Institute of Experimental Medicine, Hungarian Academy of Sciences Pázmány Péter Catholic University Faculty of Information Technology and Bionics
Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes indicators and two-photon microscopy Gergely Katona Femtonics - Two-photon Imaging Center
BSS – 2015
Institute of Experimental Medicine, Hungarian Academy of Sciences Pázmány Péter Catholic University Faculty of Information Technology and Bionics
1. 2. 3. 4. 5. 6.
About Femtonics Two photon imaging ROI scannning The 3D acousto-optical microscope 3D scanning of neurons and dendrites Future plans Gergely Katona Femtonics - Two-photon Imaging Center
About Femtonics
”Spin-off”:
Institute of Experimental Medicine of HAS (MTA KOKI)
History
Location
Laser-scanning microscopes: Two-photon microscopes and laboratories, confocal microscopes, FLIM and FRET microscopes
Market
• Femtonics Ltd. was founded in 2005, it started its operations in 2007. Its main focus is the manufacturing and selling of laser scanning microscopes primarily for the purposes of brain research and diagnostics
• The Hungarian company has its HQ in Budapest, but it has local sales centers in several countries.
• Worldwide: research facilities, pharmaceutical companies, biologists, biophysicists, brain researchers
Combined 2P and confocal FEMTO 2D
FEMTO 3D-AO
FLIM and FRET microscope Epifluorescens + UV
Unique scanning features!
R&D strategy
Mix scientific and company results
Femtonics’s developments
BME
PPKE
Pál Maák (Nature Methods) Ádám Gali (OTKA)
Prof. Tamás Roska (Infobionika, BIK) István Ulbert
Electronics develop. Self-designed and manufactured motherboard
Software develop.
Biological measur.
Precision mechanics
Microscope production
OITI (OII)
Optical develop.
Loránd Erős (human diagnostic)
Laser develop.
Imaging
Gene technology
acousto optical control card z=0
Quantum chemistry
Chemical synthesis
Optical engineering in ZEMAX
Medical research
Brain research
Medical technology develop.
Botond Roska, Daniel Hillier (Basel) Christophe Bernard (Marseilles) James Poulet (Berlin) Ivo Vanzeta (Marseilles) Valentin Nagerl (Bordeaux) Veronica Egger (Munich) David Fitzpartick (Max Planck Florida) Ryohei Yasuda (USA)
Electrophysiology
Lab. equipment
SZTE Software in MATLAB, C++, FPGA codes
International Collaborations
Károly Osvay (ELI, FP7 grant, laser development) Gábor Tamás (Cortical Mic.of HAS, PNAS, 3D imaging)
MTA KOKI (IEM HAS), Tamás Freund Two-Photon Imaging Center Zoltán Nusser, (Nature Neuroscience 2012) Szabolcs Káli, Tamás Freund, (in progress) Sylvester E. Vizi (Nature Methods, PNAS) Norbert Hájos, (PNAS, 2011) Attila Gulyás (in progress) Ádám Dénes, Emília Madarász (OTKA)
Intellectual Property BEJELENTÉSI HIVATALI SZÁM NAP
Közzététel száma
FELTALÁLÓK
RÖVID LEÍRÁS
STÁTUSZ
Közzététel
Link
8462010
EP2146234
RB, KG, VESZ
európai szbadalmi bejelentés 2 magyar (504, 505) elsőbbséggel
kutatási jelentéssel közzétett bejelentés, érdemi vizsgálat folyamatban, megjelölési, kiterjesztési díj, 3-4-5-6. évi évdíj befizetve
2010.01.20
http://worldwide.espacenet.com/publicationDetails/biblio?DB= EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&d ate=20100120&CC=EP&NR=2146234A1&KC=A1
