László Katics–Dénes Lőrinczy
Strength Training Biomechanics, Exercises & Methods
Graphics László Veres Photographs Tamás Záhonyi IJF and Zoltán Makovinyi (The stretching photos were taken at the Silver Resort Balatonfüred Wellness and Conference Hotel, Balatonfüred, Hungary)
Published with the support of: University of Pécs Hungarian Paralympic Committe Hungarian Olympic Committe Fővárosi Gázművek Zrt. Ferencvárosi Torna Club (FTC)
ISBN 978 963 05 8999 4 © László Katics–Dénes Lőrinczy, 2012 English translation © Andrea Ember, 2012 © Akadémiai Kiadó, 2012
All rights reserved. No part of this book may be reproduced by any means, or transmitted or translated into machine language without the written permission of the publisher. Published by Akadémiai Kiadó P.O. Box 245, H-1509 Budapest, Hungary Member of Wolters Kluwer Group www.akkrt.hu Printed in Hungary
Contents
About the authors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
9
Recommendation (Bertalan Hajtós) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
11
Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
13
Chapter 1 Interaction of the muscles, the skeletal system and function . . . . . . . . . . . . . . . . . . . . . . . 1.1. The function of the striated muscle (Dénes Lőrinczy) . . . . . . . . . . . . . . . . . . . . 1.1.1. The structure of the striated muscle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.2. The structure of significant muscle proteins, the biomechanical basis of fibre function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.3. The molecular basis of muscle function . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.4. The mechanical function of the striated muscle . . . . . . . . . . . . . . . . . . . . . . . . . 1.1.5. The relationship of muscle force and length . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2. The statics of the skeletal system (Dénes Lőrinczy) . . . . . . . . . . . . . . . . . . . . . . 1.2.1. The stability factors and indicators of an athlete in a defined stable equilibrium (Dénes Lőrinczy–László Katics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.2. The maintenance of a defined stable equilibrium (Dénes Lőrinczy–László Katics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.3. Levers in the human body . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.2.4. The relationship of articular structures and function . . . . . . . . . . . . . . . . . . . . . 1.2.5. The construction and biomechanics of the head . . . . . . . . . . . . . . . . . . . . . . . . 1.2.6. The construction and biomechanics of the spine . . . . . . . . . . . . . . . . . . . . . . . . 1.2.7. The construction and biomechanics of the upper extremities . . . . . . . . . . . . . . . 1.2.8. The construction and biomechanics of the lower extremities . . . . . . . . . . . . . . . 1.2.9. The biomechanics of standing and walking . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1.3. Factors influencing the effects of strength exercises on the body (László Katics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 2 Strength exercises grouped by equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1. Exercises without equipment (László Katics) . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.1. Free exercises with a strengthening effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.2. Crawling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.1.3. Walking and running exercises with a strengthening effect . . . . . . . . . . . . . . . . . 2.1.4. Jumping on the floor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2.2. Exercises with equipment (László Katics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
15 15 15 18 19 21 24 29 31 32 34 36 38 39 41 45 48 51
65 66 67 69 70 71 73
5
2.2.1. 2.2.1.1. 2.2.1.2. 2.2.2. 2.2.3. 2.2.4. 2.2.5. 2.2.5.1. 2.2.5.2. 2.2.6. 2.2.7. 2.2.8. 2.2.9. 2.2.10. 2.2.11. 2.2.11.1. 2.2.11.2. 2.2.12. 2.2.12.1. 2.2.12.2. 2.2.13. 2.3.
Hand apparatus exercises with a strengthening effect . . . . . . . . . . . . . . . . . . . . . Resistance rope and band exercises with a strengthening effect . . . . . . . . . . . . . . Medicine (small and large) ball exercises with a strengthening effect . . . . . . . . . Partner-assisted exercises with a strengthening effect . . . . . . . . . . . . . . . . . . . . . Bench exercises with a strengthening effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . Wall bars exercises with a strengthening effect . . . . . . . . . . . . . . . . . . . . . . . . . . Depth jumping and vaulting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Depth jumping (László Katics–Dénes Lőrinczy) . . . . . . . . . . . . . . . . . . . . . . . . Vaulting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Throwing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Lifting and carrying . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Combat exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Climbing and hanging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exercises with a strengthening effect on artistic gymnastics apparatus . . . . . . . . Barbell exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Picking up the barbell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Moving and holding the barbell . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exercises on strength-enhancing equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . Isokinetic exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Electro-stimulation method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Strength-enhancing exercises using special devices (László Katics–Dénes Lőrinczy) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Reactive training equipment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 3 The system of strength exercises grouped by muscle groups (László Katics) . . . . . . . . . . . . 3.1. Exercises employing the shoulder girdle elevators . . . . . . . . . . . . . . . . . . . . . . . . 3.2. Exercises employing the shoulder girdle depressors . . . . . . . . . . . . . . . . . . . . . . . 3.3. Exercises employing the shoulder girdle protractors . . . . . . . . . . . . . . . . . . . . . . 3.4. Exercises employing the shoulder girdle retractors . . . . . . . . . . . . . . . . . . . . . . . 3.5. Exercises employing the shoulder girdle elevators and anteflexors . . . . . . . . . . . 3.6. Exercises employing the shoulder girdle depressors and retroflexors . . . . . . . . . . 3.7. Exercises employing the shoulder joint protractors . . . . . . . . . . . . . . . . . . . . . . . 3.8. Exercises employing the shoulder joint retractors . . . . . . . . . . . . . . . . . . . . . . . . 3.9. Exercises employing the arm abductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.10. Exercises employing the arm adductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.11. Exercises employing the arm external rotators . . . . . . . . . . . . . . . . . . . . . . . . . . 3.12. Exercises employing the arm internal rotators . . . . . . . . . . . . . . . . . . . . . . . . . . 3.13. Exercises employing the elbow joint flexors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.14. Exercises employing the elbow joint extensors . . . . . . . . . . . . . . . . . . . . . . . . . . 3.15. Exercises employing the hand volar flexors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.16. Exercises employing the hand dorsiflexors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.17. Exercises employing the hand ulnar abductors . . . . . . . . . . . . . . . . . . . . . . . . . . 3.18. Exercises employing the hand radial abductors . . . . . . . . . . . . . . . . . . . . . . . . . . 3.19. Exercises employing the hip joint flexors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.20. Exercises employing the hip joint extensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.21. Exercises employing the thigh abductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.22. Exercises employing the thigh adductors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.23. Exercises employing the knee joint flexors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3.24. Exercises employing the knee joint extensors . . . . . . . . . . . . . . . . . . . . . . . . . . .
