Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, 16-17 Oktober 2012
KE - 122
metallic oxide nanoparticles used in the present study is appropriate with the specification data of Sigma-Aldrich for Titanium (IV) oxide nanopowder and aluminium oxide nanopowder, respectively. The TEM images of the observed metallic oxide nanoparticles are shown in Fig. 3. These image depict that the samples mainly consist of nanoparticles with nominal diameter of 21 nm and 13 nm for TiO 2 and Al 2 O 3 , respectively. From the micrograph imaging, it is clear that metallic oxide nanoparticles used in the present study consist of spherical particles.
(TiO 2 and Al 2 O 3 ) are shown in Figure 2. These patterns have been found that the metallic oxide nanoparticles used in the experimental study are single-phase nanoparticles with tetragonal structure for TiO 2 (Fig. 2.a). Further verification with the JCPDS file data also confirms the same metallic oxide nanoparticles. According to comparison the JCPDS data, titania indicates a mineral anatase while alumina nanoparticles show J-Al 2 O 3 (Fig. 2.b). The mineral anatase is one of the three mineral forms of titanium dioxide, the other two being brookite and rutile. This verification of the XRD patterns of
900
1500
800
Intensity (counts)
Intensity (counts)
1200 900 600
700 600 500 400 300 200
300
100 0
0 0
10
20
30
40
50
60
70
80
0
90
10
20
30
2theta (deg)
40
50
60
70
80
90
2theta (deg)
a. TiO 2 nanoparticles
b. Al 2 O 3 nanoparticles
Figure 2. The XRD patterns of metallic oxide nanoparticles used in the present work.
a.
TiO 2 nanoparticles
b. Al 2 O 3 nanoparticles
Figure 3. The TEM image of nanoparticles. Thermal conductivity enhancement A nonlinear regression analysis is performed to evolve the correlation in Eq. 7. The correlation evolved for determining thermal conductivity enhancement of nanofluids is taken as a function of Brownian-Reynolds number, volume concentration, and ratio of thermal conductivity of nanoparticle to that of base fluid. This following correlation expresses the modeling thermal conductivity enhancement of nanofluids using dimensional analysis.
k nf kbf
1.98 Re 0m.175
I
§ k np · ¸ ¸ k bf ¹ ©
0.2324
0.05 ¨ v ¨
for
TiO 2 /EG
(9) 0.2324
§ k np · ¸ I for Al 2 O 3 /EG (10) ¸ kbf k © bf ¹ The effect of volume concentration on thermal conductivity enhancement is presented with ratio of thermal conductivity. Thermal conductivity ratio, defined as the ratio of the effective thermal conductivity of dispersions to the thermal k nf
638
1.32 Re 0m.175
0.05 ¨ v ¨
Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, 16-17 Oktober 2012
KE - 122
concentration in the observed metallic oxide-based nanofluid in ethylene glycol. These figures are demonstrated that the results show fairly good agreement for TiO 2 /EG and Al 2 O 3 /EG with nanoparticle concentration of 1.0 to 2.5 % w/v. The thermal conductivity enhancement of metallic oxide-based nanofluids especially TiO 2 and Al 2 O 3 is also reported by previous researcher using Steady-state method and transient-hot wire as listed in Tabel 1.
1.40
Ratio of thermal conductivity, knf/kbf
Ratio of thermal conductivity, knf/kbf
conductivity of the liquid, is used to ascertain the gain in thermal conductivity of nanofluids. The influence of nanoparticle concentration on thermal conductivity ratio and prediction by dimensional analysis model discussed above are depicted in Figure 4. The dimensional analysis model is compared with the experimental data in this present work. It is evident from this figure that the ratio thermal conductivity increases with particle
1.30 1.20 1.10 1.00 0.90 0.80 Present prediction for TiO2/EG Experimental data
0.70 0.60 0.0
0.1
0.2
0.3
0.4
0.5
0.6
1.30 1.20 1.10 1.00 0.90 0.80
Present prediction forAl2O3/EG Experimental data
0.70 0.0
Nanoparticle volume fraction (% v/v)
0.1
0.2
0.3
0.4
0.5
0.6
0.7
Nanoparticle volume fraction (% v/v)
a. TiO 2 /EG nanofluid
b.
Al 2 O 3 nanofluid
Figure 4. Effect of ratio thermal conductivity of nanofluids with nanoparticle volume fraction. Table 3. Thermal conductivity data from various studies in metallic oxide-based nanofluids. Nanofluids Al 2 O 3 /EG TiO 2 /EG TiO 2 /DIW Al 2 O 3 /water TiO 2 /EG J-Al 2 O 3 /EO
Notation:
Size (nm)
Measurement technique
29 40 15 36 15 20
Steady-state method Steady-state method THW method Steady-state method THW method THW method
Thermal conductivity enhancement (%) with particle concentration 18% for 4 %(v/v) 13% for 5 %(v/v) 30% for 5 %(v/v) 30% for 10 %(v/v) 18% for 5 %(v/v) 37.49% for 3 %(w/v)
Reference Wang et al. (2002) Wang et al. (2002) Murshed et al. (2005) Li and Peterson (2006) Murshed et al. (2008) Vasheghani et al. (2011)
DIW, EG, and EO stand for deionized water, ethylene glycol, and engine oil, respectively and THW stands for transient hot-wire. increasing volume fraction of nanoparticles. It is evident that the ratio thermal conductivity increases with particle concentration in the observed metallic oxide-based nanofluid in ethylene glycol. The results show that the predicted thermal conductivity enhancement using dimensional analysis model demonstrates fairly good agreement for TiO 2 /EG and Al 2 O 3 /EG with nanoparticle concentration of 1.0 to 2.5 % w/v.