2011.07.27
12/998,667
US2011279893
VESZ, KG, RB
A PCT/HU2009/000096 nemzeti szakasza
érdemi vizsgálat folyamatban
2011.11.17
Laser scanning microscope (utazó detektor)
2013.11.15
14/081,035
US20140055852
VESZ, KG, RB
12/998,667 folytatása
érdemi vizsgálat folyamatban
2014.02.27
505-US
Laser scanning microscope for scanning along a 3D trajectory (Rollercoaster)
2011.01.13
12/737,426
US2011211254
VESZ, KG, RB
PCT/HU2009/000057 nemzeti szakasza
érdemi vizsgálat folyamatban
2011.01.09
http://worldwide.espacenet.com/publicationDetails/biblio?CC= US&NR=2011211254A1&KC=A1&FT=D&ND=4&date=2011090 1&DB=EPODOC&locale=en_EP
505-EP
Laser scanning microscope for scanning along a 3D trajectory (Rollercoaster)
2009.07.14
E09785758
EP2307921
VESZ, KG, RB
PCT/HU2009/000057 nemzeti szakasza
kutatási jelentéssel közzétett bejelentés, érdemi vizsgálat folyamatban, megjelölési, kiterjesztési díj, 3-4-5. évi évdíj befizetve
2011.04.13
http://worldwide.espacenet.com/publicationDetails/biblio?DB= EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&d ate=20110413&CC=EP&NR=2307921A2&KC=A2
2009.12.30
13/138,059
US2012044569
a PCT/HU2009/000112 nemzeti szakasza
megadott, köv évdíj 2017. április 15-ig
2012.02.23
http://worldwide.espacenet.com/publicationDetails/biblio?CC= US&NR=2012044569A1&KC=A1&FT=D&ND=4&date=2012022 3&DB=EPODOC&locale=en_EP
2009.12.30
2,748,525
CA2748525
a PCT/HU2009/000112 nemzeti szakasza
nemzeti szakaszként elindítva, 2-3-4. évi fenntartási díj befizetve, 2014.dec 30-ig kell kérni az érdemi vizsgálatot
2010.07.08
http://worldwide.espacenet.com/publicationDetails/biblio?CC= CA&NR=2748525A1&KC=A1&FT=D&ND=6&date=20100708& DB=EPODOC&locale=en_EP
a PCT/HU2009/000112 nemzeti szakasza
érdemi vizsgálat folyamatban, díj megfizetve
2012.01.25
http://worldwide.espacenet.com/publicationDetails/biblio?CC= CN&NR=102334065A&KC=A&FT=D&ND=5&date=20120125& DB=EPODOC&locale=en_EP
AKTASZÁMUNK
CÍM
504-EP
Laser scanning microscope (utazó detektor)
2008.12.31
504-US
Laser scanning microscope (utazó detektor)
504-CIP
521-US
521-CA
521-CN
Focusing system comprising acoustooptic deflectors for focusing an electromagnetic beam (AOD) Focusing system comprising acoustooptic deflectors for focusing an electromagnetic beam (AOD) Focusing system comprising acoustooptic deflectors for focusing an electromagnetic beam (AOD)
2009.12.30
200980157413.8 CN102334065
MP, RB, KG, VESZ, VM, CSA, SZG MP, RB, KG, VESZ, VM, CSA, SZG MP, RB, KG, VESZ, VM, CSA, SZG
http://worldwide.espacenet.com/publicationDetails/biblio?DB= EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&d ate=20111117&CC=US&NR=2011279893A1&KC=A1 http://worldwide.espacenet.com/publicationDetails/biblio?CC= US&NR=2014055852A1&KC=A1&FT=D&ND=&date=20140227 &DB=&locale=en_EP
521-EP
Focusing system comprising acoustooptic deflectors for focusing an electromagnetic beam (AOD)
2009.12.30
E09804142.9
EP2399162
MP, RB, KG, VESZ, VM, CSA, SZG
a PCT/HU2009/000112 nemzeti szakasza
kutatási jelentéssel közzétett bejelentés, érdemi vizsgálat folyamatban, megjelölési díj, 3-4-5. évi évdíj befizetve
2011.12.28
http://worldwide.espacenet.com/publicationDetails/biblio?DB= EPODOC&II=0&ND=3&adjacent=true&locale=en_EP&FT=D&d ate=20111228&CC=EP&NR=2399162A1&KC=A1#