6
73 73 76 77 81 82 84 84 86 88 91 96 98 100 101 105 106 106 107 107 107 110
113 117 118 119 121 122 123 124 125 126 128 130 131 132 134 136 137 138 139 140 142 144 146 148 150
3.25. 3.26. 3.27. 3.28. 3.29. 3.30. 3.31. 3.32. 3.33. 3.34.
Exercises employing the ankle joint plantar flexors . . . . . . . . . . . . . . . . . . . . . . . Exercises employing the ankle joint dorsiflexors . . . . . . . . . . . . . . . . . . . . . . . . . Exercises employing the foot pronators (eversion) . . . . . . . . . . . . . . . . . . . . . . . Exercises employing the foot supinators (inversion) . . . . . . . . . . . . . . . . . . . . . . Exercises employing the head elevators and neck flexors . . . . . . . . . . . . . . . . . . Exercises employing the neck extensors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exercises employing the trunk flexors . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exercises employing the trunk extensors (erection) . . . . . . . . . . . . . . . . . . . . . . . Exercises employing the trunk lateral flexors . . . . . . . . . . . . . . . . . . . . . . . . . . . Exercises employing the trunk rotators (torsion) . . . . . . . . . . . . . . . . . . . . . . . .
Chapter 4 Methods of general strength training (László Katics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.1. Muscle diameter increasing (hypertrophic, muscle constructing) training methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.2. Synchronizing training methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.3. Mixed and combined training methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.4. Reactive training methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.5. Strength-stamina training methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.6. Beginners’ training methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7. Some factors influencing strength training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.1. The ability levels of individuals . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.2. The biomechanical aspects of strength training . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.2.1. Competition exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.2.2. Special exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.2.3. Non-special exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.3. The conditions triggering adaptation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.3.1. Prescribing adequate training intensity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.3.2. Adequate training frequency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.3.3. Adequate training extent . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.3.4. Practical modification of the work load . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.4. Strength exercises and respiration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.5. How strength training is related to sex and age . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.6. The didactic aspects of strength training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.7. Lifestyle, environmental conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.7.8. Nutrition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8. The practical aspects of strength training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8.1. Activities during warm-up and rest . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8.2. Alternation of the exercise types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.8.3. The dynamics of force translation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9. Planning strength training . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9.1. Some key planning aspects of strength training for longer periods . . . . . . . . . . . 4.9.2. Some key planning aspects of strength training for short periods and training units . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4.9.3. Training diary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Chapter 5 Musculo-articular balance (László Katics) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.1. Measuring muscle weakening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5.2. Assessing muscle shortening . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
153 155 156 157 158 159 160 162 164 166
169 170 172 173 174 175 178 178 178 179 179 181 181 182 182 183 183 184 184 185 187 187 188 188 188 190 190 191 191 191 192
195 204 207
7
5.3. 5.4. 5.5. 5.5.1. 5.5.1.1. 5.5.1.2. 5.5.1.3. 5.5.1.4. 5.5.1.5. 5.5.1.6. 5.5.2. 5.5.2.1. 5.5.2.2. 5.5.2.3. 5.5.2.4. 5.5.2.5. 5.5.2.6.
Evaluating muscle function tests . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Stabilization exercises . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exercises with a stretching effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . Exercises with a dynamic stretching effect grouped by body parts . . . . . . . . . . . Neck exercises with a dynamic stretching effect . . . . . . . . . . . . . . . . . . . . . . . . . Arm exercises with a dynamic stretching effect . . . . . . . . . . . . . . . . . . . . . . . . . . Abdominal exercises with a dynamic stretching effect . . . . . . . . . . . . . . . . . . . . Back exercises with a dynamic stretching effect . . . . . . . . . . . . . . . . . . . . . . . . . Trunk exercises with a dynamic stretching effect . . . . . . . . . . . . . . . . . . . . . . . . Leg exercises with a dynamic stretching effect . . . . . . . . . . . . . . . . . . . . . . . . . . Exercises with a static stretching effect grouped by body parts . . . . . . . . . . . . . . Neck exercises with a static stretching effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . Arm exercises with a static stretching effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . Abdominal exercises with a static stretching effect . . . . . . . . . . . . . . . . . . . . . . . Back exercises with a static stretching effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . Trunk exercises with a static stretching effect . . . . . . . . . . . . . . . . . . . . . . . . . . . Leg exercises with a static stretching effect . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
210 210 212 212 214 215 215 216 216 217 218 219 220 225 226 229 230
Appendix Depicting gymnastic exercises with stick-figure drawings . . . . . . . . . . . . . . . . . . . . . . . . . . .