Conclusions Nanofluids have been prepared by dispersing TiO 2 (~21 nm) and Al 2 O 3 (13 nm) nanoparticles in spherical shapes into ethylene glycol with two-step method. A cylindrical cell steady state apparatus, categorized steady-state method, is used to measure the effective thermal conductivity of nanofluids. In this present work, semi correlation of nanofluid thermal conductivity enhancement has been derived using the Buckingham-pi theorem in which Brownian motion of nanoparticle is considered. The predicted effective thermal conductivity enhancement of nanofluid in this model is compared with the experimental data. The experimental results show that thermal conductivity increases remarkably with
Acknowledgements The authors would like to thank Chemistry Department, Faculty Mathematics and Natural Sciences, Universitas Gadjah Mada for the use of the TEM and XRD facilities, and Universitas 639
KE - 122
Proceeding Seminar Nasional Tahunan Teknik Mesin XI (SNTTM XI) & Thermofluid IV Universitas Gadjah Mada (UGM), Yogyakarta, 16-17 Oktober 2012
Muhamadiyah Yogyakarta for the use of the thermal conductivity apparatus. Nomenclature heat transferred (W), Q c k effective thermal conductivity of the nanofluid (W.m-1.oC-1) temperature difference of t 1 and t 2 (oC) 't V voltage (V) I current (A) d Diameter (m) cp heat specific (W.kg-1.oC-1) T Temperature (oC)
Lee, J.H., Lee, S.H., Choi, C.J., Jang, S.P., and Choi, S.U.S., A Review of Thermal Conductivity Data, Mechanisms and Models for Nanofluids, International Journal of Micro-Nano Scale Transport, Volume 1 Number 4, pp. 269-322 (2010). Li, C.H., and Peterson, G.P., Experimental investigation of temperature and volume fraction variations on the effective thermal conductivity of nanoparticle suspensions (nanofluids), Journal of Applied Physics 99:084314(1-8) (2006).
Greek letters Volume concentration (%v/v) Iv Particle concentration (%w.v) I Kinematic viscosity (mm2/s) Q Density (kg/m3) U Brownian-Reynolds number Re B
Murshed, S.M.S, Leong, K.C., and Yang, C., Investigation of thermal conductivity and viscosity of nanofluids, International Journal of Thermal Sciences 47., pp. 560-568 (2008). Murshed, S.M.S., Leong, K.C., and Yang, C., Enhanced thermal conductivity of TiO 2 -water based nanofluids, International Journal of Thermal Sciences 44, pp. 367–373 (2005).
Subsripts eff effective np nanoparticle bf Base fluid nf nanofluid
Nie, C., Marlow, W.H., and Hassan, Y.A., Discussion of proposed mechanisms of thermal conductivity enhancement in nanofluids, International Journal of Heat and Mass Transfer 51, pp. 1342–1348 (2008).
References
P.A. Hilton Ltd., Experimental Operating and Maintenance Manual Heat Transfer Service Unit H111, United Kingdom.
Bozorgan, N., Evaluation of Using Al2O3/EG and TiO2/EG Nanofluids as Coolants in the Double-tube Heat Exchanger, International Journal Advanced Design Material and Manufacturing Technology, Vol. 5 No. 2, pp. 27-34, 2012.
Pastoriza-Gallego, M.J., Lugo., L., Legido, J.L., and Pineiro, M.M., Thermal conductivity and viscosity measurements of ethylene glycol-based Al 2 O 3 nanofluids, Nanoscale Research Letters a Springer Open Journal, pp. 1-11 (2011).
Choi, S.U.S., Enhancing thermal conductivity of fluids with nanoparticles, in Developments and Applications of Non-Newtonian Flows, D. A. Singer and H. P. Wang, Eds., American Society of Mechanical Engineers, New York, FED–231/MD-66: 99–105 (1995).
Vasheghani, M., Marzabanrad, E., Zamani, C., Aminy, M., Raissi, B., Ebadzadeh, T., and Barzegar-Bafrooei, H., Effect of Al 2 O 3 phases on the enhancement of thermal conductivity and viscosity of nanofluids in engine oil, Heat Mass Transfer DOI 10.1007/s00231-011-0806-8 (2011).
Jang, S.P., and Choi, S.U.S., Role of Brownian Motion in the Enhanced Thermal Conductivity of Nanofluids, Applied Physics Letters 84(21), pp. 4316-4318, 2004.
Wang, Y., Fisher, T.S., Davidson, J.L., and Jiang, L., Thermal conductivity of nanoparticle suspensions, in: Proceedings of 8th AIAA/ASME Joint Thermophisics and Heat Transfer Conference, USA (2002).
Keblinski, P., Eastman, J.A. and Cahill, D.G., Nanofluids for thermal transport, Materials Today, 8(6), pp. 36-44 (2005).
Yanuar, Putra, N., Gunawan, and Baqi, M., Rheological Properties of Nanofluid in a Circular Pipe, International Conference on Heat Transfer, Fluid Mechanincs and Thermodynamics, Antalya, Turki (2010).
Keblinski, P., Phillpot, S.R., Choi., S.U.S., dan Eastman, J.A., Mechanism of Heat Flow in Suspensions of Nano-sized Particles (Nanofluids), International Journal Heat and Mass Transfer 42, pp. 855-863 (2002).
Yu, W., France, D.M., Routbort, J.L., and Choi, S.U.S., Review and Comparison of Nanofluids Thermal Conductivity and Heat Transfer Enhancements, Heat Transfer Engineering 29(5), pp. 432-460 (2008).
Keblinski, P., Prasher, R., and Eapen, J., Thermal conductance of nanofluids: is the controversy over ?, Journal Nanoparticle Research 10: 1089–1097, 2008.
640