POPULASI DAN SAMPEL Pengertian Populasi dan Sampel •
• •
Kata populasi (population/universe) dalam statistika merujuk pada sekumpulan individu dengan karakteristik khas yang menjadi perhatian dalam suatu penelitian (pengamatan). Sementara sampel adalah bagian kecil dari anggota populasi yang diambil menurut prosedur tertentu sehingga dapat mewakili populasinya. Banyaknya pengamatan atau anggota suatu populasi disebut ukuran populasi. Ukuran populasi ada dua: (1) populasi terhingga (finite population), yaitu ukuran populasi yang berapa pun besarnya tetapi masih bisa dihitung (cauntable). Misalnya populasi pegawai suatu perusahaan; (2) populasi tak terhingga (infinite population), yaitu ukuran populasi yang sudah sedemikian besarnya sehingga sudah tidak bisa dihitung (uncountable). Misalnya populasi tanaman anggrek di dunia. Gambar 1 POPULASI dan SAMPEL
Teknik Penarikan Sampel (Sampling) •
Sampling is the process of selecting observations. Proses seleksi yang dimaksud di sini adalah proses untuk mendapatkan sampel. Gambar 2 LOGIKA Sampling
•
Masalah yang dihadapi dalam sampling adalah (1) bagaimana proses pengambilan sampel, dan (2) berapa banyak unit analisis yang akan diambil.
Tipe Sampling Gambar 3 Tipe Sampling
•
•
•
Simple random sampling adalah sebuah proses sampling yang dilakukan sedemikian rupa sehingga setiap satuan sampling yang ada dalam populasi mempunyai peluang yang sama untuk dipilih ke dalam sampel. Systematic sampling merupakan pengambilan setiap unsur ke k dalam populasi, untuk dijadikan sampel. Pengambilan sampel secara acak hanya dilakukan pada pengambilan awal saja, sementara pengambilan kedua dan seterusnya ditentukan secara sistematis, yaitu menggunakan interval tertentu sebesar k. Stratified sampling adalah penarikan sampel berstrata yang dilakukan dengan mengambil sampel acak sederhana dari setiap strata populasi yang sudah ditentukan lebih dulu. Gambar 3 Tipe Stratified Sampling
• •
•
•
Cluster sampling adalah Convenience sampling, sampel diambil berdasarkan faktor spontanitas, artinya siapa saja yang secara tidak sengaja bertemu dengan peneliti dan sesuai dengan karakteristiknya, maka orang tersebut dapat dijadikan sampel. Judgement sampling (purposive sampling) adalah teknik penarikan sampel yang dilakukan berdasarkan karakteristik yang ditetapkan terhadap elemen populasi target yang disesuaikan dengan tujuan atau masalah penelitian.Bedanya, jika dalam sampling stratifikasi penarikan sampel dari setiap subpopulasi dilakukan dengan acak, maka dalam sampling kuota, ukuran serta sampel pada setiap sub-subpopulasi ditentukan sendiri oleh peneliti sampai jumlah tertentu tanpa acak. Snowball Sampling merupakan salah satu bentuk judgement sampling yang sangat tepat digunakan bila populasinya kecil dan spesifik. Cara pengambilan sampel dengan teknik ini dilakukan secara berantai, makin lama sampel menjadi semakin besar, seperti bola salju yang menuruni lereng gunung.
Kriteria Sampling Kriteria yang harus diperhatikan untuk menentukan tipe sampling yang baik, diantaranya: (1) dapat menghasilkan gambaran yang dapat dipercaya dari seluruh populasi, (2) dapat menentukan presisi dari hasil penelitian, (3) sederhana, mudah dilaksanakan, dan (4) dapat memberikan keterangan sebanyak mungkin tentang populasi dengan biaya minimal. Prinsip Menentukan Ukuran Sampel (sample size) Ukuran sampel bisa ditentukan melalui dua dasar pemikiran, yaitu ditentukan atas dasar pemikiran statistis, dan atau ditentukan atas dasar pemikiran non statistis. Ditinjau dari aspek statistis, ukuran sampel ditentukan oleh beberapa faktor, diantaranya: (1) bentuk parameter yang menjadi tolak ukur analisis, dalam arti apakah tujuan penelitian ini untuk menaksir rata-rata, persentase, atau menguji kebermaknaan hipotesis, (2) tipe sampling, apakah simple random sampling, stratified random sampling atau yang lainnya. Tipe sampling ini berkaitan dengan penentuan rumus-rumus yang harus dipakai untuk memperoleh ukuran sampel, dan (3) variabilitas variabel yang diteliti (keseragaman variabel yang diteliti), makin tidak seragam atau heterogen variabel yang diteliti, makin besar ukuran sampel minimal. Sedangkan dipandang dari
sudut nonstatistis, ukuran sampel ditentukan oleh beberapa faktor, diantaranya: (1) kendala waktu atau time constraint, (2) biaya, dan (3) ketersediaan satuan sampling. Populasi Sasaran dan Populasi Studi Gambar 4 Populasi Sasaran dan Populasi Studi