245
References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
251
8
About the authors
Dr László Katics is a former member of the Hungarian national artistic gymnastics team. He received his qualification as a Physical Education Teacher (MSc with QTS) and as a Professional Coach in Artistic Gymnastics and his later PhD from the Hungarian University of Physical Education (now the Faculty of Physical Education and Sport Science at Semmelweis University). In 1995 he was awarded the title of “Master Teacher” by the National Scientific Student Council. He taught for four years at the Juhász Gyula Teacher Training College (in Szeged, Hungary) and for five years at the Hungarian University of Physical Education. After initially holding a teaching post there between 1984 and 1990, since 1993 he has once again been lecturing and conducting practical courses at the Institute of Physical Education and Sport Science of the University of Pécs (UP), Hungary. In 2005 he became a “Master Professor” at UP, and Associate Professor in 2006. Since 2009 he has been Head of the Individual Sports Department. Between 1993 and 1999 he was president of the Ethics and Legal Board of the Hungarian Coaches’ Society. He is the author of four books and numerous studies on sports. He has directed the strength training of the Hungarian national men’s judo team, and later, as captain, the work of the Hungarian Sport Acrobatics Federation’s national team. In 1998 he was appointed Head Coach of the Pécsi Aerobics and Fitness SE, and in 2002 also of the PEAC Aerobic section at UP. He has been the strength trainer of the PVSK-Füszért water polo section since 2005, and of the Hungarian national women’s judo team since 2009. There are world champions among the athletes he has coached, while his athletes (in Aerobics and Sport Acrobatics) have made the finals of European Championships and World Championships a total of 27 times, and won Hungarian National Champion titles 31 times. In judo he has strength trained athletes who have won gold and other medals at numerous international championships (European and World Championships, World Cups, Grand Prix and Grand Slams). Dr Dénes Lőrinczy received his MSc degree in Physics from the Natural Sciences Faculty of Eötvös Loránd University, Budapest, Hungary. Since his graduation he has been teaching at the Biophysics Institute of the former Medical University of Pécs (now the Medical Faculty at UP). Initially, his research field was the study of the connection between the mechanical function of striated muscles and heat generation (for which he was awarded the degree of Candidate of Biological Sciences, now PhD). He is currently engaged in the study of molecular dynamics (EPR spectroscopy) and thermal stability (differential scanning calorimetry) in connection with the intermediate phases of the ATP hydrolysis cycle during muscle contraction. He habilitated in 2002, and became Doctor of the Hungarian Academy of Sciences (D.Sc.) in 2006. He is a regular lecturer at international congresses on muscles and calorimetry. He is the author of more than 100 studies, mainly in English. Since 1985 he has been teaching biomechanics to students of physical education at the UP. 9
Recommendation
As a former competitor with a successful career in sports, I can assure the reader that this publication is not only a highly professional book that fills a gap in the scientific area, it is also a volume that offers useful applications in education and in the training of competitive athletes, and contains numerous original thoughts and ideas, exercises and methods. I say this as all kinds of movements need muscle strength, and this strength is the basis and prerequisite of fast, energetic, long-lasting and repeated movements or workout. All of us, coaches and competitors, would like to develop strength without suffering injuries or permanent damage to our locomotor system. To this end, an adequate theoretical background is needed, together with useful and effective practical advice. The authors, an internationally recognized researcher of muscle function who has joined forces with a practical professional, a national authority on training theory, and a successful former competitor, who now also has a prosperous coaching background, have succeeded in fulfilling these goals in this book. The book is easily readable. It presents the necessary minimum of theory concerning the muscles and skeletal systems in laymen’s terms, but it also invites the reader to think and read further. The theory is followed by a presentation of the use of equipment that serves a strength-training role, the classification of strength exercises by muscle groups, and an introduction to a general methodology of strength training. I would especially like to highlight Chapter 3, which contains hundreds of inventive exercises illustrating the practical application of the theory, and Chapter 4, which relies on three decades of experience and scientific knowledge to discuss the tools and methods of general strength training. The author of these chapters earlier directed the strength training of myself and my judoka partners (Tamás Bujkó, József Csák, Csaba Csernoviczky, Imre Csősz, Ferenc Deák, István Dubovszki, Zsolt Zsoldos, László Tarna and others), and is currently the successful strength trainer of the Hungarian national senior men’s and women’s judo teams. 11
By introducing musculo-articular balance, Chapter 5 provides important guidance on how to carry out strength training without injuries. The book offers useful material for teaching in higher education (biomechanics, the theory of training, the theory and methodology of recreation, the theory of physical education, calisthenics, adapted physical education, adapted gymnastics, sport injuries, sport medicine, etc.), and is a must for the planning of the physical workload in all sports. I am sure that this volume will prove to be invaluable for coaches, trainers, competitors, and all those individuals who participate in sports for their health, while it is also enticing for those who might be a little reluctant to move to see for themselves whether the quotation “a sound mind in a sound body” really does hold true. I believe that this book will win many more followers, not just for the scientificminded world of competitive sports, but also for leisure sports and the “sport for all” movements.
Bertalan Hajtós Olympic and World championships silver medalist, and two-time European champion in judo
12
Introduction
When reading the title of our book, many thoughts may occur to the reader concerning strength. Depending on his or her educational background or professional field, the reader may think of dynamics, a branch of physics that examines the reasons for changes during interactions of inanimate objects. In the course of these changes, alterations in shape or state of motion are likely to occur. Following interactions, elastic bodies regain their original shape, while the laws of mechanics tell us that bodies dislodged from their resting state start to move, though nothing “reminds” them of what sort of interaction they participated in. For example, a tennis ball undergoes elastic deformation after being hit, even before commencing its motion. Then, as a result of the impacting force and the way it is hit, it starts moving either in a horizontal launch trajectory or at an angle. On repetition of this action the ball does not become “stronger”, but rather (at a rate depending on its material and the production technology) becomes “exhausted” and sooner or later needs to be replaced. Among inanimate objects, therefore, repeated “exercises” result in the deterioration of the body. In the case of human motion, the general results of any forces involved in contacts with foreign objects are increased in force and/or speed of movement. As opposed to inanimate bodies, the human body can continuously develop or maintain its physical abilities (strength, speed, stamina, etc.), while interacting with its surroundings. Pyotr Kapitsa, a noted Soviet physicist, considered that the energy utilized by humankind up to the beginning of the 1960s came predominantly from the muscle work of either humans or animals. Through the developments in science and technology, muscle work has been steadily replaced by other types of energy sources, and the populations in the developed areas of the world are now exerting less and less physical work. However, the resulting nearly pathological inactivity has given rise to numerous health problems, and it is of the utmost importance to make up for this inactivity through targeted physical training, naturally in harmony with the individual’s physiological and physical abilities. In this way, physical training is not simply a prerequisite to improved sport achievements; it is also an important national health issue of our age. In all spheres of life (work, sports, etc.), those individuals who have greater muscle strength, while possessing other abilities that are similar, are at an advantage. The development of muscle power and maintenance of the achieved strength level can be attained through strength training. Strength training is a kind of training1 by which different kinds of strength (maximal strength, strength stamina, reactive strength, etc.) are enhanced. The tools of strength training are strength exercises, i.e. physical exercises with a strengthening effect2 that have work load components (i.e. external work load, number of repetitions, number of sets, etc.) meeting the requirements of strength enhancement. Our lives are full of stress and environmental harm and this demands the use of effective and individually tailored methods and exercises to improve our strength, not merely for competitive sport, but also for general health preservation. 1 A systematic pedagogical process of physical preparation in sport based on practical experience and scientific research, through which the physical performance abilities and skills of an individual are shaped. 2 Training tools in the execution of which the participating muscle groups are working (in overcoming, damping or stabilizing role) against some kind of force. Not to be confused with strengthening exercises proper.