527-EP
Method and measuring system for scanning multiple regions of interest (multiple free line scan)
2008.12.31
E08462011
EP2187252
RB, KG, VESZ, KA, TG
európai szabadalmi bejelentés egy magyar (520) elsőbbséggel
kutatási jelentéssel közzétett bejelentés, érdemi vizsgálat folyamatban, megjelölési díj, 3-4-5-6. évi évdíj befizetve
2010.05.19
http://worldwide.espacenet.com/publicationDetails/biblio?DB= EPODOC&II=1&ND=3&adjacent=true&locale=en_EP&FT=D&d ate=20100519&CC=EP&NR=2187252A1&KC=A1
2009.11.17
12/998,668
US2011279667
RB, KG, VESZ, KA, TG
PCT/HU2009/000094 nemzeti szakasza
közzétett, érdemi vizsgálat folyamatban
2011.11.17
http://worldwide.espacenet.com/publicationDetails/biblio?CC= US&NR=2011279667A1&KC=A1&FT=D&ND=4&date=2011111 7&DB=EPODOC&locale=en_EP
2012.01.05
PCT/HU2012/00 0003
WO 2013/098568
KG, VM, MP, RB, SZG
magyar elsőbbségű PCT bejelentés
Nemzeti szakaszok elindítva; USA, Kína, Kanada, India, Európa, Japán
2013.07.04
http://worldwide.espacenet.com/publicationDetails/biblio?CC= WO&NR=2013098568A1&KC=A1&FT=D
2012.01.05
PCT/HU2012/00 0001
még nincs közzétéve
KG, VM, MP, RB, SZG, KA, CB, MP
közvetlen PCT bejelentés
Nemzeti szakaszok elindítva; USA, Kína, Kanada, India, Európa, Japán
2013.07.11
http://worldwide.espacenet.com/publicationDetails/biblio?CC= WO&NR=2013102771A1&KC=A1&FT=D
2012.01.05
PCT/HU2012/00 0002
WO 2013/098567
KG, CSF, MP, RB
magyar elsőbbségű PCT bejelentés
Nemzeti szakaszok elindítva; USA, Kína, Kanada, India, Európa, Japán
2013.07.03
http://worldwide.espacenet.com/publicationDetails/biblio?CC= WO&NR=2013098567A1&KC=A1&FT=D
2013.11.28
PCT/HU2013/0001 14
még nincs közzétéve
RB, KG, MP
közvetlen PCT bejelentés
kutatási jelentést várjuk
várható 2015.05.28 közzétételt követően lesz elérhető
2013.11.28
PCT/HU2013/0001 15
még nincs közzétéve
RB, KG, MP
közvetlen PCT bejelentés
kutatási jelentést várjuk
várható 2015.05.28 közzétételt követően lesz elérhető
527-US 637-PCT 656-PCT
659-PCT
Method and measuring system for scanning multiple regions of interest (multiple free line scan) Compensator system and method for compensating angular dispersion Methon for scanning along a continuous scanning trajectory with a scanner system Methos for measuring a 3-dimensional sample via measuring device comprising a laser scanning microscope and such measuring device
725-PCT
Optical microscope system
726-PCT
Acousto-optic deflector comprising multiple electro-acoustic transducers
Aktaszámunk
oltalom formája
megjelölés
áruosztályok
ügyszám
státusz
Link
721-CTM
Közösségi védjegy
FEMTONICS
9,10,41,42
CTM011630555
lajstromozott
https://oami.europa.eu/eSearch/#det ails/trademarks/011630555
More than 17 patents
The National Intellectual Property Office's Innovation prize (2012)
Publications Wertz A, Trenholm S, Yonehara K, Hillier D, Raics Z, Leinweber M, Szalay G, Ghanem A, Keller G, Rózsa B, Conzelmann KK, Roska B (2015) Single-cell-initiated monosynaptic tracing reveals layer-specific cortical network modules
Science Katona G, Szalay G, Maak P, Kaszas A, Veress M, Hillier D, Chiovini B, Vizi ES, Roska B, Rozsa B (2012) Fast two-photon in vivo imaging with three-dimensional random-access scanning in large tissue volumes.