Satuan Sampling dan Kerangka Sampling •
•
Satuan sampling adalah segala sesuatu yang dijadikan satuan (unit) yang nantinya akan menjadi objek penelitian. Contoh: (1) apabila Indonesia dibagi ke dalam 33 satuan yang disebut propinsi dan dalam penelitian provinsi ini yang akan dipilih sebagai sampel, maka provinsi menjadi satuan sampling. (2) Apabila sebuah perusahan dibagi ke dalam departemen atau bagian, dan dalam departemen atau bagian ini sampel akan dipilih sebagai objek penelitian, maka departemen atau bagian ini adalah satuan sampling. Kerangka sampling adalah daftar yang berisi satuan-satuan sampling yang ada dalam sebuah populasi, yang berfungsi sebagai dasar untuk penarikan sampel. Setiap satuan sampling mempunyai nomor urut tertentu. Contoh: Kota Bandung terdiri dari kecamatankecamatan. Kalau peneliti menjadikan kecamatan dimana sampel akan dipilih sebagai objek, maka kecamatan adalah satuan sampling. Nama-nama kecamatan yang ada di Kota Bandung kemudian didaftar, maka daftar nama-nama kecamatan di Kota Bandung ini yang dinamakan kerangka sampling. Bentuk kerangka samplingnya dapat dilihat pada tabel berikut: Gambar 5 Kerangka Sampling
Presisi dan Akurasi • •
Presisi (precision) diartikan sebagai ukuran seberapa jauh sesuatu alat akan memberikan hasil yang konsisten. Presisi erat kaitannya dengan variasi data. Akurasi adalah seberapa tepat alat mengukur apa yang seharusnya diukur. Jadi akurasi berbicara tentang jarak, yang diukur dari target. Dengan demikian akurasi menunjukkan ketepatan atau ketelitian menentukan sampel dalam menggambarkan karakteristik populasi. Gambar 6
•
Sampel dikatakan memiliki akurasi tinggi apabila kesimpulan yang diambil dari sampel dapat menggambarkan karakteristik dari populasi dan sebaliknya dikatakan akurasinya rendah apabila karakteristik populasi tidak sepenuhnya dapat digambarkan (menyimpang/bias) oleh kesimpulan yang diambil dari sampel.
Tingkat Kepercayaan dan Tingkat Signifikansi •
•
•
Proses inferensi dalam metode statistika adalah proses membuat induksi atau melakukan generalisasi tentang karakteristik populasi berdasarkan karakteristik sampel. Proses inferensi mengandung dua hal, yaitu membuat estimasi nilai parameter dan menguji hipotesis. Karena membuat estimasi dan/atau menguji hipotesis hanya berdasarkan pada informasi data sampel, sedang sifat sampel bagaimanapun juga tidak akan persis sama dengan populasi, maka diperlukan kriteria atau standar tertentu untuk digunakan sebagai dasar pengambilan keputusan dalam membuat estimasi maupun dalam menguji hipotesis. Kriteria tersebut dalam statistika disebut sebagai tingkat kepercayaan (confidence level) dan tingkat signifikansi (significance level). Tingkat kepercayaan atau tingkat keyakinan pada dasarnya menunjukkan tingkat keterpercayaan sejauhmana statistik sampel dapat mengestimasi dengan benar parameter populasi dan/atau sejauhmana pengambilan keputusan mengenai hasil uji hipotesis nol diyakini kebenarannya.
•
•
Dalam statistika, tingkat kepercayaan nilainya berkisar antara 0 sampai 100%. Secara konvensional, para peneliti dalam ilmu-ilmu sosial sering menetapkan tingkat kepercayaan berkisar antara 95 – 99%. Jika dikatakan tingkat kepercayaan yang digunakan adalah 95%, ini berarti tingkat kepastian statistik sampel mengestimasi dengan benar parameter populasi adalah 95%, atau tingkat keyakinan untuk menolak atau mendukung hipotesis nol dengan benar adalah 95%. Tingkat signifikansi (a) menunjukkan probabilitas atau peluang kesalahan yang ditetapkan peneliti dalam mengambil keputusan untuk menolak atau mendukung hipotesis nol. Seperti halnya tingkat kepercayaan, tingkat signifikansi juga dinyatakan dalam persen. Misalnya, ditetapkan tingkat signifikansi 0,05 atau 0,10. Artinya, keputusan peneliti untuk menolak atau mendukung hipotesis nol memiliki probabilitas kesalahan sebesar 5% atau 10%. Dalam beberapa program statistik berbasis komputer seperti SPSS, tingkat signifikansi selalu disertakan dan ditulis sebagai Sig. (= significance), atau dalam program komputer lainnya ditulis p-value. Nilai Sig. atau pvalue adalah nilai probabilitas kesalahan yang dihitung atau menunjukkan tingkat probabilitas kesalahan yang sebenarnya. Tingkat kesalahan ini digunakan sebagai dasar untuk mengambil keputusan dalam pengujian hipotesis.