13
The results and practical experience of scientific research have led to some important conclusions: When we take part in strength exercises, attention should be paid to the anatomic functions and to the impact of certain training tools3, originating from the interactions of motion and structure, and to its consequences to the body. The connections between the structural characteristics determine which muscle groups are primarily used in particular exercises, what kind of muscle tension is involved, and how the cardiovascular and respiratory systems adapt. It is well known that a movement consists not only of spatial, but also of chronological and dynamic characteristics that are functionally interconnected. The states of balance that build up an exercise, the vectors of movement, the ranges of motion in the joints at a given frequency and the muscle force exerted against an external force must therefore all play important roles when the above questions are considered. The different training tools become effective when they use procedures (methods) that meet the goals. Different procedures are needed when a gain in body mass is undesirable, or when the task is to enlarge the muscle diameter. It is obvious today that maximal strength can be classified not only in terms of the growth of muscle mass and geometric cross-section, but also with regard to the number of muscle fibers simultaneously taking part in the work. It has been proven that: strength training, in which 90–100% of the maximal external work load is applied through a small number of intensive repetitions, improves speed, but does not enlarge the geometric cross-section of a given muscle; strength training, in which 60–90% of the maximal external work load is applied through a relatively high number of repetitions, causes muscle fiber thickening and a body mass increase. Following strength training with adequate content, frequency and intensity: improvements occur in the muscle innervation, the speed of physical effort, the efficacy of the metabolism of certain muscles and the level of collaboration between certain muscles, and in general, the diameter of the muscle is enlarged; the skeletal system is strengthened and thickened, the bone-generating cell activity and the production of new bone matter increase, the loss in bone mass decreases, and the likelihood of osteoporosis and bone fracture lessens; exercises strengthening the muscles around the joints stabilize those joints and protect them by lessening the vibration and impacts that occur during motion, and additionally decrease mechanical tension, thus greatly reducing the effects leading to cartilage degradation; the muscle/fat–tissue ratio becomes more favourable, the body mass will be ideal, and the body posture also becomes better. The above-mentioned positive effects play important roles in the prevention or cure of certain illnesses and in the subsequent rehabilitation. At the same time, regular physical activity is beneficial in reducing stress, and this helps the individual to attain a balanced health condition. All of us, coaches and competitors, would like to develop strength without suffering injuries or permanent damage to the locomotor system. To this end, an adequate theoretical background is needed, together with useful and effective practical advice.
3
Physical activities and physical exercises performed to achieve training aims.
14
Chapter 5
Musculo-articular balance
The topic of musculo-articular balance is closely connected to strength enhancement and joint mobility improvement. Therefore, we believe that its importance in the field of physical education and sport, and its partial relation to strength training demands a brief discussion. By musculo-articular balance we mean a lasting co-operation of muscles involved in a directionally defined motion, functioning in similar mode and in similar order based on motor stereotypes55. In fact, this means that during evolution there came about an ideal relationship between the strength of the muscle groups and their elasticity. We talk about musculo-articular balance in this respect. This balance, however, can unfortunately change during everyday activities and, a so-called disbalance can evolve: when some muscles weaken, or others shorten (Figure 144). Inactive lifestyle, inadequately chosen, incorrectly carried out exercises, onesided static or dynamic load, fatigue and pain can evoke the disintegration of musculo-articular balance. Some believe that between the ages of 8 and 12, musculo-articulary balance disorders can be as much as 30%. According to sport physicians injuries are often worse than would have been warranted by the causes. Many assume the interference of a kind of “hidden injury factor” which is a consequence of a so-called pathological accommodation primarily disturbing the functional interrelations of the hip-pelvic-lumbar area, and it originates from the already mentioned muscle weakening and shortening. Some variations of incorrect and correct strength exercises of the trunk flexor (abdominals), trunk extensor (back muscle), hip joint extensor (gluteus muscles) and knee joint flexor muscles, that evoke pathological accommodation, are presented in Figure 145a–d. Such and similar exercises – naturally if carried out with ample external load, frequency and regularity – can trigger the following negative effects: The profound dorsal muscles, the hip and knee joint flexor muscles can gradually shorten, and the abdominal and gluteus muscles can weaken, which results in the anteflexion of the pelvis. This increases the risk of injury and makes the proper execution of certain motions more difficult. the anteflexion of the pelvis is often intensified if the strengthening of the dorsal and abdominal muscles are not carried out in a 1:3 ratio, which would be considered their normal balance of load. 55
Constant repetition of movements.