Nature Methods. IF= 25.95 Wolfgang G. Bywalez, Balázs Rózsa, et al. & Veronica Egger (2015) Electrical compartmentalization in olfactory bulb granule cell spines/Local postsynaptic sodium channel activation in olfactory bulb granule cell spines Neuron (in press) IF=16.48 Jan Tønnesen, Gergely Katona, Balázs Rózsa, & Valentin Nägerl (2014) Nanoscale spine neck plasticity regulates compartmentalization of synapses
Nature Neuroscience IF=15.25 Balázs Chiovini, Gergely F. Turi, Gergely Katona, Attila Kaszás, Dénes Pálfi, Pál Maák, Gergely Szalay, Mátyás Forián Szabó, Gábor Szabó, Zoltán Szadai, Szabolcs Káli, Balázs Rózsa (2014) Dendritic spikes induce ripples in parvalbumin interneurons during hippocampal sharp waves
Neuron IF=16.48 Noemi Holderith, Andrea Lorincz, Gergely Katona, Balázs Rózsa, Akos Kulik, Masahiko Watanabe, Zoltan Nusser (2012) Release probability of hippocampal glutamatergic terminals scales with the size of the active zone
Nature Neuroscience IF=15.25 G. Katona, A. Kaszás, GF. Turi, N. Hájos, G. Tamás, E. S. Vizi, B. Rózsa (2011) Roller Coaster Scanning Reveals Spontaneous Triggering of Dendritic Spikes in CA1 Interneurons
PNAS IF=9.7 Lőrincz* A, Rózsa B, Katona G, Vizi ES, Tamás G (2007) Differential distribution of NCX1 contributes to spine-dendrite compartmentalization in CA1 pyramidal cells
PNAS IF=9.7 Chiovini B, Turi GF, Katona G, Kaszás A, Erdélyi F, Szabó G, Monyer H, Csákányi A, Vizi ES, Rózsa B. (2010) Enhanced Dendritic Action Potential Backpropagation in Parvalbumin-positive Basket Cells During Sharp Wave Activity.
Neurochem Res. 35(12):2086-95
Growth “Two-photon" word in the field of neuroscience /internet/
120
50
100
Employees
EU
40 Guelph,
Canada
30 New York,
80
20
40
10
20
Ausztralia 2008 2009 2010 2011 2012 2013 2014
1990
2000
2010
2020
30
400000
1500000 25
Income (kHUF)
15 Employees
500000 10
Research Scientists
0 2008
2009
2010
2011
2012
2013
0
Turnover (1000 HUF)
350000
20 1000000
5
Singapore
Export
0
0 1980
Number of employees
Ramat Gan, Israel
South Carolina, USA
60
Budapest, Hungary
250000 200000
2009
2010 YEAR
2011
2012
116 %
150000 100000 50000
2008
60%
300000
2676 %
0
2008
2009
2010
YEAR
2011
Two photon microscopy
GCaMP6f injection
Why neuroscience? „If brain transplantation were possible, that would be the only organ transplantation procedure where it is better to be a donor.”
Neuroscience... … is very close „Where is the soul?” … is of social impact Brain diseases represent third of all health expenses. … is business Prosthetics, brain machine interface … is the science of the future „the IT revolution at the end of the 21th century” … is the challenge of ultimate complexity „Is it possibble to understand our functioning?”
Why two-photon microscopy? Anatomy
Function
Technology comparison Technology
Positives
Negatives
Electron microscopy
Superb resolution
Not compatible with living tissues
Spinning disc confocal, multipoint two-photon
High frame rates
Penetration <100 um
Electrode arrays
Fine temporal resolution
Invasive, no anatomy and localization, only suprathreshold signals
Patch-clamp
Fine temporal resolution, detailed signals
Invasive, no anatomy and localization, cumbersome in vivo
fMRI
Noninvasive, whole body
No cellular resolution, speed on the order of seconds
Why two-photon microscopy • Deep penetration ~700 µm
• Low phototoxicity Hours of measurements
• Subcellular resolution ~400 nm
• Speed up to kHz
• Functional measurements
The two-photon effect One-photon absorption – Nonlinear effect – Small cross section – Square proportional with intensity Two-photon absorption
Mode-locked lasers Focusing
15
Pulsed laser increases 2p excitation Pulesd laser
kP0
CW laser
P0 1 𝑘
T
T 𝑃0 𝑇 = 𝑘𝑃0
Same average power:
1 𝑇 𝑘
Two-photon excitation:
CW
:
pulsed:
𝑇 = 10 𝑛𝑠
~ 𝑃0 2 𝑇 ~ (𝑘𝑃0 )2
1 𝑇 𝑘
+ 0 = 𝑘 𝑃0 2 𝑇
1 𝑇 = 100 𝑓𝑠 𝑘
→
𝑘 = 105
Focusing increases 2p excitation
distance
A ~ d2
Focal plane
Flux ~ d-2
2p Excitation ~ d-4
The two-photon effect One and two-photon excitation
The two-photon microscope Scanning mirrors
Mode-locked Ti:S laser
Infrared laser excitation MHz repetition rate
Detector
dichroic mirror
PMT
femtosecond impulse width
Visible fluorescent light Sample excitation localized to the focal point
Comparison to confocal microscopy •
Penetration – Less tissue scattering for infrared light
•
Focal excitation – Excitation happens only in the focal point causing clearer background and less pohototoxicity
•
Detection efficiency – Even scattered emitted photons reach the detectors with high probability allowing the use of low excitation intensities.