195
Normal musculo-articular balance
Disbalance (loss of balance)
S St
St
S
S
= Shortened muscle
St = Strengthening
= Weakened muscle
S = Stretching
Shortened muscle
Weakened muscle
Unevenly loaded intervertebral disc
Evenly loaded intervertebral disc
F
F G
Fp
F G Fp
Figure 144 Disbalance and its correction around the pelvis
196
Stretched back muscles
Strengthened abdominals
= Force exerted by
the muscles = Gravity on the upper body = Pressure force on the vertebra
G
Fp
Incorrect
3–4
Correct
1–2
1–2
3–4
Figure 145a • Incorrect and correct ways of trunk flexor (abdominals) strengthening exercises
Incorrect
3–4
3–4
Correct
1–2
1–2
Figure 145b • Incorrect and correct ways of trunk extensor (back muscle) strengthening exercises
197
Incorrect
3–4
Correct
1–2
1–2
3–4
Figure 145c • Incorrect and correct ways of hip joint extensor (gluteus muscles) strengthening exercises
Incorrect
3–4
Correct
3–4 Figure 145d • Incorrect and correct ways of knee joint flexor strengthening exercises
198
1–2
1–2
References
AJTAI, K.–TOFT, D. J.–BURGHARDT, T. P. (1994): Path and extent of crossbridge rotation during muscle contraction. Biochemistry, 33, 5382–5391. ÁBRAHÁM A.–BENDE S.–MEGYERI J. (1973): Anatómia – Élettan. [Anatomy – Physiology.] Tankönyvkiadó, Budapest, 109. ANDREWS, J. G. (1987): The functional roles of the hamstrings and quadriceps during cycling, Lombard’s paradox revisited. Journal of Biomechanics, 20, 575–577. BAGSHAW, C. R. (1993): Muscle Contraction. (2nd Ed.) Chapman–Hall, London. BAKANEK GY.–BERKES I.–BUDAVÁRI Á. (1998): A sportorvoslás alapjai. [Basics in Sport Medicine.] Print City, Sárbogárd. BALASKAS, A.–STRINK, J. (1983): Soft Exercise. The Complete Book of Stretching. Unwin, London. BÁLINT G.–BENDER T. (1995): A fizioterápia elmélete és gyakorlata. [Theory and Practice of Physiotherapy.] Springer Hungarica, Budapest. BÁLINT L.–KRÁNICZ J.–DOMÁN I. (2001): Habituális vállficam miatt végzett műtéti eljárások hosszú távú eredményei klinikánkon. [Longitudinal results of surgical procedures on habitual shoulder luxation at our clinic.] Magyar Traumatológia, Ortopédia, Kézsebészet, Plasztikai Sebészet, 3, 197–203. BALOGH I. (1999): Mozgás ABC. Kineziológiai alapismeretek. [Movement ABC. Basics in Kinesiology.] Tillinger Péter, Budapest. BARNA T. (1989): Birkózás. [Wrestling.] Tankönyvkiadó, Budapest, 37. BARTON J. (1984): Biomechanika. [Biomechanics.] Tankönyvkiadó, Budapest, 164–165. BARTON J. (1988): Testnevelés anatómia, élettan és egészségtan. [Physical Education Anatomy, Physiology, Hygiene.] Tankönyvkiadó, Budapest, 117–118. BARTON J. (1994): Biomechanikai alapismeretek az egészségügyi főiskolák hallgatói részére. [Basics in biomechanics for college students in health studies.] Aesculart, Budapest, 34, 140. BARTON J. (1995): Biomechanikai járáselemzés. [Biomechanical Analysis of Gait.] Aesculart, Budapest. BENDE S. (1972): A testnevelési anatómia és élettan alapjai. [Basics in Physical Education Anatomy and Physiology.] Tankönyvkiadó, Budapest, 82. BELÁGYI, J.–LŐRINCZY, D. (1996): Internal motion in myosin head: Effect of ADP and ATP. Biochem. Biophys. Res. Comm., 219, 936–940. BELLYEI Á.–SZOMOR Z. (2000): A gerinc foglalkozási ártalmai. [Occupational Harms of the Spine.] Közúti Közlekedésorvostan. Könyvrészlet, Egészség Alapítvány, Székesfehérvár, 223–246. BÉLY M. (1955): A torna elmélete. [Theory of Artistic Gymnastics.] Felsőoktatási Jegyzetellátó Vállalat, Budapest, 51–58. BÉLY M. (1966): Tornaelmélet. [Artistic Gymnastics Theory.] Tankönyvkiadó, Budapest, 130–132. BLOOM, W.–FAWCETT, D. W. (1975): A Textbook of Histology. (2nd Ed.) W. B. Saunders Co., Philadelphia. BOSCO, C.–KOMI, P. V. (1979): Potentiation of mechanical behavior of the human skeletal muscle through prestretching. Acta Physiol. Scand., 106, 467–472. BOSCO, C.–KOMI, P. V. (1981): Prestretch potentiation of human skeletal muscle during ballistic movement. Acta Physiol. Scand., 111(2), 135–140. BOSSÁNYI A. (1999): Kommentár. [Commentary.] Orvostovábbképző Szemle, 6(3), 188. BÖLCSFÖLDINÉ DÓSA É. (1995): Elfogynak a csontjaink? A csontritkulás megelőzéséről. [Will our bones fade away? About the prevention of osteoporosis.] Infotrend Bt., Budapest, 4–5. BUDÓ Á. (1972): Kisérleti fizika. [Experimental Physics.] Tankönyvkiadó, Budapest.
251
COUNSILMAN, J. E. (1982): A versenyúszás kézikönyve. [Competitive swimming manual for coaches and swimmers.] Sport, Budapest. CZIRJÁK J. (1977): Testneveléselmélet I. [Theory of Physical Education I.] Tankönyvkiadó, Budapest, 51. CSIDER T.–LISZKAI S. (1989): A vázizomzat mechanikai működésének néhány jellegzetessége. [Characteristics of the mechanical functioning of the skeletal muscles.] In: Makkár M. (ed.): I. Országos Sporttudományos Kongresszus I., Magyar Sporttudományos Tanács, Budapest, 113. DE HAAN, A.–VAN INGEN SCHENAU, G. J.–ETTEMA, G. J.–HUIJING, P. A.–LODDER, M. A. (1990): Efficiency of rat medical gastrocnemius muscle in contraction with and without an active prestretch. J. Exp. Biol., 141, 327–341. DE VRIES, H. A. (1961): Electromographic observations of the effects of static stretching upon muscular distress. Research Quarterly, 32, 468–480. DIETRICH, L.–BERTHOLD, F.–BRENKE, H. (1985): Muskeldehnung – eine wichtige trainingsmethodische Maßnahme. Theorie und Praxis, 34, 922–930. DINUBILE, N. (1998): Osteoarthrosis. A gyógytorna szerepe a betegség kezelésében. [Osteoarthrosis. The significance of medical gymnastics in illness treatment.] Orvostovábbképző Szemle, 5(1), 194. DOMÁN I.–VERMES CS. (1998): Külboka instabilitás miatt végzett Evans-műtétek eredményei klinikánkon. [Results of the Evans-operation on lateral melleolus instability at our clinic.] Magyar Traumatológia, Ortopédia, Kézsebészet, Plasztikai Sebészet, 4, 339–344. DOMÁN I.–KOÓS Z.–BÁLINT L. (2001): Teniszkönyök miatt végzett műtétek hosszú távú eredményei. [Longitudinal results of surgical operations on tennis elbows.] Magyar Traumatológia, Ortopédia, Kézsebészet, Plasztikai Sebészet, 44, 9–14. ECKSCHMIEDT S. (1988): A dobások oktatásának előkészítése, az előkészítő dobásgyakorlatok technikája és oktatása. [Preparations to teach throwing, the technique and teaching of preparatory throwing exercises.] ÁISH Tudományos Tanácsa, Budapest, 9. ECKSCHMIEDT S. (1996): Segédanyag az általános erőfejlesztés tantárgy oktatásához. [Supplement for teaching general strength enhancement.] Magyar Testnevelési Egyetem, Budapest, 22. EDMAN, K. A. P.–ELZINGA, G.–NOBLE, M. I. M. (1978): Enhancement of mechanical performance by strength during tetanic contraction of vertebral skeletal muscle fibres. Journal of Physiology, 281, 139–155. ENOKA, R. M. (1994): Neuromechanical Basis of Kinesiology. Human Kinetics (Europe) Ltd., Leeds. ERDŐS I.–SZIJJ Z. (1976): Gimnasztika. [Gymnastics.] Sportpropaganda, Budapest, 59–84. ERDŐS I. (1978): Gimnasztika. [Gymnastics.] Sportpropaganda, Budapest, 3, 103–123. ERICKSON, S. M.–SEVIER, T. E. (1998): Aktív nők osteoporosisa. Megelőzés, diagnózis, kezelés. [Osteoporosis of active women. Prevention, diagnosis, treatment.] Orvostovábbképző Szemle, 5(2), 185. ERNST, E. (1963): Biophysics of Striated Muscle. Akadémiai Kiadó, Budapest, 217–306. FARKAS GY.–HECKENBERGERNÉ (1977): Torna I. (Gimnasztika). [Artistic Gymnastics I. (Gymnastics).] Tankönyvkiadó, Budapest, 101–169. FARKAS GY.–BOCZ Á.–DALLOS S.–DUCHNOVSZKY I.–HECKENBERGERNÉ I.– HERLICSKA K. (1986): Gimnasztika. [Gymnastics.] Tankönyvkiadó, Budapest, 128–309. FEKETE F. (1984): Az erő műhelyében. [In the Strength Workshop.] Hungária Sport, Budapest, 121–203. FÉSÜS L. (1988): Testépítés, izomfejlesztés. [Body Building, Muscle Development.] Sport, Budapest, 24–50. FÉSÜS L.–HORVÁTH S.–KUN J.–NAGY V.–SZEVERÉNYI P.–TAMÁS A.–VASS K. (1990): A hódítás iskolája. [The School of Seduction.] Private publication, Debrecen, 21–45. FISHER, A. J.–SMITH, C. A.–THODEN, J.–SMITH, R.–SUTOH, K.–HOLDEN, H. M.– RAYMENT, I. (1995): Structural studies of myosin:nucleotide complexes: A revised model for the molecular basis of muscle contraction. Biophys. J., 68, 19S–28S. GREGOR, R. J.–CAVANAGH, P. R.–LA FORTURE, M. (1985): Knee flexor moments during propulsion in cycling – A creative solution to Lombard’s paradox. Journal of Biomechanics, 18(5), 307–316. GROSSER, M.–STARISCHKA, S.–ZIMMERMANN, E. (1985): Kondizionstraining. Theorie und Praxis aller Sportarten. BLV. Verlagsgesellschaft, München–Wien–Zürich, 87–99. HALL, S. J. (1999): Basic Biomechanics. (3rd Ed.) WCB, McGraw-Hill, Boston. HARPER, H. A.–LÖEFFLER, P.–PETRIDES, L.–WEISS, L. (1975): Physiologische Chemie. Springer Verlag, New York, 793.
252
HARSÁNYI L.–KATICS L. (1992): Az ártalmak, sérülések megelőzése. [Prevention of Harms and Injuries.] Mester-edző, 1, 7–13. HUBA J. (1978): Gyógytorna az ideg- és elmegyógyászatban. [Medical Gymnastics in Neurology and Psychiatrics.] Medicina Könyvkiadó, Budapest, 22–24. HUSON, A. (1974): Biomechanische Probleme des Kniegelenks. Orthopaede, 3, 119–126. JANDA, V. (1976): Muskelfunktiondiagnostik. Verlag Theodor, Dresden. JANDA, V. (1986): Muskelfunktiondiagnostik. Verlag Volk und Gesundheit, Berlin. KAPANDJI, I. A. (1970): The Physiology of the Joints. Vol. II. Churchill Livingstone, Edinburgh, London. KARÁCSONY I.–TIHANYI J. (1992): Tempóugrások technikai, kinetikai, kinematikai elemzése és oktatásmódszertana. [Technical, kinetic, kinematic analysis and methodology of rhythmic jumps.] Magyar Testnevelési Egyetem Közleményei, 2–3, 68. KATICS L. (1989): Törekvések a szabadgyakorlati alapformák elemzésének újfajta megközelítésére. [Efforts towards new kinds of approaches in the analysis of free-exercise basic forms.] Déldunántúli Regionális Testi Nevelési Tudományos Konferencia. MTA PAB–Sportbiológiai Munkabizottsága és POTE Testnevelési Csoportja. Pécs, 200., 207–208., 210. KATICS L.–PETREKANITS M.–MOLNÁR A.–KÖHLER Á.–HEGYMEGI ZS.