•
Tunability – Mode-locked lasers are often tunable allowing the tuning of excitation wavelength to the dye in use
Price Wider spectrums – Broader spectrums and the excitation wavelengths limit the number of dyes usable at the same time
One in vitro measurement 20 µm
0 -20
Vm (mV)
Rat hippocampal brain slice DIC image Patch-clamp Oregon Green BAPTA 1 Ca2+ concentration sensitive fluorescent dye Two-photon excitation measurements
40% dF/F
-40 -60
500 ms 21
-130
•
Scanline composed of any number of lines and curves
•
Arbitrary positions in the focal plane
•
1-30ms scan times, depending on the complexity of the scanline (≈ 3kHz bandwidth of the galvos)
500 ms
Line-scan
•
„Simultaneous” fluorescent measurement
spine1
•
Subsequent scanning over different curvatures
y(um)
-135
spine1
2 µm
-140 sp d sp
-145
sp d dendrite
5• mSynchronized digital outputs
1,0 0,8
(shutters, triggers, electric stimulation, drug application, etc...)
dF/F
0,6 0,4 0,2
0 dendrite
5
0,0 -0,2
10 x(um)
10 spine 1
0
500
1000
15 1500
time [ms]
2000
2500
20
Resolution of single synaptic inputs to a neuron No spine activated cell
Opt.
A
100 μm
One spine activated
More spine activated
-244
-246
-248
Action potential activated
y(um)
-250
-252
3 μm
-254
-256 0
0
Lorincz A, Rozsa B,-258 Katona G, Vizi ES, Tamas G (2007) Differential distribution of NCX1 contributes to spine-dendrite compartmentalization in CA1 pyramidal cells. Proc Natl Acad Sci U S A 104:1033-1038. A. Lorincz and B. Rozsa contributed equally to this work. -260 200
400
600
control
200
400
600
benzamil
ROIs are sparsely located
Signal-to-noise ratio • Low number of photons • Poisson distribution: SNR = sqrt(N) • Not possible to increase excitation (phototoxicity)
• Number of collected photons ~ Time spent on ROI • Scan only the ROIs!
• ROI-scanning • Line scan • Small, multiple frame scan • Point scan
Z-scannig is a challenge XY scanning with galvanometric mirrors Z scanning with objective positioning ~100 ms Piezoelectric objective positioner ~5 ms Liquid lenses ~ 5 ms
Focal plane Denk W et al. Photon upmanship: Why multiphoton imaging is more than a gimmick, Neuron, 1997
But neurons are fast, in 3D!!!