–BODA I. (1993): A sportakrobatika keringési rendszerre kifejtett hatása. [The effects of sport acrobatics on the circulatory system.] Mester–edző, 3, 5–6. KATICS L.–GOMBOCZ K.–VÉRTES ZS.–LŐRINCZY D.–KOVÁCS S. (1993): Gimnasztikai gyakorlatok komplex hatásai. [Complex effects of gymnastic exercises.] Mester–edző, 6, 16–21. KEREZSI E. (1972): Gimnasztika. [Gymnastics.] MTS Agit. Prop. Osztálya, Budapest, 71–159. KEREZSI E. (1979): Torna III. [Artistic Gymnastics III.] Sport, Budapest, 59–133., 257–258., 391. KNEBEL, K. P. (1988): Muskeldehnung aus trainingsmethodischer Sicht – Sinn und Unsinn des Stretching. In: Augustin, D.–Joch, W. (ed.): Jugend-Leichtathletik. Schors Verlag, Niedernhausen/Taunus. KOLTAI J.–SZÉCSÉNYI J. (1966): Sportolók erő-fejlesztése. [Strength Enhancement of Athletes.] MTS Országos Tanácsa Módszertani és Tudományos Osztálya, Budapest, 87. KOLTAI J.–NÁDORI L. (1983): Sportképességek fejlesztése. [Sport Skills Development.] Sport, Budapest, 95. KOMI, P. V.–BUSKIRK, E. R. (1972): Effect of excentric and concentric muscle conditioning on tension and electrical activity of human muscle. Ergonomics, 15, 417–434. KREIGHBAUM, E.–BARTHELS, K. (1985): Biomechanics: A Qualitative Approach for Studying Human Movement. Macmillan Publishing Company, New York–Collier Macmillan Publishers, London, 113., 166. KULUND, D. N. (1982): The Injured Athlete. J. B. Lippincott Company, Philadelphia. KUSTOS, T.–THAN, P.–SZOMOR, Z. (1995): Incidence of chondromalacia patellae in adolescent athletes. Orthopedics (Int. Ed.) 3, 433–436. LÁNGFY GY.–ÁRKY N. (1990): Az izomműködés egyensúlyzavarának jelentősége sportsérüléseknél. [The significance of muscle dysbalance in sport injuries.] Magyar Testnevelési Egyetem közleményei, 3, 91–100. LENHART, P.–SEIBERT, W. (1991): Funktionelles Bewegungs-Training. Verlag GmbH Franz Wölzermüller, Oberhaching, 133–157. LŐRINCZY D.–KATICS L. (1992): Tornagyakorlatok tartásos és mozgásos elemeinek stabilitása. [Stability of the hold and motion elements of artistic gymnastic exercises.] Magyar Testnevelési Egyetem közleményei, 2–3, 107–130. LYMN, R. W.–TAYLOR, E. W. (1971): Mechanism of adenosine triphosphate hydrolysis by actomyosin. Biochemistry, 10, 4617–4624. LYSENS, R.–VANDEN, E. (1983): Die Anwendung der Elektrostimulation für das Training der isometrischen Muskellkraft. Leichtathletik, 1, 17–18. MACNICOL, M. F. (1986): The Problem Knee. Diagnosis and Management in the Younger Patient. Aspen Publishers Inc., Rockville. MAQUET, P. G. J. (1985): Biomechanics of the Hip. Springer-Verlag, Berlin, Heidelberg, New York, Tokyo. McMAHON, T. A. (1984): Muscle, Reflexes and Locomotion. Princetown University Press, Princetown, New Jersey. MENSCHIK, A. (1974): Mechanik des Kniegelenkes, Teil 1. Z. Orthop., 112, 481–495.
253
METZING M. (1996): Egy forgástengely körüli karmozgás variációk kinematikai elemzése és erőkifejtési módok szerinti rendszerezése. [Kinematic analysis and ordering by force exertion methods of arm movement variations around a rotational axis.] Magyar Testnevelési Egyetem, Budapest, 7., 148–149. METZING M.–KATICS L.–LŐRINCZY D.–TIGYI J. (1992): Sporttechnikák és motoros képességfejlesztő gyakorlatokban szereplő erőkifejtési módok rendszerének kvalitatív leírása. [Qualitative description of the force exertion methods in sport techniques and motor-ability developing exercises.] Magyar Testnevelési Egyetem közleményei, Appendix, 11–13. MOLLOY, J. E.–BURNS, J. E.–KENDRICK-JONES, J. E.–TREGEAR, R. T.–WHITE, D. C. S. (1995): Movement and force produced by a single myosin head. Nature, 378, 209–212. MUELLER, H.–PERRY, S. V. (1962): The degradation of heavy meromyosin by trypsin. Biochem. J., 85, 431–439. NÁDORI L. (1979): Sportedzés, versenyzés címszavakban. [Sport Training, Competition in Keywords.] Sport, Budapest, 64., 157., 158., 176., 194., 195. NEMESSURI M. (1960): A mozgatószervek anatómiája. [The Anatomy of the Locomotorium.] Sport Lap- és Könyvkiadó, Budapest, 42., 47. NEMESSURI M. (1965): Gyógytestnevelés I. [Adaptive Physical Education I.] Tankönyvkiadó, Budapest, 91–92. NEMESSURI M. (1975): A gyógytestnevelési gyakorlatok mozgásbiológiája (Iskolás korú gyermekek gyógytestnevelése) I. [Movement Biology of Adaptive Physical Education Exercises. (Adaptive physical education of school aged children, I.)] Tankönyvkiadó, Budapest, 26. NEUMANN, G.–SCHÜLER, K. P. (1989): Sportmedizinische Funktionsdiagnostik. VEB. Johann Ambrosius Barth, Leipzig. NURMEKIVI, A. (1974): Beg v goru; Na kakih otrezkah? [Running in the Hills; Which Way to Choose?] Logkaja Atletika, 10, 18–19. PAUWELS, F. (1935): Der Schenkelhalsbruch, ein mechanisches Problem. Z. Orthop. Chir., 63 (Suppl.), 1–135. PAUWELS, F. (1976): Biomechanics of the Locomotor Apparatus. Springer, Berlin–Heidelberg– New York. PERRY, S. V. (1996): Molecular Mechanisms in Striated Muscle. University Press, Cambridge. PÉTER M.