There are many-many-many neurons to record in 3D
We need a special scanning solution: Acousto-optical scanning
Acousto-optical deflectors and lenses Acousto-optical deflection AcoustoOptic Medium
Diffracted light piezoelectric driver
RF sound enter the AO cell
Incident light
d· sin (αn) = 2n λ/2
Acousto-optic medium
Piezoelectric driver
Δf
Δ
Acousto-optical focusing
RF sound enters the AO cell
F
AcoustoOptic Medium
piezoelectric driver
K f RF sound enter the AO cell
x Piezoelectric driver
3D AO microscope 2D-AO scanning and drift compensation
y
x
Beam expander
AO lens
AO lens
Tc3 Angular dispersion compensation
AO z-focusing q Beam stabilization
Tc4 PMT
m m
q
PMT
Dispersion compensation
in vivo Faraday isolator
Or in vitro
Ti:S laser Mai Tai DeepSee
Katona G., Szalay G., Maák P., Veress M., Kaszás A., Hillier D., Chiovini B., Vizi ES., Roska B., Rózsa B. (2012) Nature Methods
Custom developed electronics system
Digital IO module
Analog IO & PMT module
AO drive module (v5)
Motherboard
Driving functions and organization of the AO measurement Idő
AO cycle
X1 AOD frequency y1 AOD frequency x2 AOD frequency y2 AOD frequency Dead time Paramater upload
Focusing OK
I/O update to all AO cards
PMT data download Data omitted
Data stored
Driving functions
where
and
Control software
3D virtual reality Position sensors Shutter glasses
3D mouse „bird”
Virtual cursor
LCD monitor
b
Product developed…. Patents: WO2013102771, WO2013098568, WO2013098567, US2012044569, US2011279667, US2011279893, WO2010055362, US2011211254, EP2146234 Parameters • Large scanning volumes ( up to 1100 x 1100 x 3000 µm3 ) • Preserved resolution ( ~400 nm in the center ) • Max. scanning speed: ~ 53 kHz/point
Femto3D-AO Acousto-optic 3D-scanning two-photon microscope
Examples • 2000 regions (cells, dendrites ) @ 25 Hz – population imaging • 600 regions (cells, dendrites) @ 90 Hz • 5-10 regions (cells, dendrites) @ 6.6-3.3 kHz – propagation speed measurements - Temporal superresolution microscopy
Scanning modes • Random access point scanning • 3D trajectory scanning • 3D stripe scanning • Tilted frame scanning • All conventional scanning modes
How to use the microscope? • Multiple scanning approaches – High speed scanning – Movement artefact corrections
Different scanning methods 1. Random access point scanning
1.
2. Multiple 3D trajectory scanning 3. Multiple 3D frame scanning 4. Multiple 3D folded frame scanning 5. Multiple 3D line scanning
2.
3. 5. 1 ROI
1s
4.
Random-access point scanning
Use ROI scannig approach: 3D random acces point scanning for in vivo measurement!
GCaMP6 responses measured with resonant scanning
3D Ca2+ response
1s
Each column corresponds to a neuron
30Hz per a single z-plane
300Hz in the 3D volume 0 20µm
20
40
60 Cell #
80
GCaMP6 measurements 500 cells selected for the fast, random-access measurement
Ca2+ activity in dF/F basis Cell #1
100%
ΔF/F
Advantages: • • • • •
Long term learning task can be investigated No artefact from the loading and clearing characteristic of OGB-AM Higher absolute fluorescene, deeper regions can be measured Simultaneous spine and neuronal network measurement Genetically targetable to specific cell types. Slow Z-stack for volume information
0%
50% dF/F
1s
Cell #100
2000
6000 t[ms]
Random-access point scanning
Multiple 3D trajectory scanning 2 ms
30 µm
Point-by-point 2 ms
10 µm
Continuous trajectory scanning
4a
5a 7a 3a
2a 1a
measurement of dendritic spikes in PV neurons arrows indicate distance along dendrites
1a
2a
3a
4a
5a
7a
50 µm time, 200 ms
0.35 ΔF/F
6a
7b 6b 5b 4b 3b 2b 1b
SPW-EPSP
9b 8b
-0.1
SPW-EPSP = Sharp wave associated subthreshold EPSP Chiovini et. al (Neuron) 2014
Multiple 3D frame scanning 3B. Multiple 3D frame scanning
Simultaneous 3D imaging of apical and basal dendritic regions region #1 (apical dendrites)
region #2 (basal dendrites)
Multiple 3D frame scanning Ca2+ transients from the cells marked on the lower video with corresponding colors
20% dF/F 2000ms
289 cells following motion artefacts elimination in ΔF/F
Imaging of 100 neurons – raw data
Multiple 3D frame scanning
Visual stimulus evoked network activity in vivo
Multiple 3D folded frame scanning
2
1
3
Raw data from a virtual 2D plane 20µm
Simultaneously measured dendritic regions - Data showed in dF/F
Multiple 3D folded frame scanning
1
4 5
3 6 2
7
13
8 11 12
9 10 50µm
Motion artefact correction Multiple 3D line scanning Heartbeat frequency movement
Responses from individual spines
1 ROI
time
1s
20 nm
2s 50% ΔF/F
2s
spine #2
spine #2
50% ΔF/F
spine #6 spine #9
spine #6
Szalay et l. (manusript in prep.)