–ÁRKY N. (1979): Sportsérülések. [Sport Injuries.] Medicina, Budapest. PETERSON, L.–RENSTRÖM, P. (1986): Sport Injuries: Their Prevention and Treatment. Martin Dunitz Ltd., London. PUDDU, G.–GIOMBINI, A.–SELVANETTI, A. (2001): Rehabilitation of Sport Injuries. Springer-Verlag, Berlin. RAYMENT, I.–HOLDEN, H. M.–WHITTAKER, M.–YOHN, C. B.–LORENZ, M.–HOLMES, K. C.–MILLIGAN, R. A. (1993): Structure of the actinmyosin complex and its implications for muscle contraction. Science, 261, 58–65. RAYMENT, I.–HOLDEN, H. M. (1994): The three-dimensional structure of a molecular motor. TIBS, 19, 129–134. REISS, M.–PFEIFFER, U. (1991): Leistungsreserven im Ausdauertraining. SVB Sportverlag Berlin GmbH, Berlin. RIGÓ A. (1999): A derékfájás gyógytorna-fizioterápiája a háziorvosi gyakorlatban. [Medical gymnastic-physiotherapy of low back pain in the practice of family physicians.] Háziorvos Továbbképző Szemle, 4, 62. RÜDIGER, M.–HABERLEIN, S. (1996): Problemzonen. Falken–Verlag GmbH, Niederhausen/ Taunus. SCHMIDT, H.–FRAUENEDORF, V.–ASMUSSEN, U.–KRAFT, V. (1983): Der Muskeltest nach Janda für die sportmedizinische Praxis. Medizin und Sport, 9, 271–278. SCHNABEL, G.–SCHMIDT, A. (1991): Zum arthromuskulären Gleichgewicht von Kindern und Jugendlichen. Medizin und Sport, 1, 24–27. SINKKONEN, K. (1975): The Programming of Distance Running. Offsetpaino sivakka, Helsinki, 226. SIR J.–KEREZSI E. (1964): Az erőfejlesztés módszerei és gyakorlatgyűjtemény. [A Collection of Methods and Exercises of Strength Enhancement.] MTS Módszertani Osztálya, Budapest, 55–117. SOBOTTA J. (1994): Az ember anatómiájának atlasza. [Atlas of Human Anatomy.] Semmelweis Kiadó, Budapest. SOMOGYI A.–GARDI ZS.–FESZTHAMMER A.–DARABOSNÉ TIM I.–TÓTHNÉ STEINHAUSZ V. (1996): Tartáskorrekció. [Posture Correction.] Magyar Gerincgyógyászati Társaság, Budapest, 7–8.
254
SZENTÁGOTHAI J. (1977): Funkcionális anatómia (I. kötet). [Functional Anatomy (Volume I).] Medicina, Budapest, 453–454. SZENTÁGOTHAI J.–RÉTHELYI M. (1985): Funkcionális anatómia (I. kötet). [Functional Anatomy (Volume I).] Medicina, Budapest, 453. SZENTÁGOTHAI J.–RÉTHELYI M. (1994): Funkcionális anatómia. [Functional Anatomy.] Semmelweis Kiadó, Budapest. SZIJJ Z. (1962): Gimnasztika. [Gymnastics.] Felsőoktatási Jegyzetellátó Vállalat, Budapest, 7–10. SZIRÁKI E. (1999): Az arthrosisos beteg fiziotherápiája. [Physiotherapy of the arthritic patient.] Háziorvos Továbbképző Szemle, 4, 67. SZOMBATI I.–SÓLYOM I. (1999): Az oszteoporozis fizioterápiája. [Physiotherapy of osteoporosis.] Háziorvos Továbbképző Szemle, 4, 76. SZOMOR Z.–THAN P.–KUSTOS T. (1996): Az elülső keresztszalag szakadásának kezelési eredményei klinikánkon. [Results of anterior cruciate ligament rupture treatments at our clinic.] Sportorvosi Szemle, 37, 41–51. THAN P.–BÁLINT L.–DOMÁN I.–SZABÓ GY. (1999): Replacement of the anterior cruciate ligament of the knee with deep frozen bone-tendon-bone allografts. Ann. of Transplantation, 4, 64–67. THOMAS, D. D.–RAMACHANDRAN, S.–ROOPNARINE, O.–HAYDEN, D. W.–OSTAP, M. (1995): The mechanism of force generation in myosin: A disorder-to-order transition, coupled to internal structural changes. Biophys. J., 68, 135–141. THORSTENSSON, A.–SJÖDIN, B.–APOR, P.–KARLSSON, J. (1974): The effect of sprint training on muscle enzymes and muscle strength in man. 3rd European Congress of Sports Medicine, Budapest. TIGYI J. (1978): Az izombiofizika alapvető eredményei és perspektívái. [Fundamental results and perspectives of muscle-biophysics.] MTA Biol. Oszt. Közl., 21, 15–35. UDVARHELYI I. (1998): Fejezetek a felnőttkori ortopédia gyakorlatából. [Chapters in the Practice of Adult Orthopedics.] Medicina, Budapest. VERHOSANSZKIJ, J. (1964): Novoje v szilogoj podgotovka prigunov. [Novelties in the strength preparations of jumpers.] Logkaja Atletika, 7, 22–23. VERHOSANSZKIJ, J. (1985): Programmirovanie i organizacija trenirovocsnogo processza. [Programming and organization of the training process.] Fizkultura i Szport, Moszkva. VÍZKELETY T. (1995): Az ortopédia tankönyve. [Course book of Orthopedics.] Semmelweis Kiadó, Budapest. WAKABAYASHI, K.–TOKUNAGA, M.–KOHNO, I.–SUGIMOTO, Y.–HAMANAKA, T.– TAKEZAWA, Y.–WAKABAYASHI, T.–AMEMIYA, Y. (1992): Small-angle synchrotron X-ray scattering reveals distinct shape changes of the myosin head during hydrolysis of ATP. Science, 258, 443–447. WERNER, M. (1982): Das Knie. Form, Funktion und ligamentäre Wiederherstellungschirurgie. Springer-Verlag, Berlin–Heidelberg–New York. WIEMANN, K. (1989): Das ischiocruralen Muskeln bein Sprint. Leichtathletik, 27, 783–786., 28, 816–818. WIDRA, G. (1993): Muskeldehnung – aktueller Stand der Forschung. Deutsche Zeitscrift für Sportmedizin, 3, 104–111. WILKIE, D. R. (1976): Muscle. (2nd Ed.) Edward Arnold, London. WOLEDGE, R. C.–CURTIN, N. A.–HOMSHER, E. (1985): Energetic Aspects of Muscle Contraction. Academic Press, London. ZANON, S. (1974): Plyometric für die Sprünge. Leichtathletik, 16, 549–552.
255