spine #11
without motion correcting spine scans
spine #9 spine #11
with motion correction
Future plans • In vivo cellular activity measurements on animals performing learning tasks • Algorithm to analyze network activity
• Movement artefact corrections (offline and online) • Deeper, faster scanning technologies (adaptive optics, novel lasers, calcium dyes)
3x3D AO scanning methods New microscope able to measure multiple brain areas simultaneously Scan head #1 for imaging Scan head #2 for photo stimulation
2D-AO scanning and drift compensation
2D-AO scanning and drift compensation
y
x
Beam expander Beam expander
AO z-focusing
Tc3 Angular dispersion compensation
Beam stabilization
AO z-focusing q Beam stabilization
Tc4 Dispersion compensation
m
3D scan head #3
Detector PMT unit Ti:S laser Mai Tai DeepSee
AO lens AO lens
Faraday isolator
PMT
Input port #1
m Input port #2
Input port #3
Optical multiplexer Output port #1
Output port #2 & detectors
V1
LGN
Dispersion compensation
Output port #3 & detectors
Optical adapters
Laser amplifier
q
Faraday isolator
Laser amplifier Ti:S laser Mai Tai DeepSee
copyright 2009 © Femtonics Kft. | CONFIDENTIAL Unauthorized use or disclosure of this information to any third party is strictly prohibited by
Summary • Femtonics is a close collaboration with research institutes • Introduced two-photon microscopy and the need for ROI scannig approaches • I’ve showed a 3D acousto-optic microscope able to record neuronal activity in vivo • I showed novel two-photon scanning methods – 3D random acces trajectory scennig – 3D multiple frame scannig – 3D folded-frame scannig
• I showed how to use it for motion compensation in vivo • Neuroscience is fun!
Why neuroscience? „If brain transplantation were possible, that would be the only organ transplantation procedure where it is better to be a donor.”
Neuroscience... … is very close „Where is the soul?” … is of social impact Brain diseases represent one third of the health expenses. … is business Prosthetics, brain machine interface … is the science of the future „the IT revolution at the end of the 21th century” … is the challenge of ultimate complexity „Is it possibble to understand our functioning?”
Thank You for your attention…
We look for new colleagues and students for both research and the company!
Thank you…. IEM HAS Two-photon Imaging Center Rózsa Balázs Szalay Gergely Bojdán Alexandra Chiovini Balázs Katona Gergely Pálfi Dénes Tompa Tamás Sulcz-Judák Linda Szadai Zoltan Juhász Gábor
BME, Department of Atomic Physics Maák Pál
All employees of
Scientific and R&D grants Hungarian-French (TÉT_0389), GOP-1.1.1, Swiss-Hungarian SH/7/2/8, KMR_0214, OTKA (K83251, K105997), FP7-ICT-604102-HBP, Magyary Zoltán (13-0314), TÁMOP-4.2.1. B-11/2/KMR-2011-0002, KTIA_NAP_12-2-2015-0006
Collaborating partners: Botond Roska (FMI, Basel) David Fitzpatrick (Max Plank, USA) Daniel Hillier (FMI, Basel) Valentin Nägerl (Bordeux) Ádám Kepecs (CSH) Pál Maák & Máté Veress (BME) Szabolcs Káli (IEM HAS) Christophe Bernard (Marseille), James Poulet (Berlin), Veronica Egger (Münich) Zoltán Nusser (IEMHAS, Budapest), Gábor Szabó Ferenc Erdélyi (IEM HAS) Ádám Dénes (IEM HAS) Ádám Gali (SZFKI, Budapest) Ibolya Molnár (ELTE, Budapest) Károly Osvay (SZTE, Szeged) Ivo Vanzeta (Marseille), István Ulbert (PPKE, Budapest)